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Background and aims: Blood glucose prediction (BGP) has increasingly been
adopted for personalized monitoring of blood glucose levels in diabetic
patients, providing valuable support for physicians in diagnosis and treatment
planning. Despite the remarkable success achieved, applying BGP in multi-
patient scenarios remains problematic, largely due to the inherent heterogeneity
and uncertain nature of continuous glucose monitoring (CGM) data obtained
from diverse patient profiles.

Methodology: This study proposes the first graph-based Heterogeneous
Temporal Representation (HETER) network for multi-patient Blood Glucose
Prediction (BGP). Specifically, HETER employs a flexible subsequence repetition
method (SSR) to align the heterogeneous input samples, in contrast to the
traditional padding or truncation methods. Then, the relationships between
multiple samples are constructed as a graph and learned by HETER to
capture global temporal characteristics. Moreover, to address the limitations of
conventional graph neural networks in capturing local temporal dependencies
and providing linear representations, HETER incorporates both a temporally-
enhanced mechanism and a linear residual fusion into its architecture.

Results: Comprehensive experiments were conducted to validate the proposed
method using real-world data from 112 patients in two hospitals, comparing
it with five well-known baseline methods. The experimental results verify the
robustness and accuracy of the proposed HETER, which achieves the maximal
improvement of 31.42%, 27.18%, and 34.85% in terms of MAE, MAPE, and RMSE,
respectively, over the second-best comparable method.

Discussions:HETER integrates global and local temporal information frommulti-
patient samples to alleviate the impact of heterogeneity and uncertainty. This
method can also be extended to other clinical tasks, thereby facilitating efficient
and accurate capture of crucial pattern information in structured medical data.

KEYWORDS

continuous glucose monitoring, diabetes mellitus, time series, prediction, graph neural
network, deep neural network
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1 Introduction

Diabetes mellitus is a chronic metabolic disorder that afflicts
over 463 million adultsworldwide, posing significant health risks
and economic burdens (Bellary et al., 2021; Flood et al., 2021).
Hyperglycemia is the hallmark symptom of diabetes mellitus
and can lead to serious complications such as cardiovascular
disease, blindness, and heart failure (Cole and Florez, 2020).
Blood glucose levels are crucial health indicators for patients with
diabetes (Leelarathna et al., 2022). Continuous Glucose Monitoring
(CGM) is a medical device that enables patients to regularly track
their blood glucose levels (Battelino et al., 2022; Jin et al., 2022;
Johnson et al., 2021). CGM data can provide valuable insights into
the dynamics of glucose metabolism, which can assist in optimizing
the treatment strategies for both patients and clinicians (Visser et al.,
2023). However, CGM data inherently exhibit heterogeneity and
uncertainty, as they vary depending on the type of diabetes, duration
of monitoring, and individual characteristics of each patient
(Martens et al., 2021; Elbalshy et al., 2022). Therefore, developing
effective blood glucose prediction (BGP) methods based on CGM
data from multiple patients remains challenging.

Data-driven methods have received significant attention
from researchers in recent years (Qiao et al., 2023; Wang et al.,
2023), which learn potential patterns from historical observations
and make inferences for the future. These methods are widely
applied in healthcare, including disease prediction and diagnosis
(Zhang P. et al., 2022; Huang et al., 2022; Cai et al., 2019), treatment
decision support (Wang et al., 2022), medical image analysis
Cai et al. (2020), and health monitoring (such as CGM, blood
pressure monitoring, body temperature monitoring, and others)
(Wang et al., 2021; Zhang H. et al. 2022). Previous studies on CGM
have proposed a variety of machine learning and deep learning
models for predicting blood glucose levels (Wadghiri et al., 2022;
Zhang P. et al., 2022; Ye et al., 2022) employed the swallow machine
learning method, such as random forester (RF) and support vector
machine (SVM), to achieve efficient glucose monitoring. Zhu et al.
(2023) proposed an attention-based recurrent neural network to
BGP for type 1 diabetes mellitus (T1DM) patients. Both Rabby et al.
(2021) and Yang et al. (2022) have designed a hybrid long short-
term memory network (LSTM) and demonstrated promising
performance for T1DM patients. Aliberti et al. (2019) attempted
to use the glucose signal by multiple patients to infer a new patient
glucose-level through RNN, LSTM, and auto-regressive model;
Deng et al. (2021) presented an improved generative adversarial
network to capture the temporal patterns from type 2 diabetes
mellitus (T2DM)patients. Similarworks also can be found from (Xie
and Wang, 2020; Nemat et al., 2022; Lee et al., 2023; Mhaskar et al.,
2017). Nevertheless, the preponderance of these approaches is
concentrated on personalized Blood Glucose Prediction (BGP)
and lacks the capacity to be generalized to multi-patient forecasting
scenarios.

