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The photosynthetic capacity of chloroplasts is vital for autotrophic growth in algae
and plants. The origin of the chloroplast has been explained by the endosymbiotic
theory that proposes the engulfment of a cyanobacterium by an ancestral
eukaryotic cell followed by the transfer of many cyanobacterial genes to the
host nucleus. As a result of the gene transfer, the now nuclear-encoded proteins
acquired chloroplast targeting peptides (known as transit peptides; transit peptide)
and are translated as preproteins in the cytosol. Transit peptides contain specific
motifs and domains initially recognized by cytosolic factors followed by the
chloroplast import components at the outer and inner envelope of the
chloroplast membrane. Once the preprotein emerges on the stromal side of
the chloroplast protein import machinery, the transit peptide is cleaved by stromal
processing peptidase. In the case of thylakoid-localized proteins, cleavage of the
transit peptides may expose a second targeting signal guiding the protein to the
thylakoid lumen or allow insertion into the thylakoid membrane by internal
sequence information. This review summarizes the common features of
targeting sequences and describes their role in routing preproteins to and
across the chloroplast envelope as well as the thylakoid membrane and lumen.
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Introduction

The chloroplast is a member of the plastid organelle family known mostly for its
photosynthetic activity though it does perform a vast array of other metabolic activities
essential to plant survival, development, and stress responses (Jarvis and López-Juez, 2013).
Plastids are the result of an endosymbiotic process that started over a billion years ago
(Zimorski et al., 2014). Since that time, most plastid genes have either been lost or transferred
to the nucleus (Timmis et al., 2004). Of the 2,000 plus chloroplast proteins only about 10%
remain encoded by the chloroplast genome. The nuclear-encoded chloroplast preproteins
contain an N-terminal transit peptide (TP). The TP can be compared to a molecular zip code
of preproteins to be targeted to the chloroplast and imported via the chloroplast protein
import machinery (Lee and Hwang, 2021).

The import mechanism involves multiple steps at different (sub-)organellar locations.
Initially, the preprotein is guided through the cytosol accompanied by a chaperone complex
until it is handed off at the outer envelope of the chloroplast where the transit peptide makes
first contact with the TOC (Translocon at the Outer envelope of the Chloroplast) complex
(Flores-Pérez and Jarvis, 2013). This involves the action of the two GTP-binding receptors
TOC159 and TOC34. In a process that requires GTP and low concentrations of ATP
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(0.1 mM), the preprotein is inserted across the large hybrid outer
membrane protein-conducting channel that consists of the
C-terminal ß-barrel membrane (M-) domain of TOC159 and
that of TOC75 (Richardson et al., 2014; Schnell, 2019). At this
stage already, the transit peptide is in contact with the
intermembrane POTRA-domains of TOC75 and initiates contact
with components of the TIC (translocon at the Inner envelope of the
chloroplast) complex, namely, TIC22 and TIC20, however, without
traversing the inner membrane (Kouranov et al., 1998). In the
presence of high concentrations of ATP (> 1 mM) the preprotein
crosses the TIC20 inner membrane protein-conducting channel and
enters the chloroplast stroma assisted by ATP-dependent motor
components (Richardson et al., 2018).

Once inside the stroma, the transit peptide is cleaved by the
Stromal Processing Peptidase (SPP) (Richter and Lamppa, 1998).
Many imported, mature proteins remain in the stroma and are
folded with the help of chaperones. Some proteins, however, are
targeted further to the thylakoid membrane or lumen. Thylakoid
lumen targeted proteins possess bipartite targeting sequences
consisting of a transit peptide followed by a thylakoid targeting
signal that engages one of two pathways leading to the thylakoid
lumen: The ΔpH-dependent TAT (twin arginine targeting) and SEC
(secretory) pathways. However, the Signal Recognition Particle
(SRP) pathway inserting proteins into the thylakoid membrane
relies on targeting information residing within the mature
sequence. Each of these pathways relies on a distinct set of
protein components. Thylakoid targeting signals of preproteins
are removed by a thylakoid processing peptidase (TPP) which
promotes final assembly of the mature proteins leading to
functional chloroplasts (Mori and Cline, 2001; Albiniak et al.,
2012; Teixeira and Glaser, 2013).

