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Introduction: Recent sleep guidelines regarding evening exercise have shifted
from a conservative (i.e., do not exercise in the evening) to a more nuanced
approach (i.e., exercise may not be detrimental to sleep in circumstances). With
the increasing popularity of wearable technology, information regarding exercise
and sleep are readily available to the general public. There is potential for these
data to aid sleep recommendations within and across different population
cohorts. Therefore, the aim of this study was to examine if sleep, exercise, and
individual characteristics can be used to predict whether evening exercise will
compromise sleep.

Methods: Data regarding evening exercise and the subsequent night’s sleep were
obtained from 5,250 participants (1,321F, 3,929M, aged 30.1 ± 5.2 yrs) using a
wearable device (WHOOP 3.0). Data for females and males were analysed
separately. The female and male datasets were both randomly split into subsets
of training and testing data (training:testing = 75:25). Algorithms were trained to
identify compromised sleep (i.e., sleep efficiency <90%) for females andmales based
on factors including the intensity, duration and timing of evening exercise.

Results:When subsequently evaluated using the independent testing datasets, the
algorithms had sensitivity for compromised sleep of 87% for females and 90% for
males, specificity of 29% for females and 20% formales, positive predictive value of
32% for females and 36% for males, and negative predictive value of 85% for
females and 79% for males. If these results generalise, applying the current
algorithms would allow females to exercise on

˜

25% of evenings with
˜

15%
of those sleeps being compromised and allow males to exercise on

˜

17% of
evenings with

˜

21% of those sleeps being compromised.

Discussion: Themain finding of this studywas that themodels were able to predict
a high percentage of nights with compromised sleep based on individual
characteristics, exercise characteristics and habitual sleep characteristics. If the
benefits of exercising in the evening outweigh the costs of compromising sleep on
some of the nights when exercise is undertaken, then the application of the
current algorithms could be considered a viable alternative to generalised sleep
hygiene guidelines.
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Introduction

There is widespread consensus among the scientific community
that exercise and sleep have a positive impact on human health
(Hirshkowitz et al., 2015; Piercy and Troiano, 2018). Similarly, the
negative impact of compromised sleep on human physiology and
performance is well established (Belenky et al., 2003; Paryab et al.,
2021; Khcharem et al., 2022). Despite this knowledge, the way in
which exercise impacts sleep is less understood. Exercise has been
promoted as a potential non-pharmacological intervention to
improve sleep (Kovacevic et al., 2018; Si et al., 2020; Xie et al.,
2021). However, a variable that may be disruptive to sleep is the
time of day when exercise is completed. Historically, sleep medicine
recommendations have taken a conservative approach, advising
against exercise in close proximity to habitual bedtime (Zarcone,
1994; American Sleep Association, 2023). More recent
recommendations are less conservative, with the Sleep Foundation
stating that “most people” can performmoderate intensity exercise in
the evening without impacting sleep, as long as there is a 90-min
buffer between exercise and sleep (Pacheco, 2021). However, the only
citation used for this recommendation is Miller et al. (2020b), a paper
that investigated the impact of evening exercise only in healthy young
males (Miller et al., 2020c). It is possible that individuals following this
advice, who are not healthy young males, may be compromising their
sleep by performing evening exercise. This highlights the difficulty
and limitations of providing generalised recommendations regarding
evening exercise and sleep.

Physiologically, the most likely mechanism for the impact of
evening exercise on sleep is elevated core body temperature. During
exercise, core body temperature is elevated as a by-product of
muscular contraction. The human circadian rhythm of core body
temperature coincides with sleep/wake behaviour, such that body
temperature decreases as the body is primed for sleep, and body
temperature is elevated during active hours (Van Dongen and
Dinges, 2000). If exercise is performed close to habitual bedtime,
the associated increase in body temperature could potentially
disrupt the body’s physiological preparation for sleep
(Waterhouse et al., 2005; Sawka et al., 2011; Miller et al., 2020c).
In isolation of recommendations and potential mechanisms, the
results of several laboratory and epidemiological studies indicate
that evening exercise may not be detrimental to subsequent sleep in
all circumstances (Myllymäki et al., 2011; Buman et al., 2014; Alley
et al., 2015; Aloulou et al., 2020; Miller et al., 2020c; Thomas et al.,
2020; Frimpong et al., 2021). While it is less common, some studies
have reported negative effects of evening exercise on sleep, with a
high intensity exercise protocol performed in the evening resulting
in decreased sleep efficiency in elite male runners (Ramos-Campo
et al., 2019). Contrasting findings surrounding this topic are likely
due to different combinations of the characteristics of the exercise
(i.e., modality, intensity, duration, timing). Depending on these
characteristics, the physiological response to exercise can vary
considerably (Myllymäki et al., 2012; Mann et al., 2014; Miller
et al., 2020c). To control for such variability, research studies are
often limited to one combination of exercise characteristics
(i.e., type, intensity, duration) and sleep timing (i.e., bedtime and
wake up time). This leads to contrasting outcomes across studies and
practical applications that can only be applied to specific exercise
protocols and to the sample demographic that participate.