There are three major challenges that limit the prediction
accuracy. 1) Heterogeneity: Monitoring durations vary among
patients, attributable to individual differences in diagnosis,
treatment, and lifestyle choices. This variation undermines the
effectiveness of a one-size-fits-all approach to multi-patient blood
glucose prediction (Espinoza et al., 2023; Hollander and Roep,

2022), thereby exerting a significant impact on the performance
of predictive models in multi-patient monitoring scenarios. 2)
Uncertainty: The uncertainty regarding the specific type of diabetes
(T1DM or T2DM) can impact the accuracy of CGM predictions in
multi-patient scenarios, given the significant potential divergence
in the progression of these two types Eizirik et al. (2020). Moreover,
coordinating continuous glucose monitoring (CGM) data from
multi-patients introduces additional uncertainties, especially
during overlapping, partially overlapping, or non-overlapping
periods. These discrepancies can influence data consistency
and model reliability Karges et al. (2023). 3) Correlation: The
prediction model must account for potential correlations that
exist across both temporal and spatial dimensions among the
samples or periods Zhang P. et al. (2022). These correlations
could stem from shared environmental factors, similar treatment
plans, or communal lifestyle habits. Neglecting these correlations
can impact the accuracy of predictions Zale and Mathioudakis
(2022).

To address the aforementioned challenges, we propose a
novel heterogeneous representation learning model for diabetic
blood glucose prediction, called HETER (heterogeneous temporal
representation network). This model can be applied to multiple
patients with various monitoring durations and different types of
diabetes. Compared to conventional BGP models, our proposed
model structure employs the subsequence repetition (SSR) method
to process the heterogeneous CGM data. This approach avoids the
information loss and meaningless incorporation often experienced
with traditional truncation and padding methods Ahmed et al.
(2023). To discover the potential correlation in both spatial and
temporal dimensions within heterogeneous and uncertain CGM
data, we employ a dynamic time-warping (DTW) approach.
This approach measures the similarity among diverse samples
and reconstructs the CGM data input from multiple patients
into a directed graph. Subsequently, a graph learning component
grounded on graph convolutional networks (GCNs) is devised
to capture the spatial characteristics embedded in the temporal
information of the graph. These characteristics are frequently
neglected by traditional recurrent learning-based approaches. This
is the first work to leverage a graph neural network for multi-patient
BGP to the best of our knowledge. In addition, HETER integrates
a combination of attention and recurrent learning mechanisms
to enhance the discrimination of distinct trends and patient
types, thereby improving the robustness and generalizability for
heterogeneous multi-patient BGP.

The major contributions can be summarized below.

1) The use of the SSR method for aligning heterogeneous CGM
data is first applied in multi-patient blood glucose prediction.
This approach presents a promising solution for processing
heterogeneousmedical time series data without the need for data
truncation or interpolation.

2) Anovel graph-based representation learningmethod is proposed
to extract crucial temporal information from multiple CGM
time series subsequences. To address the limitations of graph
neural networks in capturing continuous temporal dynamics,
we incorporate a representation enhancement module, further
mining pattern information across both temporal and spatial
dimensions.
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3) The proposed HETER has been comprehensively evaluated
by comparing it with five well-established prediction methods
using a real-world heterogeneous CGM dataset. The results
demonstrate the superiority of HETER in blood glucose
prediction.

The rest of this paper is organized as follows: Section 2
introduces the materials and methods used in this study, including
the dataset, problem definition, and methodology. Experimental
results and analysis are presented in Section 3. Section 4 concludes
the study by discussing its implications, limitations, and future
research directions.

