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The aim of this study was to evaluate the effects of replacing fish meal (FM) or soy
protein concentrate (SPC) with wheat gluten on growth performance, feed
utilization, and nutrient digestibility and retention in Japanese seabass
(Lateolabrax japonicus). Seven isonitrogenous (441–456 g kg−1 crude protein)
and isocaloric (21.5–22.0 MJ kg−1 gross energy) diets were produced to replace
0%, 33.3%, 66.7% and 100% of FM or SPC with a mixture of wheat gluten, wheat,
and taurine (GWT, 77.5%wheat gluten, 20.5%wheat and 2.0% taurine). The gradual
replacement of protein in FM with GWT had no significant effects on feed intake,
whole-body composition, and the hepatosomatic and viscerosomatic indices, but
resulted in a linear decrease in the weight gain rate, feed efficiency, and retention
of nitrogen, energy, and essential amino acids (Arg, His, Ile, Leu, Lys, Met, Phe, Thr,
and Val). The apparent digestibility ofmost essential amino acids (Cys, His, Leu, Lys,
and Phe) and total amino acids increased linearly. Replacement protein in SPCwith
GWT had no significant effects on feed intake, growth, the feed conversion ratio,
whole-body composition, and the hepatosomatic index, but resulted in a linear
decrease in nitrogen, energy, and Met retention; the digestibility of Cys and Met
increased linearly. Overall, wheat gluten is a more effective alternative for
replacing protein in SPC than FM.
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1 Introduction

The production of high-quality (LT) fish meal is highly
standardized in terms of raw material freshness, separation, and the
drying process. LT fishmeal has a high concentration of digestible
protein and a balanced amino acid composition (Anderson et al., 1997).
The lipid portion of LT fishmeal consists of triglycerides and
phospholipids and high levels of n-3 fatty acids, which can provide
essential fatty acids for fish (Olsen and Hasan, 2012). LT fishmeal is
produced with presscake and stickwater, which contribute to the
biological value of protein and the physical characteristics of
extruded feed. However, the limited amount of fish meal and
growing demand have led to higher prices (Tacon and Metian,
2008). Thus, it is necessary to find alternative protein sources to
meet the protein requirement for fish growth in intensive aquaculture.

Wheat gluten is a proteinaceousmaterial obtained fromwheat, with
a crude protein (CP) content of up to 80% (Apper-Bossard et al., 2013).
It is a digestible binder in extruded feeds and has a protein digestibility
close to 100% in the feed of Atlantic salmon (Salmo salar) and rainbow
trout (Oncorhynchus mykiss) (Storebakken et al., 2000a; 2015a). In
addition, it contains a relatively high concentration of sulfur-containing
amino acids, including 1.8% Met and 2.6% Cys, which is considerably
higher than in soy protein concentrate (Apper-Bossard et al., 2013).
Wheat gluten is virtually devoid of antinutritional factors due to the low
content of non-starch polysaccharides and other indigestible
carbohydrates (Tusche et al., 2012). A study in salmon showed that
wheat gluten can efficiently replace high-quality (LT) fish meal
(Storebakken et al., 2015a). Another finding indicated that wheat
gluten could improve intestinal health in salmon, which is probably
related to the high glutamine content (35%–40% of CP) (Apper et al.,
2016).

Soy protein concentrate (SPC) is a major protein source in fish.
It contains a higher protein concentration than soybean meal,
especially Arg, which can support the rapid growth and efficient
feed conversion of fish (Storebakken, 2000b; Zhang et al., 2012b).
Furthermore, antinutritional factors, such as protease inhibitors,
lectins, soluble non-starch polysaccharides, and indigestible
oligosaccharides, have been inactivated or removed (Storebakken,
2000b). However, the main challenge for SPC is phytate, which can
be concentrated during the extraction process. Phytate has
potentially negative effects on freshwater eutrophication due to
its low availability. In warm-water fish, it is feasible to overcome
this challenge by applying phytase in feed (Denstadli et al., 2007).

Japanese seabass Lateolabrax japonicus, known as black-spotted
bass, is one of the most important aquaculture species in China.
Studies on fish meal substitution in Japanese seabass have been
widely reported. Juvenile Japanese seabass adapted to a 50% dietary
soybean meal (IBW of 6.7 g) but required additional crystalline
methionine supplementation (Zhang et al., 2016; Zhang et al., 2018).
However, its tolerance to canola rapeseed meal is lower at less than 20%
(Cheng et al., 2010). Men et al. (2014) found that replacing 60% fishmeal
with corn glutenmeal did not hinder the growth of Japanese seabass. Hu
et al. (2013) evaluated the effects of different qualities of fish meal in
larger Japanese seabass (IBW of 76 g), and the results indicated that
prime steam-dried fishmeal was superior to standard steam-dried
fishmeal in terms of feed intake and growth rate. Therefore, the aim
of this study was to evaluate the effects of replacing LT fishmeal or SPC
with wheat gluten in Japanese seabass, which could contribute to further

understanding the potential use of wheat gluten as a considerable
alternative protein source.