Protein translocation into the
chloroplast

The primary structures of transit peptides
are highly diverse

“Signal Peptide” refers to an endoplasmic reticulum targeting
sequence, “pre-sequence” to a mitochondrial one, and “transit
peptide” is specific for chloroplast-targeted proteins (Bruce,
2000). In the late 1970s, after the signal hypothesis had been
proposed, a study showed that in vitro translated Rubisco small
unit (RbcS) protein had a higher molecular mass than mature
RbcS in plant extracts. It was therefore considered a putative
precursor (Dobberstein et al., 1977). The RbcS cDNA was cloned
and revealed an N-terminal extension that was not present in the
mature RbcS. It was identified as the chloroplast targeting
sequence and coined “transit peptide” (Broglie et al., 1981;
Coruzzi et al., 1983). Later studies demonstrated that the
putative precursor of RbcS was transported into isolated
chloroplasts and processed to its mature form (Highfield and
Ellis, 1976; Chua and Schmidt, 1978). It has been proposed that
transit peptides evolved from antimicrobial amphipathic
peptides derived from host cells during endosymbiotic events,
an intriguing hypothesis that is supported by experimental
evidence (Caspari et al., 2023).

A motif study has shown that transit peptides contain three
regions, a N-terminal region lacking charged amino acids, a central
one containing hydroxylated amino acids and C-terminal one
containing an arginine rich motif. This domain structure may be
common to most preproteins (Karlin-Neumann and Tobin, 1986;
von Heijne et al., 1989; Bruce, 2001). A later study, reporting
extensive mutagenesis of the RbcS transit peptide, provided clues
to the existence of FP/RK andMLMmotifs in the transit peptide and
their vital role in chloroplast protein import (Lee et al., 2006). Site-
specific cross-linking experiments with the RbcS transit peptide,
demonstrated that the FP/RK motif is important for interaction not
only with components of the TOC complex, but also with the
TIC20 component of the TIC complex (Richardson et al., 2018).
In addition, FGLK is a transit peptide motif that has been
characterized as being recurrent in transit peptides and playing
an important role in the preprotein recognition by TOC34. The
deletion of the FGLK sequence by mutagenesis prevented the
preprotein from being translocated into the chloroplast
(Chotewutmontri et al., 2012; Holbrook et al., 2016).

Based on a synthetic transit peptide, a study demonstrated that
FGLK and FP/RK motifs are essential for RbcS transit peptide
function and preprotein targeting of the chloroplast (Lee et al.,
2015). Moderate hydrophobicity at the N-terminal region of the
transit peptide is important for preprotein recognition, (Bhushan
et al., 2006; Lee et al., 2006; Lee et al., 2008). Exchange of basic amino
acids (N-terminal region) to acidic amino acids negatively affected
preprotein import into chloroplasts (Razzak et al., 2017; Lee and
Hwang, 2019). Twin-positive (positively charged amino acids)
motifs in the TP appear to play a key role in preprotein import
into old versus young chloroplasts (Teng et al., 2012). In addition,
large scale in silico analysis and experimental evidence revealed that
the twin-positive motif is important for preprotein import into
leucoplasts (Chu et al., 2020).

The importance of proline residues in transit peptides has been
demonstrated by comparing the import of preproteins containing
proline-rich transit peptides with those lacking proline residues. The
mutation of transit peptides by the replacement of prolines by
alanines resulted in reduced efficiency of translocation into the
chloroplast, specifically concerning transmembrane proteins and
proteins prone to aggregation (Lee et al., 2018; Jeong et al., 2021).
Proline is an amino acid that tends to disrupt the secondary
structures of polypeptides (Guzzo, 1965). As preproteins are
believed to be translocated across the TOC complex an
unstructured transit peptide as described by the “perfect random
coil hypothesis” may be advantageous to initiate the early stages of
protein import (von Heijne and Nishikawa, 1991).

