
Role of cardiopulmonary
interactions in development of
ventilator-induced lung injury
—Experimental evidence and
clinical Implications

Neel Shah and Bhushan H. Katira*

Division of Pediatric Critical CareMedicine, Department of Pediatrics, Washington University in St Louis, St
Louis, MO, United States

Ventilator-induced lung injury (VILI) impacts outcomes in ARDS and optimization
of ventilatory strategies improves survival. Decades of research has identified
various mechanisms of VILI, largely focusing on airspace forces of plateau
pressure, tidal volume and driving pressure. Experimental evidence indicates
the role of adverse cardiopulmonary interaction during mechanical ventilation,
contributing to VILI genesis mostly by modulating pulmonary vascular dynamics.
Under passive mechanical ventilation, high transpulmonary pressure increases
afterload on right heart while high pleural pressure reduces the RV preload.
Together, they can result in swings of pulmonary vascular flow and pressure.
Altered vascular flow and pressure result in increased vascular shearing and wall
tension, in turn causing direct microvascular injury accompanied with
permeability to water, proteins and cells. Moreover, abrupt decreases in airway
pressure, may result in sudden overperfusion of the lung and result in similar
microvascular injury, especially when the endothelium is stretched or primed at
high positive end-expiratory pressure. Microvascular injury is universal in VILI
models and presumed in the diagnosis of ARDS; preventing such microvascular
injury can reduce VILI and impact outcomes in ARDS. Consequently, developing
cardiovascular targets to reduce macro and microvascular stressors in the
pulmonary circulation can potentially reduce VILI. This paper reviews the role
of cardiopulmonary interaction in VILI genesis.
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Introduction

Mechanical ventilation, a cornerstone of modern intensive care, is a lifesaving
intervention for critically ill patients, and its appropriate use significantly improves
survival. However, positive pressure ventilation (PPV) results in direct harm to the
lungs, thereby impacting mortality especially in patients with acute respiratory distress
syndrome (ARDS) (Hickling et al., 1990; Hickling et al., 1994; Amato et al.; Brower et al.,
2000; Amato et al., 2015). Such harm has been termed ventilator-induced lung injury (VILI)
and is classically thought to result from alveolar overdistension (volu-trauma) and/or
atelectasis (atelect-trauma) along with the resultant biological injury (biotrauma)
(Slutsky and Ranieri, 2013). Decades of research have highlighted the role of deleterious
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mechanical forces acting on the alveoli during positive pressure
ventilation, resulting in surfactant inactivation, microvascular
permeability, mechano-transduction, inflammation, and cellular
failure (Dreyfuss and Saumon, 1998; Matthay et al., 2002;
Vlahakis and Hubmayr, 2005). Additionally, PPV has been
demonstrated to affect both the diaphragm (Goligher et al., 2018)
and the brain (Bassi et al., 2021; Sparrow et al., 2021). A substantial
body of literature has explored the role of airspace forces (viz. the
airway pressures, Paw; tidal volume, Vt; and airflow) on the
development of VILI, as well their respective impact on the
pulmonary vasculature. More recently, experimental evidence has
illustrated the contribution of the heart and its interaction with the
lungs in the generation of lung injury through changes in both
microvascular permeability and endothelial injury (Katira et al.,
2017a; Katira et al., 2018; Katira et al., 2022).

Mechanical ventilation impacts the function of the right
ventricle (RV) by inducing changes in the total intrathoracic
(ITP), pleuro-pericardial and transpulmonary (PL) pressures
(Magder and Guerard, 2012; Mahmood and Pinsky, 2018).
Positive airway pressure (Paw) results in increased ITP, pleural
(Ppl), pericardial and right atrial (Pra) pressures. These changes
diminish the gradient for venous return, subsequently reducing the
RV end-diastolic volume (RVEDV) and the RV wall stress
(i.e., lowering preload). An increase in systemic venous pressure
and stressed volume mitigate these effects (Nanas and Magder,
1992). When increase in ITP are associated with increase PL
(i.e., Paw—Ppl), lung volume increases, affecting the pulmonary
vascular resistance (PVR). Excessively high PL results in lung
overinflation, markedly elevating the RV afterload because the
alveolar pressure exceeds the pulmonary arterial and/or
pulmonary venous pressures (West zones I and II)
(Whittenberger et al., 1960). These collective changes ultimately
determine the right ventricular (RV) output. The impact on the right
heart during ARDS is typically considered secondary either to
ventilator manipulation or increased pulmonary vascular
resistance from hypoxemia, hypercarbia, and alveolar disease
(Vieillard-Baron et al., 2016). While the heart is usually viewed
as a victim in ARDS, it is not widely recognized whether the changes
in right ventricular and pulmonary vascular dynamics-stemming
from altered heart-lung interaction under mechanical ventilation,
results in lung injury. This review aims to explain the role of heart-
lung interactions and resultant changes in pulmonary vascular
forces in the causation of VILI.