2 Materials and methods

2.1 Ingredients and diets

Seven isonitrogenous (441–456 g kg-1 crude protein) and isocaloric
(21.5–22.0MJ kg-1 gross energy) diets were formulated to compare the
nutritional value and combination effects of wheat gluten, LT fishmeal,
and SPC. The chemical compositions of wheat gluten, FM, and SPC are
presented in Table 1. A mixture (GWT) consisting of 77.5% wheat
gluten, 20.5%wheat, and 2.0% taurine was produced. The V0, VF1, VF2,
and VF3 diets were formulated with GWT gradually replacing 0, 33.3,
66.7, and 50% FM, respectively. Similarly, GWT gradually replaced 33.3,
66.7, and 100% SPC to form the VS1, VS2, and VS3 diets, respectively
(Table 2). Based on previous studies (Mai et al., 2006; Li et al., 2012; Hu
et al., 2013), theV0diet couldmeet the nutrient requirements of Japanese
seabass. To maintain the same level of dietary essential amino acids
(EAA), the VS1, VS2, and VS3 diets were supplemented with crystalline
Lys, Arg, and Thr, and the VF1, VF2, and VF3 diets were supplemented
with crystalline Lys, Arg, Thr, and Met. In addition, monocalcium
phosphate was also added to the diets, and yttrium oxide (Y2O3) was
used as an inertmarker for digestibility assessment (Austreng et al., 2000;
Zhang et al., 2006). The formulation, proximate compositions, and
amino acid profiles of the diets are presented in Table 3, 4.

2.2 Feed manufacturing and physical quality
analysis

Diets were produced at the Feed Technology Laboratory of the Feed
Research Institute, Chinese Academy of Agricultural Sciences in Beijing.
All dry ingredients were ground in a hammer mill through a 0.18-mm
screen, then mixed, preconditioned, and extruded in a twin-screw
extruder (MY56X2A, Muyang, Jiangsu, China) with a 2.0 mm die
plate (MY56A 12-03/02 XL 09 11). The goal of the extrusion
process was to achieve a bulk density higher than 516 g L−1 prior to
drying to facilitate the slow sinking of feed after drying and lipid coating.
All extruded pellets were dried to 950 g kg-1 dry matter at ambient
temperature. Fish oil and soy lecithin were coated into pellets using a
vacuum coater (ZJB-100). Pellet length and diameter were determined
using a digital caliper. Durability and breaking point were estimated for
uncoated pellets using a pellet tester (ST-136, Shengtai Instrument Co.,
Ltd., Jinan, China) and hardness tester (ST-120B, Shengtai Instrument
Co., Ltd., Jinan, China), respectively. Water stability and sinking rate
were determined according to the methods described by Baeverfjord
et al. (2006) and Sørensen et al. (2012), respectively.

2.3 Fish rearing and experimental conditions

A 72-day feeding trial followed by a 10-day digestibility
evaluation experiment were conducted in an indoor recirculation
system at the Haid Group research station, Seagull Island, Panyu,
Guangzhou, China. Freshwater-acclimated Japanese seabass (L.
japonicus) juveniles were obtained from a hatchery in Fujian,
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China and fed a commercial diet for 1 month to adapt to the
laboratory condition. Before the experiment, 630 fish with an
initial weight of 10.73 ± 0.33 g were fasted for 24 h, anaesthetized
with MS-222 (90 mg L−1; Hangzhou Dongbao, Hangzhou, China),
batch-weighed, and then randomly assigned to 21 circular tanks,
with each diet being assigned triplicates and 30 fish per tank. All fish
were fed four meals per day by hand (07:30, 10:30, 13:30, and 16:
30 h), with each meal lasting 60 min. Fish were fed 10% in excess
based on average feed intake over the previous 3 days. All uneaten
feed was immediately sieved and dried to a constant weight at 95°C
and reweighed. During the feeding experiment, the water
temperature ranged from 28.5°C to 30.0°C, dissolved oxygen

exceeded 5.0 mg L−1, the pH value was 6.5–7.0, ammonia
nitrogen and nitrite were less than 0.1 mg L−1, and the
photoperiod was 12D:12L.

2.4 Sampling

Before the experiment, 30 fish were euthanized by an
overdose of MS-222 and stored at −20°C for whole-body
composition analyses. At the end of the experiment, fish were
anaesthetized with 90 mg L-1 MS-222 before sampling. Five fish
from each tank were individually measured for weight and body

TABLE 1 Compositions of the three main ingredients in the experiment (dry matter basis).