Energetics of translocation across at the
chloroplast envelope membranes

The energy requirement of preprotein transport across the
chloroplast envelopes was first analyzed in an in vitro import
assay using isolated chloroplasts that were either light- or dark-
adapted. The study showed that import into dark-adapted
chloroplasts was compromised (Grossman et al., 1980).
Exogenously added ATP rescued imports into dark-adapted
chloroplasts, demonstrating that ATP was the primary energy
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source (Cline et al., 1985). Later studies demonstrated that import of
preproteins into chloroplasts was driven by the hydrolysis of ATP
inside the chloroplast (Flügge andHinz, 1986; Pain and Blobel, 1987;
Theg et al., 1989). It was then revealed that distinct concentrations of
ATP in different compartments defined separate steps of chloroplast
protein import. Low concentrations of ATP (50–100 µM) were
sufficient for preprotein binding to the surface of the chloroplast,
whereas high concentrations of ATP (1 mM or more) were required
for protein translocation across the chloroplast envelope (Olsen
et al., 1989). The RbcS preprotein could be chemically crosslinked to
chloroplast envelope component in an ATP-dependent manner
(Perry and Keegstra, 1994).

The energetics findings were exploited to generate preprotein
translocation intermediates and isolate the first components of the
protein import machinery from isolated pea chloroplasts (Schnell
and Blobel, 1993). In these experiments, recombinant preprotein of
RbcS fused to two IgG-binding domains of Staphylococcus aureus
ProteinA (resulting in pS-ProtA) was used as a tool. When
incubated at low ATP concentrations, pS-ProtA is stably bound
to isolated chloroplasts. pS-ProtA remained sensitive to exogenous
protease and the transit peptide was not cleaved. This state defines
the “early translocation intermediate”. When incubated at high ATP

concentrations, pS-ProtA was fully imported. However, its import
could be arrested by chilling on ice. At this stage, pS-ProtA was both
accessible to exogenous protease and the transit peptide partially
cleaved resulting in mature S-ProtA. Thus, pS-ProtA and S-ProtA
had traversed and were now spanning both the outer and inner
envelope membrane. This state defines the “late translocation
intermediate”. It is important to note that the formation of both
the “early” and “late” translocation intermediates critically depended
on the presence of the transit peptide in pS-ProtA (Schnell and
Blobel, 1993). The production of “early” and “late” translocation
intermediates was upscaled from analytical to biochemical
quantities allowing their isolation by IgG-affinity
chromatography. The “early” translocation intermediate pS-ProtA
was associated with three visible bands on a SDS-PAGE gel. These
first three proteins were molecularly cloned and sequenced and are
now known as TOC159, TOC75 and TOC34 (Kessler et al., 1994;
Schnell et al., 1994). The three form the core of the TOC-complex as
it is widely accepted today. In addition to the three core components
of the TOC-complex, the “late” translocation intermediate pS-ProtA
and S-ProtA associated with twomore bands. One is known today as
TIC110 while the second one, named IAP36 at the time, was never
identified (Schnell et al., 1994). To this day, the role of TIC110 in

FIGURE 1
Preproteins translocation into chloroplast membrane systems. General scheme of chloroplast import of nuclear-encoded preproteins containing a
transit peptide (TP) followed by a thylakoid Signal sequence (SS). Preprotein translocation passes through the Translocons at the Outer envelope (OE) of
the Chloroplast (TOC) and the Inner envelope (IE) of the chloroplast (TIC). Upon entry, the transit peptide is cleaved by the Stromal Processing Peptidase
(SPP) and processed by the PreP protease for recycling/degradation. The thylakoid-targeted proteins pass through either the Twin Arginine
Transport (Tat) pathway requiring the Proton Motive Force (PMF), the Sec requiring ATP, or the Signal Recognition Particle (SRP) pathway. Upon thylakoid
membrane insertion, the thylakoid signal sequence (SS) is cleaved by the Thylakoid Processing Peptidase (TPP), completing the final import step.
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chloroplast protein import remains contested and is notably absent
from algal protein import complexes (Ramundo et al., 2020).