2 Materials and methods

2.1 Datasets

The patients of experimental data were recruited from Shanghai
East Hospital (from September 2019 to March 2021), and Shanghai
Fourth Peopleś Hospital (from June 2021 to November 2021)
in Shanghai, China Zhao et al. (2023). The concise overview of

the dataset is visually represented in Figures 1A,B. This dataset
comprises 125 CGM records from 112 patients, including 12
individuals with Type 1 Diabetes Mellitus (T1DM) and 100
individuals with Type 2 Diabetes Mellitus (T2DM). Patient sample
lengths are inconsistent, as shown in Figure 1C. The maximum,
mean, and minimum lengths of the T1DM samples stand at 1,339,
981, and 357, respectively, while for the T2DM samples, these
values are 1,339, 1,031, and 247. The resolution of the data is
15 min.

Given these diabetes samples, three types of uncertainties arise:
1) sample length uncertainty: the lengths of each sample are
inconsistent. 2) disease type uncertainty: this dataset comprises
data from two types of patients, and predictions need to be made
simultaneously for both types. 3) sample correlation uncertainty:
potential temporal pattern associations may exist asynchronously
among the various samples. These inherent uncertainties inevitably
limit the accuracy of prior prediction methods, particularly when
applied to the simultaneous tracing of multiple patients. In
this study, we aim to build the complex relationship between
subsequences for accurate prediction, utilizing a combination
of graph neural networks, attention mechanisms, and recurrent
learning components.

FIGURE 1
The brief visualization of experimental data. (A) The number of patients and samples for T1DM and T2DM. (B) The length distribution of T1DM and
T2DM samples. (C) The time series observations of T1DM (left) and T2DM (right) samples.
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2.2 Problem definition

This section covers preliminaries of heterogeneous
time series (HTS) and describes the problem of HTS
prediction problems. The frequently used symbols are listed in
Supplementary Table S1.

The continuous glucose monitoring data, collected from diverse
patients at consistent intervals, demonstrates variation in relation
to both monitoring durations and the specific initiation and
termination timestamps.These data can be called the heterogeneous
time series (HTS) in clinical glucose monitoring Duchêne et al.
(2007); Zhang et al. (2017), denoted as D ∈ ℝN×L, where N and L
represent the number of samples and the preset length of each time
series, respectively.Thedetermination of length L is contingent upon
the particular data processing approach employed, such as padding
or truncation.

In this study, we consider both single-step and multi-step blood
glucose prediction problems within the framework of HTS, which
can be formulated as follows:

{D̂t+1,…, D̂t+s} ← F (Dt−T,…,Dt) , (1)

whereF(⋅) denotes the predictionmodel, t represents the beginning
time step, and s is the prediction steps. T indicates the window size,
which means the length of the observational window of historical
data we consider when making predictions. It determines the
number of input features utilized for our forecasting endeavors. D̂
represents the predictions.

2.3 Methodology

2.3.1 Overview
Figure 2 illustrates the general framework of the diabetic

blood glucose prediction methods for multiple patients in
clinical applications. First, heterogeneous CGM signals are
aggregated into a raw data stream and delivered into the
learning structure. Then, the learning structure employs data
cleaning and fusion techniques to reorganize the input data.
The processed data are then fed into learning methods for
predictive modeling or other analytical purposes. Finally, the
predictive outcomes and analytical findings can support clinical
diagnosis, treatment strategies, and the implementation of precision
medicine.

2.3.2 Data alignment
The heterogeneity and uncertainty are inherent in CGM data

samples present a significant challenge to traditional personalized
prediction models, impeding their generalization to multi-patient
tasks Capobianco (2017). Consequently, the alignment of sample
lengths becomes a necessity. Truncation (TRA) and padding (PAD)
are two prevalent techniques employed to ensure uniformity
in sample lengths Chen et al. (2020); Hammad et al. (2021).
Truncation, which involves reducing data to a pre-determined
length, inevitably leads to the loss of potentially crucial information.
On the other hand, padding, which necessitates adding artificial
data to attain a specified length, risks incorporating extraneous
and meaningless data, potentially reducing the accuracy of
predictions.

To address these issues, we proposed a subsequence repetition
(SSR) method to align and reconstruct the heterogeneous CGM
data, as illustrated in Figure 3. First, the input data are individually
normalized to scalar values using the min-max normalization
technique in order tominimize the impact ofmagnitude differences.
The process of normalization and de-normalization is formulated as
follows:

D̃(n) =
D(n) −min(D(n))

max(D(n)) −min(D(n))
, (2)

D(n) = D̃(n) (max(D(n)) −min(D(n))) +min(D(n)) , (3)

where D̃(n) and D(n) denote the nth normalized data and input
data, respectively. max(⋅) is the maximal values of D(n), and min(⋅)
represents the minimal values.