Ingredient Fish meala Wheat glutenb Soy protein concentratec

Composition, kg-1

Dry matter, g 936 946 925

Crude protein, g 744 872 694

Crude fat, g 117 44 47

Starch, g - 74 -

Ash, g 122 10 58

Gross energy, MJ 21.78 22.02 20.08

Essential amino acids (EAAs), g (16 g N)−1

Arg 5.28 3.43 7.46

His 2.26 1.83 2.74

Ile 4.07 3.54 4.77

Leu 6.97 6.82 7.85

Lys 7.40 1.65 6.43

Met 2.67 2.02 1.33

Phe 3.71 5.89 5.10

Thr 3.98 2.67 4.00

Trp 0.61 0.80 1.32

Val 4.96 3.90 4.96

Total EAAs 41.9 32.6 45.9

Total non-essential AAsd 40.6 61.5 50.5

Total AAsd 82.5 94.1 96.4

aTriple nine®, low-temperature dried fish meal, Esbjerg, Denmark.
bAMYGLUTEN 110, Syral, Aalst, Belgium.
cYihai®.Wilpromil, Glodensea Grain and Oil Industry Co., Ltd, Wilmar, Qinhuangdao, China.
dTyr excluded.

TABLE 2 Inclusion rate of GWT, FM, and SPC in the experiment diets.

Diet GWT, % FM, % SPC, %

V0 0 50 50

VF1 16.7 33.3 50

VF2 33.3 16.7 50

VF3 50 0 50

VS1 16.7 50 33.3

VS2 33.3 50 16.7

VS3 50 50 0

GWT, a mix of wheat gluten, wheat, and taurine; FM, fish meal; SPC, soy protein concentrate.
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length, then dissected to remove the whole viscera; the liver and
carcass were weighed separately. Another six fish were randomly
sampled from each tank and then kept at −20°C for analysis of
whole-body and amino acid compositions. The remaining fish in
each tank were assessed for the digestibility evaluation
experiment. Faeces were collected by carefully dissecting the
abdomen from the last 5 cm of the distal intestine, pooled by
tank, and then stored at −20°C.

2.5 Chemical analysis

Initial and final whole-body samples from the same tank were cut
into pieces and ground with a meat grinder, then autoclaved (YXQ-LS,
Xunbo, Shanghai, China) at 120°C for 30 min, homogenized by a
homogenizer (DS-1, Shanghai, China), and oven-dried (Jinghong,
Zhejiang, China) at 80°C. Whole-body samples were finely ground
with a pestle and mortar until all samples passed through a 0.9 mm
screen. Dried whole fish and feed samples were analyzed for dry matter
(105°C to constant weight), protein (Kjeldahl’s method), lipids (Soxhlet

TABLE 3 Feed formulations and analyzed chemical compositions (dry matter basis).