Translocon complexes at the inner and outer
chloroplast membranes

The large majority of chloroplast proteins are imported via the
TOC-TIC complexes (Figure 1). The first components were
identified in the beginning of 1990s as a result of studies on
isolated pea chloroplasts and revealed three components of the
outer and one at the inner envelope membranes (namely, Import
intermediate Associated Proteins or Outer Envelope Protein), IAP/
OEP34, IAP/OEP75, IAP/OEP86 and Inner Envelope Protein
IAP100/IEP110 (Hirsch et al., 1994; Kessler et al., 1994; Perry
and Keegstra, 1994; Schnell et al., 1994). These translocon
components were renamed according to the TOC–TIC
nomenclature as Toc34, Toc75, and Toc159 (for IAP/OEP86)
and Tic110 (Schnell et al., 1997). The initial characterization
revealed that TOC159 and TOC34 were homologous GTP-
binding proteins exposed at the chloroplast surface. They were
both sensitive to the addition of exogenous thermolysin protease
fulfilling an important criterium for preprotein receptors at the
chloroplast surface (Kessler et al., 1994). TOC75 was insensitive to
exogenous thermolysin, bore homology to cyanobacterial ß-barrel
solute channels related to the β-barrel assembly machinery A
(BamA) family fulfilling criteria for a protein-conducting channel
at the outer chloroplast membrane. TIC110 had two N-terminal
alpha-helices and a large stromal domain suggesting that it may
function as scaffold coordinating late translocation functions such as
recruitment of chaperones for protein folding and assembly (Kessler
and Blobel, 1996).

The presence of GTP-binding proteins in the TOC complex
encouraged further energetics experimentation. Preprotein binding
to chloroplasts does not only require low concentrations of ATP but
also implicates GTP as non- and slowly-hydrolyzable GTP analogs
inhibited import. These findings supported the importance of the
role of TOC GTPase receptors (Olsen and Keegstra, 1992; Kessler
et al., 1994). Apart from the irreversible energy-dependent
interactions, the transit peptide is also reversibly bound to
TOC159 and TOC75 in an energy-independent way as
demonstrated by chemical cross-linking (Ma et al., 1996).

In Arabidopsis as well as other species, both of the GTP-binding
TOCs are encoded by multigene families and consequently several
isoforms of each have been discovered. The structure of TOC34 as
well as those of its homologs consists of two main features, a
N-terminal GTPase domain and a single C-terminal alpha-helical
membrane-spanning domain followed by a short hydrophilic tail
(Jarvis et al., 1998). TOC159 and its three homologs in Arabidopsis
(atTOC120, −132, −90) possess a central GTPase (G-) domain, a
C-terminal membrane-anchoring (M-) domain, and a N-terminal
acidic (A-) domain at the N-terminus (Kubis et al., 2004). The
M-domain has now been shown to take on a ß-barrel structure and
associate with TOC75 to form a large hybrid channel at the outer
chloroplast membrane (Jin et al., 2022; Liu et al., 2023). The
A-domains in the four Arabidopsis isoforms of TOC159 are
much more divergent than the G- and M-domains and appear to
play a role in pre-protein specificity (Agne et al., 2010). It, however,

is not clear how the various A-domains distinguish the transit
peptides of different classes of preproteins (i.e., photosynthesis-
associated versus house-keeping) (Bauer et al., 2000; Ivanova
et al., 2004). TOC75 belongs to the BamA family with homologs
in Gram-negative bacteria as well as mitochondria and plastids
(Schleiff and Becker, 2011). Based on these similarities, TOC75 was
proposed to function as the protein-conducting channel at the outer
membrane of the chloroplast. TOC75 is encoded by a single
orthologous gene in the genomes of all plant species sequenced
so far. In addition to forming a ß-barrel channel, TOC75 has three
N-terminal POTRA (polypeptide transport-associated) domains
(Sánchez-Pulido et al., 2003; Srinivasan et al., 2023). The POTRA
domain contributes to preprotein recognition and has chaperone-
like activity to guide the incoming preprotein across the
intermembrane space (Kouranov and Schnell, 1997; Paila et al.,
2016; O’Neil et al., 2017).