Subsequently, the normalized time series data are segmented
into fixed-length subsequences, each representing a continuous
time period consisting of T steps (i.e., window size). The
generations after segmentation can be denoted as D̃ =
{D̃(1)# ∈ ℝ

B(1)×T,…, D̃(N)# ∈ ℝ
B(N)×T}. D̃train and D̃test are used to

denote the training set and test set, respectively, after data splitting.
In the test set, we maintain a consistent number of segments
across all samples. Nevertheless, due to the uncertainty of sample
length, the number of split segments within the training set
remains inconsistent across the samples. Hence, we employ SSR
to achieve alignment of segments in the training set, which can be
obtained by:

(4)

where s denotes the prediction steps, and T is the window size.
The known subsequence segments are sequentially replicated until
the total segment count equals β, where β represents the maximum
number of segments within the training set. The reconstructed
training data can be denoted as D̃train

# = {X
train
# ,Y

train
# } and the test

data is D̃test
# = {X

test
# ,Y

test
# }.

The SSRmethod aligns the heterogeneous input data by utilizing
the known data samples to fill the null subsequences. This method
might increase redundant subsequence information, but it avoids
losing the original temporal dependencies of the time series data.
Both padding and truncation can easily affect the distribution of raw
data.

2.3.3 Graph construction
The model architecture of the proposed HETER is illustrated

in Figure 4. In HETER, we initially calculate the distance between
each heterogeneous CGM record in the training set, then construct
a sparse relation graph (SRGraph) based on the obtained distance
matrix. SRGraph is capable of capturing the intricate relationships
among patients by arranging the input data in a graph structure.
This is particularly crucial when considering the heterogeneity of
individuals’ blood glucose levels influenced by varying lifestyle
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FIGURE 2
The workflow of clinical diabetic blood glucose prediction.

choices, treatment regimens, and genetic factors. Additionally,
SRGraph excels in uncovering latent correlations between samples
or periods across both spatial and temporal dimensions. This
makes SRGraph particularly suitable for multiple patients’ BGP,
where correlations may exist but are not explicitly evident in the
data.

Due to the inconsistent sample length among patients,
the distance cannot be calculated on a point-to-point basis.
Consequently, we employ the dynamic time-warping (DTW)
approach to align the sample lengths of the raw input data Li et al.
(2020). This method is a widely used approach for measuring
similarity between time series Li (2021). It aims to minimize the
distance between two time serieswhile aligning their sample lengths.

The process can be expressed as follows:

γi,j = distance(D
(i),D(j))

=min
Λ
∑
(s1,s2)∈Λ

distance(di,s1 ,dj,s2) ,
(5)

where γi,j represents the calculated distance between samples i and
j. Λ = [λ1,…,λκ] denotes the optimal alignment path between two
samples. The alignment path λ = (s1, s2) must satisfy 1 ≤ s1 ≤ Li and
1 ≤ s2 ≤ Lj, where s1 and s2 represent the time points of the samples,
and Li and Lj denote the sample lengths ofD(i) andD(j), respectively.
The path begins at λ1 = (0,0) and ends at λκ = (Li−1,Lj−1). Both
di ∈ D(i) and dj ∈ D(j) represent observations from the CGM record.
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FIGURE 3
The schematic illustration of subsequence repetition (SSR) method.

The distance matrix for the input time series can be expressed as
Γ = [γ1,2,…,γN,N−1].

Then, the formal definition of the proposed SRGraph can be
described below.

Definition 1 (SRGraph). The SRGraph is formulated as G =
(V,E), where V ∈ ℝN is the set of nodes (i.e., CGM samples), and
E ∈ ℝ2×N×K is the set of edges (i.e., the relationships between CGM
samples). N is the sample size and is equal to the number of
nodes in the graph. K is a hyperparameter that denotes the number

of items we aim to retrieve in the top positions of the distance
ranking.

Definition 2 (Node Neighborhood). Let vi,vj ∈ V denote nodes in
the graph, and Ei,j = (vi,vj) to denote an directed edge pointing from
vi to vj. The neighborhood of a node vi is represented as N (vi) =
{vj ∈ V|(vi,vj) ∈ E}.