Diets V0 VF1 VF2 VF3 VS1 VS2 VS3

Ingredients, g kg-1

GWTa — 69.0 138.0 207.0 69.0 138.0 207.0

Fish mealb 200.0 133.0 66.0 — 200.0 200.0 200.0

Soy protein concentratec 214.0 214.0 214.0 214.0 142.0 71.0 —

Soybean meald 70.0 70.0 70.0 70.0 70.0 70.0 70.0

Peanut meald 70.0 70.0 70.0 70.0 70.0 70.0 70.0

Krill meale 50.0 50.0 50.0 50.0 50.0 50.0 50.0

Wheat flourf 266.4 250.4 234.6 217.8 262.9 259.1 255.4

Fish oil 84.0 89.0 94.0 99.0 84.0 84.0 84.0

Soy lecithin 20.0 20.0 20.0 20.0 20.0 20.0 20.0

Premixg 10.0 10.0 10.0 10.0 10.0 10.0 10.0

Mono calcium phosphate 14.0 17.0 20.0 23.0 14.5 14.5 14.5

Choline Cl 1.5 1.5 1.5 1.5 1.5 1.5 1.5

Y2O3 0.1 0.1 0.1 0.1 0.1 0.1 0.1

L-Lysineh — 3.7 7.4 11.0 3.1 6.1 9.1

DL-Methioninei — 0.4 0.8 1.2 — — —

L-Arginineh — 1.1 2.1 3.1 2.1 4.2 6.2

L-Threonineh — 0.8 1.5 2.3 0.8 1.5 2.2

Analyzed content, kg-1

Dry matter, g 951 954 957 956 957 957 957

Crude Protein, g 441 447 444 449 447 451 456

Crude Fat, g 135 136 139 142 140 141 131

Ash, g 76 69 61 54 72 68 64

Gross Energy, MJ 21.5 21.6 21.6 22.0 21.5 21.7 21.8

aMixture of vital wheat gluten, wheat flour, and taurine (mixing ratio: 77.5%, 20.5%, and 2%).
bTriple 9®. Low-temperature dried fish meal, Esbjerg, Denmark.
cYihai®. Wilpromil, Glodensea Grain and Oil Industry Co., Ltd, Wilmar, Qinhuangdao, China.
dFengyuan®. Glodensea Grain and Oil Industry Co., Ltd, Wilmar, Qinhuangdao, China.
eQRILL™.Antarctic Krill Meal, Aker BioMarine, Oslo, Norway.
fBluekey®. Beijing Grain and Oil Industry Co., Ltd, Wilmar, Beijing, China.
gVitamin premix (mg kg−1 diet): vitamin A 20; vitamin B1 12; vitamin B2 10; vitamin B6 15; vitamin B12 8; niacinamide 100; ascorbic acid 1,000; calcium pantothenate 40; biotin 2; folic acid 10;

vitamin E 400; vitamin K3 20; vitamin D3 10; inositol 200; corn protein powder 150. Mineral premix (mg kg−1 diet): CuSO4 · 5H2O 10; FeSO4 ·H2O 300; ZnSO4 ·H2O 200; MnSO4 ·H2O 100; KI

(10%) 80; Na2SeO3 (10% Se) 67; CoCl2 · 6H2O (10% Co) 5; NaCl 100; zeolite 638. Vitamin premix: mineral premix = 2: 1.5.
hL-Lysine HCL, L-Arginine Base, L-Threonine, 98% feed grade, Siwei Development Group Ltd., Hangzhou, China.
iMetAMINO® DL-Methionine, 99% feed grade, Evonik-Degussa Antwerpen N.V, Antwerpen, Belgium.

TABLE 4 Amino acid compositions of the experimental diets, g (16 g N)−1.

Diet V0 VF1 VF2 VF3 VS1 VS2 VS3

Essential amino acids (EAAs)

Arg 6.60 6.38 6.31 6.29 6.50 6.31 6.24

His 2.13 1.99 2.07 2.05 1.98 1.88 1.79

Ile 4.12 3.90 3.71 3.80 3.89 3.71 3.54

Leu 7.31 7.04 6.89 6.98 7.03 6.76 6.57

Lys 6.24 5.91 5.97 5.81 6.03 5.71 5.60

Met 1.58 1.53 1.39 1.42 1.72 1.75 1.80

Phe 4.72 4.61 4.84 4.84 4.57 4.43 4.39

Thr 3.90 3.74 3.64 3.64 3.79 3.66 3.60

Val 4.51 4.25 4.05 4.04 4.36 4.15 3.98

Total EAAs 41.1 39.4 38.9 38.9 39.9 38.4 37.5

Semi-EAAs

Cys 0.91 1.03 1.08 1.24 1.05 1.10 1.14

Tyr 3.33 3.22 3.20 3.28 3.23 3.12 3.04

Total non-EAAs 52.9 53.4 54.6 57.4 53.3 53.5 54.5

Total AAs 94.0 92.8 93.5 96.3 93.2 91.9 92.0
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Extraction System, Jingke, Shanghai, China), amino acids (amino acid
analyzer, L-8900, Hitachi, Japan), ash (550°C, overnight), and energy
(Phillipson Microbomb Calorimeter, Gentry Instruments Inc., Aiken,
SC, United States) based on the previous study (Zhang et al., 2022).
Faeces were freeze-dried at −50°C (Labonco Freezon 4.5, Kansas City,
United States) and ground with a pestle and mortar. Yttrium oxide in
feed and faeces was determined based on the previous study using
inductively coupled plasma mass spectrometry (ICP-MS) (Zhang et al.,
2012a). Briefly, approximately 50 mg of freeze-dried sample was
weighed into a digestion tube, and then 6 ml HNO3 and 2 ml
hydrogen peroxide were added. After microwave digestion, the

sample was diluted to a constant volume of 50 ml, aspirated 1 ml
diluent, and then re-diluted to 10 ml for on-board testing.

2.6 Calculations and statistical analysis

Apparent digestibility (ADAA, %) of individual amino acids was
calculated as 100 × (1 - AAf × AAd

-1 × Yd × Yf
−1), where AAf and AAd

represent the concentration of individual amino acids in faeces and
the diet and Yf and Yd represent the concentration of yttrium in faeces
and the diet. Retention of nitrogen and energy (%) was calculated as

TABLE 5 Extrusion processing parameters and feed pellet physical quality.