Evidence from experimental VILI

High stretch ventilation

The manifestation of pulmonary edema as a result of PPV was
first demonstrated in the pivotal study byWebb and Tierney in 1974
(Webb and Tierney, 1974). This classic study utilized an in vivo rat
model and tested ventilation with a range of combination of peak
inspiratory (PIP) and positive end-expiratory pressures (PEEP)—
PIP/PEEP (cmH2O) groups 14/0, 30/0, 30/10, 45/0 and 45/10. While
the groups 14/0, 30/0 and 30/10 groups maintained stable
compliance and gas exchange for an hour, most striking was the
results in the 45/0 group, where all animals died within 30 min with

pronounced pulmonary edema. Their lungs were notably heavy,
demonstrated poor compliance and histology revealed marked
perivascular and alveolar edema. Conversely, the application of
10 cmH2O PEEP to a high PIP (45 cmH2O) demonstrated a
protective effect. The 45/10 group did not display any substantial
change in lung weights, or alveolar edema, however they did display
perivascular edema, which was also observed in 30/0 and 30/
10 groups. The authors hypothesized that the alveolar edema in
the 45/0 group resulted from increased surface forces; the
expeditious alveolar edema occurred likely from rapid
inactivation of surfactant, while replenishment lagged. Low
positive end-expiratory pressure and high tidal volume have been
shown to result in high surface forces leading to lower lung volume
for the same transpulmonary pressure (Faridy et al., 1966).
Perivascular edema was not consistently associated with alveolar
edema and was theorized to result from decreased pressure in the
perivascular space during inflation and resultant increased
transmural pressure, a concept related to lung interdependence
(Staub, 1963).

In subsequent decades, Dreyfuss and others further explored the
same model, quantifying edema via extravascular lung water, and
microvascular permeability utilizing dry lung weight and fractional
albumin uptake (Dreyfuss et al., 1985). Within 5 min they
demonstrated changes in microvascular permeability, and
endothelial bleb formation, and notably it was not until 20 min
that alveolar edema and diffuse alveolar damage (DAD) occurred.
This demonstrated that endothelial injury preceded alveolar injury
in this model. The application of PEEP was protective against
increases in microvascular permeability and prevented edema
formation. However infusion of dopamine to the animals with
PEEP still resulted in alveolar edema, likely from increased
vascular flow and pressure (Dreyfuss and Saumon, 1993). Despite
these early findings highlighting the importance of cardiovascular
interactions in the genesis and exacerbation of VILI, airspace forces
have received the most attention, with research focused on the
differentiation between barotrauma and volutrauma, as well as
understanding the mechanism of alveolar shearing and/or
overdistension in the causation of alveolo-capillary permeability.

Given the precipitous onset of edema and rapid death (due to
cardiovascular collapse), it was recently hypothesized that the injury
in this seminal model was likely from adverse heart lung interactions
under mechanical ventilation (Katira et al., 2017a). In addition to
measuring lung permeability, authors investigated the heart using
echocardiography, and measurements of ventricular pressures. The
hemodynamic effects in the 45/0 group were most pronounced.
During inspiration in the 45/0 the right ventricle was markedly
underfilled, in contrast the 45/10 group demonstrated constant RV
filling during both inspiratory and expiratory cycles. This absence of
right ventricle filling led to total abolition of RV stroke volume and
cessation of pulmonary blood flow during inspiration. This was
followed by exaggerated RV output and flow during expiration,
resulting in cyclic ‘on-off’ pulmonary blood flow with each
respiratory cycle (Figure 1) (Katira et al., 2017b). Furthermore,
the PVR during inspiration (although not measurable due to
absent flow) must be substantial, given the high inspiratory PL
and likely alveolar capillary compression, further exacerbating the
swings in RV output. As a result, lungs were in zone I condition
during inspiration and received accelerated and potentially shearing
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blood flow during expiration when the lungs underwent collapse
(negative expiratory PL). Vascular shearing can lead to endothelial
injury from the well documented phenomena of capillary stress
failure, which in turn leads to increased microvascular permeability.
Moreover, the repeated loading and unloading of the right ventricle,
combined with escalating vascular and alveolar injury, led to RV
dilation (increased RV/LV ratio) and subsequent failure. RV dilation
also led to left ventricular (LV) encroachment and increased LV
filling pressure (Pinsky, 2016) (ventricular-ventricular interaction),
in turn contributing to increased lung water.