Definition 3 (Adjacency Matrix). The adjacency matrix is a
mathematical representation of a graph. This study sorts the
distances and selects the top-Kminimal distances for each sample to
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FIGURE 4
The architecture of the proposed heterogeneous temporal representation (HETER) network.

construct the adjacency matrix.This matrix is denoted as A ∈ ℝN×K.
If (vi,vj) ∈ E , then Ai,j > 0, and if (vi,vj) ∉ E , then Ai,j = 0.

In general, CGM samples are treated as nodes in the graphs.
The edges of the graph are constructed based on the distance
relationships between these samples. With the information about
nodes and edges, we generate the graph adjacency matrix, which is
subsequently learned by the graph structure learning module.

2.3.4 Graph learning module
The proposed graph learning module intends to integrate the

information of a node with that of its neighboring nodes to
capture the temporal dependencies in a graph. Two stacked graph
convolutional networks (GCNs) Zhang et al. (2019) are employed
in the proposed HETER to embed the information of the SAGraph.
This can be expressed as follows:

R(1)g =W
(1)
g ⋆X#

= M̃−
1
2 ÃM̃−

1
2X#W

(1)
g + bg,

(6)

R(2)g =W
(2)
g ⋆Dropout(φ(R

(1)
g ) ,pg) , (7)

where symbol ⋆ indicates the graph convolution operation.X# is the
input for proposed model. M̃ ∈ ℝT×T denotes the diagonal matrix.
The element M̃i,i represents the degree of node i, corresponding
to the number of edges connected to node i. Ã = A+ Iu ∈ ℝN×(K+1)

denotes an adjacency matrix with self-loops. A is the adjacency
matrix of SAGraph and Iu represents a unit matrix. R(1)g is
the embedding graph representation. R(2)g is the output graph
representation. pg is dropout probability. φ(⋅) is rectified linear unit
(ReLU) activation.Wg represents the learnable weightingmatrix. bg
is the learnable bias.

2.3.5 Representation enhancement module
The potential topological characteristics between patients are

extracted by the graph learning module Wu et al. (2020). The

representation enhancement module is designed to exploit further
the key information in both the temporal and spatial dimensions.

First, a convolution component is employed to filter out the
useless information in spatial dimensions, the Dropout technique
also be integrated to prevent overfitting:

Rco = Dropout(φ(W co ∗R
(2)
g ) ,pco) , (8)

where W co is the learnable convolution kernel, Rco represents
the output from the convolution component, and ∗ denotes the
traditional convolution operation. pc is the dropout probability for
the convolution component.

A limitation of graph convolutional networks is their inability to
capture the continuous dynamical patterns from input CGM data.
This is because the information propagation of graph convolutional
networks occurs merely through nodes, ignoring the continuity of
temporal features within nodes. To address this issue, temporal
attention (TA) and a recurrent learning component are incorporated
into the proposedHETER. Temporal attention is applied to highlight
the key time steps in a period:

Sta = softmax(W (1)ta (φ(W
(2)
ta Rc + b

(2)
ta )) + b

(1)
ta ) , (9)

where Sta denotes the output attention score of TA.W ta and bta are
the learnable weighting matrix and bias, respectively.

HETER utilizes the attention score to reweight the output
of the convolution component, which is then delivered to the
gated recurrent unit (GRU)-based recurrent learning component to
further extract the temporal dynamics.The information propagation
processing in the recurrent learning component can be formulated
as:

rt = σ(W r [ht−1;Rco⊙S ta] + br) , (10)

ut = σ(Wu [ht−1;Rco⊙S ta] + bu) , (11)
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TABLE 1 The performance comparison in threemetrics and three horizons on CGM observations. The best result for eachmetric is highlighted in bold.