At the inner envelope membrane, at least two models have
been proposed for the TIC complex, the first consisting of the
TIC20 (channel) TIC214 (plastid-encoded), TIC100, TIC56,
TIC21 and TIC12 forming a 1 MDa complex (Kikuchi et al.,
2013) the second consisting of TIC110 and TIC40. Currently, it is
not clear whether the second complex functions together with or
independently from the 1 MDa TIC complex in land plants.
Cryo-EM structures of the Chlamydomonas TOC-TIC
holocomplexes, however, did not contain homologs of
TIC40 or TIC110 (Jin et al., 2022; Liu et al., 2023). In
addition to the aforementioned components the
intermembrane space component TIC236 constitutes a
physical link between the TOC and TIC complexes (Chen
et al., 2018). TIC22, another intermembrane space component,
has been proposed to promote preprotein import across both
envelope membranes and the intermembrane space besides its
function as a chaperone (Kouranov et al., 1999). As preprotein
import requires ATP, the existence of ATP-dependent motors
has been proposed. However, the exact nature of such stromal
import motor(s) is currently contested. On the one hand
biochemical and genetic information provide support for a
chaperone network consisting of cpHsp70, Hsp90C, and
Hsp93) consuming the ATP and energizing translocation (Su
and Li, 2010; Inoue et al., 2013; Huang et al., 2016). On the other
hand, an alternative stromal motor has been proposed that
consists of a 2-MDa ycf2/FtsH1 complex that also has
predicted ATP hydrolysis activity (Kikuchi et al., 2018).
However, the respective significance of the two proposed
motor systems has not been evaluated so far, and neither of
the two systems were observed in the currently available Cryo-
EM structures (Jin et al., 2022; Liu et al., 2023).

Transit peptides are cleaved by stromal
processing peptidase

Upon entry into the chloroplast stroma and possibly before
complete translocation, the transit peptide is cleaved by Stromal
Processing Peptidase (SPP) (Figure 1) (Richter and Lamppa, 2002;
Richter and Lamppa, 2003). SPP is an M16 metallopeptidase
carrying out a function comparable to that of the Mitochondrial
Processing Peptidase (MPP), a metalloprotease, involved in the
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maturation of nuclear encoded proteins imported into mitochondria
(Pollock et al., 1988; Braun et al., 1992). SPP, cleaves at a
semiconserved motif ((I/V)-X-(A/C)-↓-A (arrow marks cleavage
site) at the C-terminus of the transit peptide (von Heijne et al.,
1989). Thereby initiating the final steps of preprotein maturation.
After transit peptide cleavage, these may include folding and/or
assembly in the stroma or insertion into or translocation across the
thylakoid membrane. SPP is an essential component of the import
mechanism as demonstrated by the aborted seed phenotype
observed in the spp homozygous knockout mutants (Trösch and
Jarvis, 2011). Once cleaved, transit peptides are further degraded by
presequence peptidases (PrePs) (Figure 1) (Ståhl et al., 2005).

Thylakoid membrane targeting sequences
and alternative insertion pathway

The thylakoid membrane is home to the light reactions of
photosynthesis. For thylakoid biogenesis, assembly of thylakoid
luminal and integral membrane proteins is essential. For a
considerable number of proteins, the journey therefore is not
finished upon arrival inside the chloroplast. Cleavage of the
transit peptide may expose a secondary targeting sequence that
will engage one of at least two entry pathways to the thylakoids. Two
routes exist for entering the thylakoid lumen: the twin-arginine
translocase (TAT) that may accommodate folded proteins, or the
SEC translocase for unfolded proteins (Figure 1) (Yuan et al., 1994;
Mori et al., 1999). In addition, integral thylakoid membrane proteins
require the signal recognition particle (SRP) pathway for alternative
insertion (Figure 1) (Schünemann, 2007). Interestingly, all three
pathways have been conserved from the cyanobacterial ancestor and
exist in bacteria and, in the case of the SEC and SRP pathways, in
animals to this day.