Diet V0 VF1 VF2 VF3 VS1 VS2 VS3

Extruder parameters

Feeding rate, kg h-1 125 125 125 125 125 125 125

Water addition in conditioner, % 8 12 16 16 14 16 16

Water addition in extruder, % 8 8 12 12 12 12 12

Die temperature, °C 117 87 86 86 88 85 85

Revolution screws, rpm 259 259 280 280 280 280 280

Cutter speed, rpm 2,300 2,400 2,350 2,350 2,400 2,450 2,400

Physical quality

Length, mm 4.63 3.98 4.31 4.34 3.93 3.77 3.83

Diameter, mm 3.50 3.48 3.59 3.76 3.53 3.57 3.67

Expansion, % 74.9 74.1 79.3 87.9 76.7 78.7 83.4

Bulk density, g L-1 518 561 571 563 561 561 550

Breaking point, N 24.7 37.1 35.0 34.7 32.4 34.0 35.4

Water stability, % 88.8 79.7 86.0 84.7 89.1 86.4 85.1

Sinking rate, cm s-1 7.94 9.03 8.37 8.24 9.26 9.78 9.47

TABLE 6 Growth performance and feed utilization of Japanese seabass fed different experimental diets.

Parameters Diets Pooled S.E.Ma P Regression model R2

V0 VF1 VF2 VF3

Feed intake (FI), g DM fish-1 86.0 81.1 83.1 85.9 6.16 0.65 — —

Weight gain (WGR), % 795a 725ab 646b 627b 63.14 0.019 786–1.75 x 0.66

Specific growth rate (SGR), %/d 3.04a 2.93ab 2.79b 2.75b 0.118 0.027 3.03–3.06 * 10–3 x 0.63

Feed conversion ratio (FCR), g FI (g WG)−1 1.07b 1.11b 1.28a 1.36a 0.065 <0.001 1.05 + 3.08 * 10−3 x 0.83

Nitrogen retention, % 34.8a 33.6a 29.2b 26.9c 1.28 <0.001 35.3–0.0843 x 0.89

Energy retention, % 40.2a 38.0a 33.4b 32.5b 2.46 <0.01 40.2–0.0837 x 0.73

V0 VS1 VS2 VS3

FI, g DM fish-1 86.0 85.3 84.9 87.5 5.78 0.92 — —

WGR, % 795 757 747 766 56.82 0.67 — —

SGR, %/d 3.04 2.98 2.97 3.00 0.091 0.67 — —

FCR, g FI (g WG)−1 1.07 1.12 1.13 1.13 0.051 0.39 — —

Nitrogen retention, % 34.8a 32.5b 32.2b 31.9b 0.90 <0.01 34.7–0.0723 x + 4.56 * 10−4 x2 0.73

Energy retention, % 40.2a 37.4b 37.0b 37.4b 1.02 <0.01 40.2–0.0977 x + 7.07 * 10−4 x2 0.75

Pooled standard error of means. Data are means and pooled S.E.M. different superscript letters a,b, andc indicate significant (p < 0.05) differences among treatments.
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100 × (N1 × FBW - N0 × IBW) × (Nd × FI)−1, where N0 and N1

represent the nutrient or energy in the initial and final whole body and
Nd represents the nutrient or energy in the diet. Feed intake (FI, %/d)
was quantified by subtracting uneaten feed from the amount of feed on
a dry matter basis. The feed conversion ratio (FCR) was calculated as
FI × (weight gain, g)−1. The weight gain rate (WGR,%)was calculated as
100 × (FBW–IBW)/IBW, where FBW and IBW represent final body
weight and initial body weight, respectively. The hepatosomatic and
viscerosomatic indices (%) were expressed as organ weight as a
percentage of body weight, and the condition factor (CF, g/cm3) was
calculated as 100 × (fish weight, g) × (body length, cm)−3.

All data are presented as means ± pooled S.E.M. (n = 3) and
assessed by one-way ANOVA (IBM, SPSS Statistics 20.0), with the level
of significance set at p< 0.05.Moreover, a follow-up trend analysis using
orthogonal polynomial contrasts was performed to determine whether
the significant effects were linear and/or quadratic. Quadratic

regressions were only presented when the regression coefficient of
the second degree component was statistically significant (p < 0.05).
Maxima or minima in quadratic regressions were calculated by setting
the first derivative of the equation to 0. Significant differences in the
ANOVA were ranked by the Pdiff routine under LSMEANS and
indicated by different superscript letters a, b, c.

3 Results

3.1 Extrusion parameter and physical pellet
quality

The processing parameter and pellet physical quality are
presented in Table 5. The V0 diet differed from the other diets,
and the total amount of process water was limited to 20% to achieve

TABLE 7 Morphologic index of Japanese seabass fed different experimental diets.