Conversely the 45/10 group had decreases in both RV and LV
volume and output, but this remained constant throughout the
respiratory cycle and through the experiment, thus explaining the
protective effect of lower Vt and PEEP. The application of
10 cmH2O PEEP increased the Ppl and likely Pra, thereby
reducing cardiac output while maintaining a positive end-
expiratory PL (preventing lung collapse). Lower Vt resulted in
lower inspiratory PL and hence a reduced RV afterload, together
these changes provided a stable variation in pulmonary blood flow
likely avoiding vascular shearing, permeability, and RV failure.

Abrupt deflation

In another experimental set-up, using healthy rats, it was
demonstrated that abruptly deflating the lung after sustained
inflation from clinically relevant pressure and volume (PEEP
12 cmH2O and Vt 6–7 mL/kg), resulted in hypoxemia, poor lung
compliance, protein and water leak into the alveoli, as well as
histological evidence of injury (Figure 2) (Katira et al., 2018).
The microvascular damage as measured by Evans blue dye, was

shown to be minimal prior to deflation and increased progressively
after deflation, peaking within 5–10 min. Electron microscopy
revealed endothelial injury, which provided the biological basis of
this leak; the leak was prevented by gradual deflation. Importantly,
the injury began with endothelial damage, suggesting a
cardiovascular mechanism. Upon investigation into the
cardiovascular dynamics using echocardiography and
intraventricular pressure measurements, it was observed that with
increase in PEEP (during the inflation limb), preload and cardiac
output decreased. Upon deflation, preload, and RV output abruptly
increased, faced with abruptly increased PVR, which was associated
with a sudden increase in left ventricular end-diastolic pressure
(LVEDP). The physiological events can be divided into three parts
sustained inflation, abrupt deflation and post deflation. During
inflation, as the preload and cardiac output decrease, arterial
pressure reduces and results in compensatory arterial
vasoconstriction and increased LV afterload. The abrupt deflation
leads to an acute increase in preload and output, which had two-fold
effect—first, an acute increase in pulmonary blood flow and second,
acute LV decompensation because the abrupt increase in LV preload
wasmet with high LV afterload (preload-afterloadmismatch). These
two events together likely gave rise to high pulmonary capillary
pressure, causing endothelial injury and microvascular leak. In the
post deflation phase, vascular injury and pulmonary edema
contribute to ongoing lung injury, increasing PVR and leading to
RV failure. Additionally, pretreating animals with sodium
nitroprusside abolished the LV preload-afterload mismatch likely
through systemic vasodilation, and reduced lung injury for similar
pattern of inflation followed by deflation.

A similar experimental plan was performed in a porcine model
(Katira et al., 2022), wherein the increase in LVEDP was not

FIGURE 1
Cardiopulmonary interactions in VILI—High stretch ventilation from high Vt and low PEEP results in large swings of PL and Ppl. Swings in PL result in
repeated opening and closing of alveoli and cyclical changes in PVR, while swings in Ppl cause cyclical changes in RV preload. These together result in
large swings of pulmonary blood flow, a vascular ‘on-off’ phenomena and endothelial shearing. This results in increased microvascular permeability and
progressive lung injury. RV failure results from vascular injury, repeated loading and unloading of RV as well as lung injury. RV failure leads to LV
compression and high LVEDP and consequent contribution to increased lung water (hydrostatic edema). Abbreviations: Vt Tidal Volume; PEEP Positive
End-Expiratory Pressure; PL Transpulmonary pressure; Ppl Pleural pressure; RV Right Ventricle; PVR Pulmonary Vascular Resistance; LVEDP Left
ventricular end-diastolic failure.
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observed. However, a single abrupt deflation from high PEEP
resulted in increased lung water, accompanied by increased
pulmonary blood flow, elevated PVR and hypoxemia. In contrast,
gradual deflation resulted in gradual increase in blood flow, lower
PVR and improved oxygenation. Additionally, repeated short lung
deflations from clinically relevant levels of PEEP resulted in
pulmonary edema, and a trend towards protein leakage and
inflammation. These changes were accompanied by worsening
respiratory system compliance, increased RV afterload and
hypoxemia. Taken together, these results from in-vivo
experiments suggest that high pulmonary vascular flow and high
microvascular pressure (either from forward or backward pressure)
interact with airspace forces in the genesis of VILI(28).