H Metrics Vanilla LSTM BiLSTM Transformer TPA-LSTM LSTNet HETER (ours)

(min) (mg/dL) TRA PAD TRA PAD TRA PAD TRA PAD TRA PAD TRA PAD SSR

15 MAE 30.724 34.959 30.571 32.566 28.537 31.569 5.924 7.769 6.050 6.542 4.193 4.372 4.063

MAPE 0.243 0.270 0.244 0.259 0.232 0.250 0.045 0.059 0.047 0.051 0.034 0.034 0.033

RMSE 42.123 48.664 41.918 44.463 38.622 43.650 8.754 11.323 8.781 9.295 5.872 6.329 5.703

30 MAE 30.688 35.631 30.599 32.982 29.560 32.295 8.415 10.460 8.368 9.702 7.575 6.784 6.722

MAPE 0.245 0.274 0.243 0.265 0.244 0.257 0.064 0.082 0.064 0.076 0.060 0.052 0.054

RMSE 42.024 49.546 42.045 44.750 40.019 44.389 12.943 15.319 12.751 13.937 11.352 10.531 10.115

60 MAE 30.858 36.211 30.586 33.129 29.733 34.604 12.830 14.399 12.976 14.941 11.233 10.850 10.980

MAPE 0.237 0.282 0.243 0.265 0.237 0.271 0.097 0.111 0.103 0.114 0.090 0.082 0.089

RMSE 42.828 50.319 42.098 44.836 40.416 47.836 19.856 21.422 19.618 21.474 16.971 17.200 16.591

ct = σ(W c [rt ⊙ ht−1;Rco⊙S ta] + bc) , (12)

ht = (1− ut) ⊙ ht−1 + ut ⊙ ct, (13)

where ht is the hidden state at t steps of GRU unit. ut , rt ,
ct denotes the update gate, reset gate, and candidate hidden
state of recurrent learning component, respectively. σ(⋅) indicates
the sigmoid activation function. [; ] represents the concatenation
operation, and ⊙ is the element-wise multiplication operation.

2.3.6 Residual fusion and prediction
The output layer of the proposed HETER method consists of

two multilayer perceptron networks, which are designed to encode
the result into the desired output shape. To avoid the issue of
vanishing or exploding gradients induced by excessive nonlinearity,
themodel’s linear input representation is added to the product of the
output layer to yield the final prediction results:

Ro = SMLP(TMLP(Dropout(ht,po))) , (14)

Ô# =Ro ⊕ (WoX# + bo) , (15)

whereRo is the output from the generation layer, and Ô# represents
the predictive values. po is the dropout probability, and⊕ denotes the
element-wise addition operation. Wo and bo are the weight matrix
and bias, respectively, used to generate the linear representation
of the model input. The final results Ŷ# are obtained after de-
normalization by Eq. (3). Here, SMLP (⋅) and TMLP (⋅) correspond
to Spatial-LP and Temporal-LP, respectively.

3 Results and discussion

3.1 Experimental setup

3.1.1 Baseline methods
To verify the effectiveness of the proposed HETER, we select the

following five methods as baselines for comparison. These methods
have already achieved promising performance in personal diabetic
blood glucose prediction or universal time series tasks.

1) Vanilla LSTM Rabby et al. (2021) is a fundamental long short-
term memory (LSTM) model that utilizes its internal gating
mechanisms to capture temporal dynamics.

2) BiLSTM Nemat et al. (2022) is a bi-directional recurrent neural
network model that can capture both past and future temporal
dynamics simultaneously.

3) Transformer Lee et al. (2023) exhibits superiority in capturing
global dependencies through its self-attention mechanism.

4) TPA-LSTM Shih et al. (2019) incorporates attention mechanism
and recurrent neural networks for processing time series data.

5) LSTNet Lai et al. (2018) is an improved convolutional and
recurrent architecture that is capable of capturing long-term
dependencies and periodic patterns.

3.1.2 Performance criteria
We employ the mean absolute error (MAE), mean absolute

percentage error (MAPE), and root mean square error (RMSE)
to provide a comprehensive evaluation the performance of the
predictive model. The MAE provides a straightforward metric of
average error magnitude. The MAPE offers a scale-independent
error measure in percentage terms, which is critical given the
varying blood glucose levels across different contexts. The RMSE,
emphasizing larger errors, assumes importance in our study,
particularly considering the potential health consequences of
substantial deviations in blood glucose levels. Moreover, these
criteria are frequently adoptedmetrics for evaluating the accuracy of
blood glucose predictions Xie and Wang (2020); Yang et al. (2023),
which can be expressed as follows.