Somatic indices Diets Pooled S.E.M. P Regression model R2

V0 VF1 VF2 VF3

Hepatosomatic index (HSI), % 1.52 1.66 1.55 1.38 0.263 0.57 — —

Viscerosomatic index (VSI), % 17.3 17.3 17.8 17.5 0.64 0.64 — —

Condition factor (CF), g cm-3 1.78 1.79 1.70 1.66 0.116 0.36 — —

V0 VS1 VS2 VS3

HSI, % 1.52 1.51 1.57 1.36 0.348 0.84 — —

VSI, % 17.3a 17.0a 16.6ab 16.1b 0.48 0.031 17.4–0.0125 x 0.64

CF, g cm-3 1.78 1.74 1.79 1.74 0.069 0.69 — —

Data are means and pooled S.E.M. different superscript letters a and b indicate significant (P 0.05) differences among treatments.

TABLE 8 Whole-body compositions of Japanese seabass fed different experimental diets.

Whole-body composition, kg-1 Diets Pooled S.E.M. P

V0 VF1 VF2 VF3

Moisture, g 659 664 664 655 8.9 0.44

Crude protein, g 164 166 164 163 3.4 0.68

Crude fat, g 123 119 119 131 7.2 0.16

Ash, g 44.0 43.4 42.2 41.5 1.36 0.11

Gross energy, MJ 8.95 8.78 8.83 9.23 0.307 0.23

V0 VS1 VS2 VS3

Moisture, g 659 670 666 664 12.4 0.69

Crude protein, g 164 161 163 164 5.8 0.92

Crude fat, g 123 118 117 123 8.0 0.66

Ash, g 44.0 42.1 42.5 41.2 1.90 0.30

Gross energy, MJ 8.95 8.67 8.74 8.90 0.378 0.69

Data are means and pooled S.E.M.
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a uniform flow through the extruder. The combined effect of dietary
composition and restricted water addition resulted in a lower bulk
density, breaking point, and slower sinking rate compared with the
other diets. The diametric expansion of all diets ranged from 74% to
88% and increased with increasing dietary wheat gluten. All diets
had similar durability, with VS1 being the most water-stable and
VF1 the least.

3.2 Growth performance and feed utilization

No significant differences were found in FI (Table 6).WGR linearly
and significantly decreased from 795% to 627% with increasing dietary

GWT. Nitrogen retention significantly decreased from 34.8% to 26.9%,
while energy retention decreased from 40.2% to 32.5%. FCR linearly
increased from 1.07 to 1.36 as GWT gradually replaced FM. No
significant differences were found in WGR or FCR with GWT
gradually replacing SPC. The retention of nitrogen and energy
linearly decreased with the increase in GWT supplementation.

3.3 Whole-body composition and somatic
index

Moisture, protein, lipid, ash, gross energy in the whole body, and
the hepatosomatic index and condition factor were not significantly

TABLE 9 Apparent digestibility coefficient (ADC) of amino acids of Japanese seabass fed different experimental diets.