In vitro studies

Several key studies provide insight into what components of
pulmonary vascular dynamics impact lung injury, using the isolated
rabbit heart-lung preparation (Broccard et al., 1998; Broccard et al.,
1999; Hotchkiss et al., 2000; Hotchkiss et al., 2001). Lungs were
submitted to varying levels of perfusion while the same injurious
pattern of ventilation was used (Broccard et al., 1998). It was
observed that perfusion amplitude contributed to a reduction in
lung compliance, as well as the formation of hemorrhage and edema.
While it initially appeared that the perfusion pressure gradient was
the principal determinant, whether the culprit in these interactions
was pulmonary blood flow or pressure was further explored by
varying the airway pressures to allow variation in pulmonary arterial
pressures while holding blood flow constant (Broccard et al., 1999).
Their results indicated higher mean Paw had a greater impact than
tidal excursion in the development of lung permeability and
hemorrhage, especially because higher mean Paw was associated
with higher pulmonary artery pressure, demonstrating
modifications of vascular pressure could impact the severity of
ventilator induced lung injury. The authors suggested that higher
upstream pressure in the pulmonary vasculature, i.e., Pulmonary
artery to alveolar pressure gradient, results in hemorrhagic
pulmonary edema (Marini et al., 2003). Furthermore, the role of
number of respiratory cycles was also explored—with lungs
ventilated at the same peak pulmonary artery pressures formed
less edema and perivascular hemorrhage when ventilated at lower
frequency (Hotchkiss et al., 2000). These findings indicated that not
only the characteristics of the breath are of importance but the
ventilatory frequency and the cyclical variation of pulmonary artery
pressure too are contribute to repeated vascular strain and stress.

In another setting, addressing the intersection of pulmonary
blood flow and pulmonary capillary pressure (Pcap), it was noted
that lungs subjected to high pulmonary blood flow, with or without
high Pcap developed progressive weight gain, edema formation,
hemorrhage, and increased filtration (Lopez-Aguilar et al., 2006).
Interestingly, lungs subjected to high Pcap with low blood flow
exhibited much less lung injury similarly to the group of low Pcap
and low blood flow. The authors concluded that high blood flow
when coupled with cyclical inflation of lungs is likely to increase the
shear stress and wall tension in pulmonary capillaries - specifically
extra-alveolar capillaries during inspiration and alveolar capillaries
during expiration. Such increases in capillary stressors will result in

endothelial failure, leak, and inflammation. Moreover, in a model of
chronic pulmonary arterial hypertension (PAH), injurious
ventilation strategy resulted in lower lung injury, inflammation,
and hypoxia, while normal animals subjected to similar ventilation
demonstrated hypoxia, poor compliance, increased lung weight and
higher cytokine expression (Kornecki et al., 2008). This could be due
to increased basement membrane thickness in the presence of PAH,
rendering the alveolar capillary membrane more resistant to
mechanical injury from either airspace or vascular forces. In
contrast, adding negative pressure to high stretch ventilation
resulted in greater lung injury compared to positive pressure
alone, partly due to increased pulmonary perfusion in the
negative pressure group (Dreyfuss et al., 1988).

Aforementioned experiments highlight the significant role of
pulmonary artery pressure, pulmonary blood flow and LV filling
pressure on lung microvascular health. This perspective is further
reinforced by observations showing a disproportion of vascular
injury occurring in the dependent lung, which receives most of
the lung’s blood flow (Broccard et al., 2000). These areas thus may be
more vulnerable to shearing stresses within the vascular
endothelium. Pulmonary vascular dynamics are directly impacted
by the pattern of mechanical ventilation; injurious strategies lead to
adverse cardiopulmonary (CP) interactions, microvascular injury,
and alveolar edema, while protective patterns (e.g., low Vt and
PEEP) may result in favorable CP interactions and consequent less
or no VILI. It is therefore to be noted that vascular forces work in
conjunction with airspace forces, and both together impact the
genesis of VILI (Figure 1) (Hotchkiss et al., 2001). It is well
understood that high airway pressure may result in increased
alveolar epithelial permeability and even gas leak into the
circulation (Egan et al., 1976; Egan, 1980; Egan, 1982). Cyclic
opening and closing with high Vt results in surfactant
dysfunction, increased alveolar stress in the regions of collapse
lung surrounded by overdistended regions, and alveolar shearing
(Tremblay and Slutsky, 2006).