1) Mean absolute error

MAE = μ(∑
(i,t)∈Ωtest
|Yi,t

# − Ŷ
i,t
# |) , (16)

2) Mean absolute percentage error

MAPE = μ(∑
(i,t)∈Ωtest
|
Yi,t
# − Ŷ

i,t
#

Yi,t
#

|), (17)

3) Root mean square error

Frontiers in Physiology 08 frontiersin.org

https://doi.org/10.3389/fphys.2023.1225638
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Huang et al. 10.3389/fphys.2023.1225638

FIGURE 5
The visualization of the real values versus the predicted values.

RMSE = √μ(∑
(i,t)∈Ωtest
(Yi,t

# − Ŷ
i,t
# )

2), (18)

where Yi,t
# and Ŷi,t

# denote the actual and predictive values at time
step t of the i sample, respectively. Ωtest represents the test set. μ(⋅)
denotes the operation of computing the mean values. The lower the
values of MAE,MAPE, and RMSE, the better the prediction model’s
performance.

3.1.3 Model configurations
The experiments use the most recent 36 h (144 data points) of

data for testing, while the remaining data were allocated for training.
All experiments were conducted five times to improve the reliability
of the results. The optimal hyperparameters were determined using
the grid search method. The models were trained using the Adam
optimization algorithm Kingma and Ba (2015), with mean squared
error (MSE) employed as the loss function.The training epochs and
learning rate are adjusted to approach their optimal states for each
method. Supplementary Table S2 provides the detailed settings for

the hyperparameters of each method. We implement the models
using Porch (v.1.12.1) Paszke et al. (2019). The experiments for
baseline methods and the proposed method were carried out on a
server equippedwith Intel(R) Xeon(R)Gold 6226RCPU (2.90 GHz)
with 128G memory and were accelerated by two NVIDIA RTX
A6000 GPUs.

3.2 Performance comparison

The experimental results comparing the performance of the
baseline model and HETER across three prediction horizons H
are displayed in Table 1. HETER outperforms comparable methods
in terms of MAE, MAPE, and RMSE. We also observe that
HETER, utilizing the SSR processing method, exhibits superior
performance in most scenarios, particularly when the prediction
horizon is established at 15. The TPA-LSTM with truncation (TRA)
ranks second in most cases, and LSTNet shows the second-best
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FIGURE 6
The correlation analysis of predictions. (A) T1DM Patient ID:1001. (B) T2DM Patient ID:2000.

performance in terms of RMSE when H is set to 30 and 60. This
suggests the effectiveness of recurrent learning units. However,
the inferior performance of Vanilla LSTM and BiLSTM, which
consistently rank lower than other comparable methods, indicates
that the output representations from recurrent units need additional
refinement via other components, such as attention mechanisms or
convolution layers. The proposed HETER improves MAE, MAPE,
and RMSE by 31.42%, 27.18%, and 34.85%, over the second-best
method when H = 15. When H is set to 30 and 60, the performance
improvements over the second-bestmethods are 19.67% and 15.43%
forMAE, 18.66% and 14.62% forMAPE, and 20.67% and 15.43% for
RMSE, respectively.

When the prediction horizon H is set to 30 and 60, HETER
with SSR exhibits competitive RMSE performance in comparison
to HETER with padding (PAD), but it performs inferior in terms
of MAPE. This can be attributed to the nature of RMSE and
MAPE. Specifically, RMSE assigns greater weight to high-magnitude
data points (such as sharp increases and decreases), while MAPE
focuses more on the relative error between predicted and actual
values. In other words, HETER with PAD generally performs
well, while HETER with SSR achieves superior accuracy during
periods of high volatility. Moreover, these results also demonstrate
the efficacy of the proposed HETER in filtering out meaningless
information.

3.3 Prediction analysis

The prediction results are illustrated in Figure 5. For illustrative
purposes, we have selected the first patient samples from both the
T1DM and T2DM datasets. Periods characterized by significant
predictive errors are highlighted in the figure. Based on these
illustrations, several key observations can be summarized as follows:
1) The progression of CGM for both T1DM and T2DM patients
can be effectively tracked across all three prediction horizons. This
indicates the promising accuracy of the proposed HETER in multi-
patient diabetic blood glucose prediction. 2) The proposed HETER
exhibits robust performance during relatively stable phases for both
types of diabetic patients. This can be attributed to HETER’s ability
to fuse both global and local continuous temporal information
via its graph learning module and temporal enhancement module.
3) The predictive error significantly increases with the extension
of prediction horizons, particularly during highlighted periods.
This phenomenon highlights the challenge of capturing the
temporal dynamics associated with sharp increases and decreases.
The proposed method succeeds in capturing as much of the
trend of short-term fluctuations as possible, particularly under
shorter prediction horizons. However, there remains room for
improvement during periods of intense fluctuations in longer
prediction horizons.
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FIGURE 7
The sensitivity analysis of window size T.