ADC, % Diets Pooled S.E.M. P Regression model R2

V0 VF1 VF2 VF3

Arg 93.7 94.2 95.2 94.3 1.52 0.60 — —

Cys 77.6b 81.7ab 84.8a 86.5a 3.42 0.027 78.2 + 0.0893 x 0.64

His 90.2b 92.0ab 93.3a 93.5a 1.45 0.042 90.6 + 0.0337 x 0.57

Ile 84.5 89.2 89.8 88.3 2.36 0.053 — —

Leu 87.0b 91.4a 92.0a 90.9a 2.08 0.036 87.1 + 0.160 x - 1.23 * 10−3 x2 0.63

Lys 93.2b 94.3ab 95.0a 94.9a 0.68 0.020 93.5 + 0.0175 x 0.57

Met 66.8 71.6 70.3 69.3 3.42 0.30 — —

Phe 89.1b 92.5a 93.2a 92.8a 1.52 0.017 89.2 + 0.121 x - 8.60 * 10−4 x2 0.69

Thr 82.4 86.8 87.7 87.0 2.46 0.055 — —

Tyr 86.0 90.1 91.0 89.4 2.21 0.057 — —

Val 84.5 89.1 89.6 88.3 2.45 0.069 — —

EAAs 87.4b 90.5a 91.3a 90.5a 1.67 0.041 87.4 + 0.120 x - 8.93 * 10−4 x2 0.62

Total AAs 87.3b 90.4a 91.5a 91.4a 1.70 0.023 88.1 + 0.0408 x 0.52

V0 VS1 VS2 VS3

Arg 93.7 95.0 94.2 95.5 1.63 0.44 — —

Cys 77.6b 87.7a 86.2a 90.0a 2.90 0.001 80.0 + 0.107 x 0.61

His 90.2 92.7 91.5 92.8 2.01 0.29 — —

Ile 84.5 90.4 87.7 88.5 4.65 0.41 — —

Leu 87.0 92.2 89.9 91.4 3.82 0.30 — —

Lys 93.2 94.9 94.9 95.8 1.09 0.054 — —

Met 66.8b 74.7a 73.2a 76.7a 3.85 0.031 68.6 + 0.0843 x 0.47

Phe 89.1 93.1 91.3 92.8 2.69 0.22 — —

Thr 82.4 88.7 86.4 88.8 3.80 0.13 — —

Tyr 86.0 91.1 88.3 89.9 3.93 0.35 — —

Val 84.5 90.4 87.4 89.3 4.24 0.29 — —

EAAs 87.4 91.6 89.8 91.4 2.88 0.22 — —

Total AAs 87.3 91.6 90.1 92.1 2.49 0.092 — —

Data are means and pooled S.E.M. different superscript letters a andb indicate significant (p < 0.05) differences among treatments.
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affected by different dietary GWT supplementation (Tables 7, 8).
The viscerosomatic index linearly decreased from 17.3% to 16.1%
with the increase of GWT supplementation.

3.4 Apparent digestibility coefficient (ADC)
of amino acids

No significant differences were found in the ADCs of Arg, Ile,
Met, Thr, Tyr, and Val (Table 9). As GWT gradually replaced FM,
the ADC of Cys significantly increased from 77.6% to 86.5%. The
ADCs of His, Lys, and total AAs followed a similar pattern and
increased with the increase in GWT supplementation. The
ADCs of Leu, Phe, and total EAAs increased in a curvilinear
mode with increasing proportions of GWT. Except for Cys and
Met, the ADCs of essential and total amino acids were not
significantly affected by the gradual substitution of SPC by
GWT. The ADC of Cys significantly increased from 77.6% to
90.0%, while the ADC of Met significantly increased from 66.8%
to 76.7%. The ADCs of Cys and Met were lower in the V0 diet
than in the other diets.

3.5 Retention of essential amino acids

The retention of individual and total EAAs significantly
decreased in a linear manner (Table 10). The retention of Met
was twice or more than the values observed in the other EAAs.
The replacement of SPC with GWT had no significant effect on
the retention of Arg, His, Ile, Leu, Lys, Phe, Thr, Val, and total
EAAs. The retention of Met followed a U-shaped pattern, with
the highest value being found in the V0 diet.

4 Discussion

The bulk density of the pellets was optimized by adjusting the
amount of water in the preconditioner and extruder so that they
slowly sunk into the water (Zhang et al., 2012b). A minimum
amount of water (16%) was added during the extrusion of diet
V0 (control diet). Diet VF1 had 20% water supplementation and the
other diets had 26%–28% water supplementation. The low water
supplementation during the extrusion of the V0 diet reduced the
bulk density, sink rate, and breaking force of the pellets, which was

TABLE 10 Retention of essential amino acids (EAAs) of Japanese seabass fed different experimental diets.