SEC translocation mechanism

The SEC pathway is well-known for its evolutionary conserved
mechanism (Dalbey and Chen, 2004). In thylakoid targeting signals,
the SEC-specific signal sequence has been described as containing
three domains, a charged domain at the N-terminal part, a
hydrophobic mid-section and C-terminal cleavage domain
containing an A-x-A motif set for interaction with the thylakoid
processing peptidase (TPP) (Hsu et al., 2011; Celedon and Cline,
2013). SEC1 is the SEC translocase at the thylakoid membrane
(Fernandez, 2018). The SEC1 complex contains SCY1 and
SECE1 thylakoid membrane protein channels associated with the
stromal motor protein SECA1 (Nakai et al., 1994). Nuclear-encoded
lumenal proteins are translocated in an unfolded form across the
SEC translocase. The N-terminal part of the signal peptide interacts
with SECA1 translocation motor and its ATPase activity provides
the energy for translocation across the SCY1/SECE1 channel.
Subsequently, the signal sequence is cleaved in the thylakoid
lumen (Figure 1) (Albiniak et al., 2012). HSP90C may also assist
the SEC1 translocation pathway in translocating thylakoid precursor
proteins from the stroma to the lumen (Jiang et al., 2020).
Surprisingly, a SEC2 translocase system also exists that is similar
to SEC1, but SCY2 and SECE2 are inner envelopemembrane protein

channels using the stromal motor protein SECA2 (Skalitzky et al.,
2011). The known examples of SEC2-dependent translocation of
inner envelope proteins are TIC40 and FTSH12 (Li et al., 2017).
However, the SEC2 translocase system is poorly understood
compared to SEC1 due to a lack of studies.

TAT translocation mechanism

The Twin Arginine Transport (Tat) pathway is so called
because the corresponding targeting sequences contain two
neighbouring arginine residues (Cline et al., 1992). The TAT
pathway is distinct from others in that it is able to transport fully
folded protein across the thylakoid membrane and into the
lumen. The TAT-specific signal sequence features are similar
to those of SEC with the exception of the N-terminal part that
contains the twin arginine (RR) motif. The RR motif is
responsible for SEC avoidance response in thylakoid targeting
(New et al., 2018). The Tat pathway is estimated to be responsible
for the import of an estimated 50% of the thylakoid lumen
proteins (Robinson and Bolhuis, 2004). The characteristic
twin-arginine motif is essential for translocation and is
disabled by mutation to other combinations of amino acids.
The TAT pathway requires only the proton motive force
(pmf) as energy source in order to achieve protein transport
and has therefore also been called the ΔpH pathway (Mould and
Robinson, 1991). Three proteins named TatC, Hcf106 and
Tha4 form a complex that binds to the precursor protein’s
RRXFLK motif in the N-terminal part of the signal sequence
in order to facilitate translocation (Figure 1). Liquid-liquid phase
separation by Hcf106-ankyrin-repeat proteins (STT) interaction
facilitates the TAT dependent translocation of the luminal
proteins (Ouyang et al., 2020). Several models of translocation
have been proposed for the plant TAT pathway. However, no
proven model exists to date (New et al., 2018).