FIGURE 8
The sensitivity analysis of the hyperparameter K.

The correlation analysis of the normalized predictive results is
illustrated in Figure 6. The Pearson correlation coefficients (PCC)
between actual values and predictions have also been calculated and
are represented in Figure 6. Several findings were made as follows:
1)The stationarity of the data was found to be significantly different
betweenT1DMandT2DMpatients as demonstrated in the example.
T1DM shows a more stable trend with the majority of data points
situated in the middle range, approximating a normal distribution
Eizirik et al. (2020). In contrast, the distribution of data points for
T2DM patients demonstrates a significant drift, indicative of more
severe fluctuations present in T2DM samples. This adds to the
complexity and poses greater challenges for BGP models. 2) The
proposed model exhibits strong generalization capabilities for both
types of diabetic patients. While the instability of T2DM data may
reduce the PCC values of the predictions, the majority of prediction
errors are still confined within a 5% error bound, particularly when
the prediction horizon H is small (15 or 30).

3.4 Parameter sensitivity analysis

The impact of window sizes T and K are evaluated through
parameter sensitivity analysis. The optimal results are highlighted
by the red dashed lines. In this analysis, the prediction horizon H
is fixed at 15. The T is varied from 4 to 64, and K is increased from
25 to 124, and their results are shown in Figures 7, 8, respectively. As
depicted in Figure 7, HETER obtains optimal performancewhen the
window size is set to 8. Beyond this point, the performance in terms
of all three metrics (MAE, MAPE, and RMSE) shows a nearly linear
proportionality to the window size, with performance decreasing
as window size increases. This underscores the importance of

selecting an appropriate window size. A smaller window size may
not provide sufficient temporal information, while an excessively
large window size might introduce unnecessary pattern associations
and fluctuations, inevitably impacting the prediction accuracy
adversely.

From Figure 8, the highest model accuracy is achieved when K
is set to 25. According to Eq. 6, a largerK indicates denser adjacency
information. However, an overly extensive relationship association
might make it challenging for the prediction model to capture vital
information, thus limiting prediction accuracy. These results also
further verify the influence of graph relationships among multiple
samples on prediction accuracy.

4 Conclusion

Inherent heterogeneity and uncertainty in multiple CGM
datasets present significant constraints to the applicability of
traditional personalized BGP models in multi-patient scenarios. In
this study, a novel HETER model is proposed for the simultaneous
prediction of blood glucose levels in multiple diabetic patients.
First, the SSR method is utilized to align patient samples drawn
from heterogeneous time series. Subsequently, multiple CGM
datasets are structured as a graph, employing a graph structure
learning module to capture global temporal information. To
improve the model’s learning capability for continuous temporal
characteristics, we incorporated a representation enhancement
module into HETER, which allows it to highlight key information
and further extract temporal representations. Additionally, we
considered linear representations to enhance the model’s predictive
stability. Finally, We conducted comprehensive experiments to
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evaluate our proposed HETER model against five comparable
methods. The results of these experiments verify the superiority of
our proposed SSR method and HETER model. The rising demand
for effective and accurate tracking of the progression of multiple
diabetic patients in clinical scenarios heightens the necessity
to enhance existing methodologies. HETER is an important
methodological advancement for predicting heterogeneous multi-
patient CGM data using graph neural networks.

There are several potential directions for future research. First,
we aim to further optimize the alignment process for heterogeneous
CGM data. The generative diffusion model could be employed to
align heterogeneous data by generating newdata similar to historical
observations. Second, we plan to incorporate additional related
factors into the multi-patient BGP, including patient behavior,
heart rate, and food intake. This could enhance the robustness
and generalizability of the prediction model, while also improving
the interpretability of the results. Third, knowledge distillation and
dynamic graph convolution could be utilized to design a lightweight
graph architecture. This would potentially reduce the storage and
computational requirements of the model.
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