Retention of digestible EAAs, % Diets Pooled S.E.M. P Regression model R2

V0 VF1 VF2 VF3

Arg 31.7a 31.7a 27.0b 25.4b 1.31 <0.001 32.5–0.0712 x 0.80

His 31.9a 32.5ab 26.2bc 24.4c 1.30 <0.001 33.1–0.0866 x 0.79

Ile 35.0a 34.1ab 30.3b 27.9b 1.36 <0.001 35.6–0.0760 x 0.86

Leu 35.1a 33.7ab 29.2bc 27.0c 1.32 <0.001 35.6–0.0868 x 0.89

Lys 41.5a 42.1a 35.2b 33.5ab 1.60 <0.001 42.7–0.0919 x 0.77

Met 86.7a 81.2ab 77.6bc 71.4c 4.08 <0.01 86.6–0.148 x 0.78

Phe 31.4a 30.0ab 24.1bc 22.4c 1.13 <0.001 31.9–0.0988 x 0.89

Thr 42.2a 40.6ab 35.1b 32.8b 1.71 <0.001 42.7–0.101 x 0.87

Val 36.3a 35.5ab 31.5bc 29.6c 1.47 <0.001 36.8–0.0716 x 0.83

EAA 37.2a 36.5ab 31.2bc 29.1c 1.40 <0.001 37.9–0.0887 x 0.86

V0 VS1 VS2 VS3

Arg 31.7 29.6 30.3 29.8 1.12 0.11 — —

His 31.9 31.0 32.8 33.5 1.31 0.11 — —

Ile 35.0 32.3 34.5 35.5 2.39 0.32 — —

Leu 35.1 32.1 33.8 33.8 1.89 0.25 — —

Lys 41.5 39.2 40.9 40.7 1.31 0.17 — —

Met 86.7a 66.3b 66.0b 60.5b 4.39 <0.001 85.4–0.572 x + 3.35 * 10−3 x2 0.84

Phe 31.4 28.9 30.0 29.3 1.34 0.12 — —

Thr 42.2 37.6 39.4 38.6 2.22 0.084 — —

Val 36.3 32.6 35.0 35.3 2.15 0.18 — —

EAA 37.2 34.1 35.7 35.5 1.67 0.16 — —

Data are means and pooled S.E.M. different superscript letters a,b, andc.indicate significant (p < 0.05) differences among treatments.
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different from the VF1 diet. The increase in dietary GWT resulted in
greater diametric expansion due to the viscoelastic nature of wheat
gluten. This is in accordance with previous findings reported by
Draganovic et al. (2011), who found that an increased proportion of
wheat gluten to soy protein concentrate led to increased dietary
hardness. Additionally, wheat gluten affects extrusion characteristics
and physical qualities, including pellet hardness and durability (Day
et al., 2006; Wieser, 2007; Apper-Bossard et al., 2013). However, an
opposite trend of hardness was observed in diets VF1, VF2, and
VF3 when GWT replaced FM, which may be associated with the
degree of expansion and water addition (Sørensen et al., 2012;
Storebakken et al., 2015b).

In this study, the SGR and FCR of fish fed the high fishmeal
diet (V0 diet) were 3.04%/d and 1.10. This growth performance is
similar to the previous growth responses (SGR = 3.52), with 52%
fish meal-based diets being fed to comparably sized juvenile
Japanese seabass (Cheng et al., 2010). Similarly, a study by Xu
et al. (2010) reported that Japanese seabass fed a diet with 45%
fish meal showed the SGR and FCR were 2.84%/d and 0.99,
respectively. Studies have shown that a diet containing 41%
protein and 12% lipids is optimal for Japanese seabass
juveniles with an initial body weight (IBW) of 6.26 g (Ai et al.,
2004). The current results showed that the growth performance
of seabass fed 20% fish meal was similar to those fed 40% fish
meal, which illustrated the potential of using plant protein in
Japanese seabass. This is in keeping with studies in European sea
bass (Dicentrarchus labrax) and gilthead seabream (Sparus
aurata L.) reported by Messina et al. (2013); Kissil and
Lupatsch (2004), respectively. The lack of significant feeding
stimulation in high GWT supplementation suggests that the
incorporation of 5% krill meal is needed to provide sufficient
marine attractant to ensure the high feeding intake of Japanese
seabass. This result is consistent with previous observations in
Atlantic salmon (Storebakken et al., 2000a), Atlantic halibut
(Helland and Grisdale-Helland, 2006), rainbow trout
(Storebakken et al., 2015a), and Asian seabass (Apper et al.,
2016), suggesting that small amounts of marine components are
required to ensure high feed intake when providing a high level of
wheat gluten.

Despite rapid growth and high feed conversion, Japanese
seabass fed the control diet showed signs of essential amino acid
deficiency. The same situation was also found in fish that were fed
diets in which fish meal and SPC were gradually replaced with
GWT. The availability of Met by growth mainly depends on
digestibility, bioactivity, and catabolism. Low water
supplementation during extrusion of the V0 diet resulted in
lower digestibility and bioactivity of sulfur-containing amino
acids, which led to lower digestibility of Met (66.8%) and Cys
(77.6%) in the V0 diet. The digestibility of amino acids in wheat
gluten was higher than in LT fish meal, especially Cys, which is
consistent with previous findings in Atlantic salmon
(Storebakken et al., 2000a). Dietary concentrations of Cys and
Met are often reported together mainly due to the fact that
sufficient Cys stimulates the downregulation of Met
catabolism. However, no significant difference was found in
the regression of digestible Cys and Met on nitrogen retention
(R2 = 0.43) in this study. The ratio of digestible Met and Cys
(DMDC) was linearly correlated with protein retention (RetN =

13.6 + 14.6 * DMDC, R2 = 0.93). This linear relationship can be
expressed by replacing GWT with fish meal (DMDC = 1.49–1.17
* 10−2 * Rep, R2 = 0.973). Regression analyses showed that the
highest nitrogen retention was obtained in the diets with a low
replacement of protein from FM with GWT. Replacement of SPC
with GWT also resulted in increased concentrations and
digestibility of Cys and Met. Additionally, the retention of
digestible methionine decreased with increasing GWT
supplementation, indicating methionine deficiency.

5 Conclusion

The results of the present study indicated that replacing
protein in fish meal with wheat gluten reduced growth, feed
efficiency, and the retention of nitrogen, energy, and essential
amino acids. Replacement protein in soy protein concentrate
with wheat gluten had no significant effects on feed intake,
growth, and the feed conversion ratio, but resulted in a lower
retention of nitrogen, energy, and Met. Moreover, wheat gluten
increased amino acid digestibility compared with soy protein
concentrate and fish meal. This study highlights that a moderate
amount of wheat gluten is a promising dietary protein alternative
for Japanese seabass.
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