SRP

The chloroplast signal recognition particle (cpSRP) pathway,
which is derived from prokaryotes and known as cpSRP pathway,
targets and inserts abundant thylakoid membrane proteins, for
example, light-harvesting chlorophyll-binding proteins (LHCPs)
(Ziehe et al., 2018). Unlike SEC and TAT pathways, no
conserved motif or domain is present at the N-terminal of the
protein for thylakoid targeting. Several studies address LHCP
recognition by the cpSRP pathway. The L18 motif (18 amino
acids within the second and third transmembrane helices) of
LHCP is crucial for recognition by cpSRP transit complex (Tu
et al., 2000). Once nuclear-encoded LHCP is imported into the
chloroplast via the TOC-TIC complex and processed by SPP, it
forms the stromal transit complex together with cpSRP54 (GTPase)
and cpSRP43 (Schuenemann et al., 1998). The cpSRP transit
complex containing LHCP binds to cpSRP receptor cpFtsY
(GTPase) (Kogata et al., 1999; Tu et al., 1999; Nguyen et al.,
2011) and docks to Alb3 (insertase at thylakoid membrane) via
cpSRP43, promoting precursor/LHCP insertion into thylakoid
membrane (Figure 1) (Moore et al., 2000; Bals et al., 2010).
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cpSRP43 has two distinct chaperone activities for i) LHCP insertion
and ii) tetrapyrrole biosynthesis enzymes. The chaperone activity
towards tetrapyrolle biosynthesis activity allows to coordinate LHCP
insertion with chlorophyll biosynthesis and assembly into LHCP.
Interestingly, cpSRP54 activates the cpSRP43 chaperone function
towards LHCP insertion and inhibits the chaperone activity towards
tetrapyrrole biosynthesis enzymes (Wang et al., 2018; Ji et al., 2021).
However, except for LHCP, there is a lack of information about how
the SRP targets are recognized by the components of the SRP
pathway.

Thylakoid processing peptidase (TPP)

The thylakoid proteins are translocated into the thylakoid
lumen by either the Sec or Tat pathways and, in a final step the
N-terminal thylakoid targeting sequence is cleaved by Thylakoid
Processing Peptidase (TPP) (Figure 1) (Hsu et al., 2011). TPP is a
member of the membrane-bound proteases belonging to the type
I signal peptidase (SPase I) family in both prokaryotes and
eukaryotes. Plsp1 and Plsp2A/B are the two TPPs present in
the thylakoids (Hsu et al., 2011). Plsp1 is known to be involved in
the SEC and TAT dependent signal sequence cleavage and,
surprisingly also, processing of TOC75 at the envelope
membrane, suggesting that at least the Plsp1 protease is found
not only in the thylakoid membrane but also in the envelopes.
Plsp1 is essential for chloroplast biogenesis, its mutation
resulting in a very pale green phenotype (Shipman and Inoue,
2009). Currently, the physiological and functional roles of
Plsp2A/B in signal peptide processing are unclear.

Conclusion and future perspectives

In the last years, significant progress has been made with regard
to the understanding of the molecular and mechanistic details of
chloroplast import of nuclear-encoded proteins by the TOC-TIC
complex. The recent cryo-EM structural studies reveal how the
TOC-TIC components are arranged in detail and provide some
information on the likely path of the preprotein and its transit
peptide across the chloroplast envelope. It would now be highly
interesting to study the cryo-EM structure of the TOC-TIC complex
in association with a preprotein and its transit peptide to gain a
complete understanding of the import process. Also, the recent cryo-
EM structures failed to reveal the cytosolic GTPase domains of the
TOC34 and −159 (Jin et al., 2022; Liu et al., 2023) that play a central
role in transit peptide recognition. The GTPase domains should
remain a key target in future structural work. Recent advances in the

chloroplast transit peptide field reveal that specific motifs, i.e., the
proline-rich motif, have vital roles in the preprotein interaction with
the TOC-TIC translocon. However, fundamental knowledge
concerning the recognition and distinction of transit peptides
belonging to different classes of preproteins (i.e., photosynthesis-
associated vs. nonphotosynthetic housekeeping) is still lacking. In
the future, the identification and investigation of particular motifs
playing essential roles in tissue- and plastid-specific protein import
pathways are predicted to be important research questions. Last but
not least, many questions regarding second targeting sequences and
their role in processing and assembly of the all-important
photosystems remain open and should be addressed in the future.
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