Translational implication

The role of CP interactions and vascular forces in VILI suggests
cardiovascular targets for lung protection exist, in addition to
pulmonary ones (e.g., plateau pressure, driving pressure, Vt, etc.).
Monitoring pulmonary vascular dynamics through techniques such
as echocardiography or pulmonary artery catheter measurements
could help identify patients at risk of lung injury. Parameters such as
high pulmonary artery pressure, cyclic alteration in pulmonary
blood flow, and high LV filling pressure can all be measured or
assessed at various airway pressures, informing the CP interaction at
the bedside (Vieillard-Baron et al., 2016). It was noted that increase
in tidal volume led to high transpulmonary pressure swings which in
turn resulted in cyclic alteration in pulmonary blood flow (Vieillard-
Baron et al., 1999). Furthermore, in post operative cardiac patients,
under passive ventilation an increase in Vt (and driving pressure)
resulted in higher non-zone III conditions (Slobod et al., 2022).
Therefore, by testing different levels of tolerable PEEP and Vt
(analogous to PEEP titration for optimal lung mechanics) it is
possible to understand the impact on right heart and pulmonary
hemodynamics and possibly distinguish the effects of mechanical
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ventilation from existing lung injury. Modulation of mechanical
ventilation to optimize the CP interactions may help reduce forces
on both sides of alveolar capillary membrane. Moreover, limiting
lung deflations due to ventilator disconnections not only improves
lung function but may also reduce lung injury from atelectasis and
vascular forces (Maggiore et al., 2003; Maggiore et al., 2013; Katira
et al., 2022).

Furthermore, patients at risk of endothelial injury (e.g.,
sepsis, etc.), could benefit from strategies aimed at lowering
pulmonary artery pressure and flow, as well as paying careful
attention to use of vasoactive medications as they can augment
pulmonary macro and microvascular stressors. It has been shown
that restricting fluid infusion in patients with ARDS improves
outcomes (Wiedemann et al., 2006; Semler et al., 2016) and
increased lung water is associated with severity and poor
outcomes in ARDS (Craig et al., 2010; Kushimoto et al.,
2013). Concurrently, the presence of RV failure in ARDS,
although multifactorial, is associated with poor outcomes
(Zochios et al., 2017). Therefore, balancing the use of fluids,
vasoactive medications and ventilatory strategies to support the
RV enough without adversely impacting pulmonary vascular
dynamics (and microvascular stressors) may provide key
strategies to either prevent or limit ongoing lung injury.

Future directions

Translational research is needed to study the tangible impact of
adverse cardiopulmonary interactions, as seen during abrupt
deflation, ventilator weaning, fluid overload, high stress (driving
pressure) ventilation in the preclinical models of ARDS, heart failure

and sepsis. Together this might provide additional insight into the
failure of clinical trials deploying high PEEP or recruitment.
Additionally, incorporating ventilatory strategies like those used
at the bedside unlike the extreme ones used to elicit mechanisms in
the classic models, could further improve the translational
capability. Moreover, studies exploring heart and lung protective
ventilation in critically ill patients, impact of pronation of
pulmonary vascular macro and micro dynamics, and
optimization of CP interactions under ECMO, are additional
research avenues in this line of investigation.

Summary

Both experimental and clinical evidence highlight the
occurrence of adverse cardiopulmonary interaction during
injurious ventilation and provide evidence of vascular mediated
lung injury. As our understanding of endothelial damage in VILI
grows, the role of macro and microvascular dynamics, particularly
pulmonary blood flow and pressure seems pivotal in VILI genesis.
These observations also provide insight into the ventilator related
mechanisms of RV failure and suggest the need to develop heart and
lung protective ventilatory strategies, starting with careful
observations of bedside hemodynamics coupled with respiratory
mechanics and gas-exchange.
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FIGURE 2
Lung Deflation Injury—sustained inflation at high PEEP results in lower preload and compensatory increase in systemic vascular resistance to
maintain blood pressure. Upon abrupt deflation, preload increases, however the SVR remains high, leading in preload-afterload mismatch for the left
ventricle. Together this results in high LVEDP and along with abruptly increased pulmonary blood flow possibly leads to capillary stress failure and
permeability edema. Abbreviations: SVR Systemic Vascular Resistance; PEEP Positive End-Expiratory Pressure; LVEDP Left Ventricular End-Diastolic
Pressure.
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