Technology capable of non-invasively measuring sleep and
other physiological markers of health over multiple days and
nights provide an ideal framework in which to explore the
efficacy of physiological markers for predicting health related
outcomes (Miller et al., 2020a; Capodilupo and Miller, 2021;
Miller et al., 2022). More specifically, datasets generated with the
use of wearable technologies provide a wide array of exercise and
demographic variables that can be used to examine the relationship
between exercise and sleep (Capodilupo and Miller, 2021). Previous
research has utilised daytime activity (i.e., movement) to effectively
predict sleep quality (Sathyanarayana et al., 2016). However, no
studies have utilised individual characteristics (e.g., age, fitness
level), sleep characteristics (e.g., timing) and exercise
characteristics (e.g., timing duration, heart rate) to predict sleep
outcomes. Therefore, the aim of this study was to utilise data
obtained from a wearable device (i.e., WHOOP 3.0) to predict
the probability of compromised sleep based on metrics relating
to sleep, and evening exercise.

Methods

TheWHOOP strap 3.0 (WHOOP Inc., Boston, United States) is
a wearable device typically worn on the wrist. The device uses
accelerometry to obtain actigraphy data (movement) and green and/
or infrared LEDs paired with photodiodes to obtain
photoplethysmography data (blood volume) to collect measures
of sleep, heart rate, and other physiological markers of health
(Miller et al., 2020b; Bellenger et al., 2021; Miller et al., 2021;
Bellenger et al., 2022; Miller et al., 2022). Sleep and exercise
periods are automatically detected by the device and transmitted
via Bluetooth to associated Android and iOs smartphone
applications for analysis. The specific algorithms used by
WHOOP for estimating sleep and other physiological metrics are
proprietary. The data used in this study were extracted from an
existing database as part of a research collaboration between
WHOOP Inc. and CQUniversity. The study was approved by the
Central Queensland University Human Research Ethics Committee
(Ethics number: 22344) in compliance with the Declaration of
Helsinki. Data were collected with the written consent of
individuals via WHOOP Inc.’s terms of service.

A subset of the existing dataset was extracted for the period
between December 2019 and February 2020. For each day, the data
were filtered for days that individuals 1) performed exercise after 19:
00 h; 2) exercise duration was more than 30 min; and 3) had an
average heart rate higher than 50% of maximum heart rate during
exercise (HR) (Tanaka et al., 2001). A total of 5,250 individuals
(1,321 females; 3,929 males; overall mean age ± SD = 30.1 ± 5.2;
female mean age ±SD = 30.1 ± 5.0, male mean age ±SD = 29.9 ± 5.3)
met the criteria and contributed 21,840 nights of data to the analyses.
The following variables were obtained from the WHOOP platform:

• Sleep onset (hh: mm): time at which sleep started
• Sleep offset (hh: mm): time at which sleep ended
• Sleep period (h): time period between sleep onset and sleep
offset

• Sleep efficiency (%): percentage of the sleep period spent
asleep
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• exercise end time (hh:mm): time of day at which an exercise
ceased

• exercise intensity (% of maximum HR): average HR during
exercise

• exercise duration (min): total duration of a bout of exercise
• Fitness level: hours of exercise per week

Data analysis

Every observation in the master dataset was assigned a
classification of either “uncompromised sleep” or “compromised
sleep” based on sleep efficiency (i.e., >90% = uncompromised sleep;
<90% = compromised; Table 1). The 90% threshold for
compromised vs. uncompromised sleep was chosen as the sample
demographic had high sleep efficiency (i.e., mean sleep
efficiency ±SD = 90.1% ± 5.0%). If the current model is applied
to a sample with lower sleep efficiency (e.g., mean efficiency <90%),
the threshold should be lowered accordingly. The master dataset
(n = 21,840) was split into female and male datasets to control for
potential gender differences in sleep and exercise characteristics.
Each of these datasets were then randomly split into training and
testing datasets (75%/25% split). All individuals contributed to the
training and testing datasets, with an average of 4.2 observations per
participant. For the female cohort there were 2,707 uncompromised
sleeps and 953 compromised sleeps in the training dataset, and there
were 885 uncompromised sleeps and 335 compromised sleeps in the
testing dataset. For the male cohort there were
8,547 uncompromised sleeps and 4,173 compromised sleeps in
the training dataset, and there were 2,813 uncompromised sleeps
and 1,427 compromised sleeps in the testing dataset. Due to the class
imbalance between uncompromised and compromised sleeps in the
both training datasets, synthetic samples of each predictor variable
were generated for the positive class (i.e., compromised sleep) by
adding uniformly distributed random noise to each compromised
sleep, bringing the total of uncompromised sleeps to 1,906 for the
female dataset and 8,346 for the male dataset (Siriseriwan, 2019).

A gradient boosted classifier (Kuhn, 2008) was trained to return
a probability of an individual having compromised sleep (i.e., less
than 90% sleep efficiency (Ohayon et al., 2004)) based on the
following features:

• age
• fitness level
• average sleep midpoint (midpoint of habitual sleep start and
habitual sleep end)

• exercise intensity
• exercise duration

• exercise end time
• habitual sleep start time

A gradient boosted classifier was chosen as it outperformed
other learning models (e.g., logistic regression) and has been utilised
in previous research examining similar datasets (Miller et al., 2020a).
The model provides a prediction statistic between 0 and 1, with a
higher value indicating higher confidence in the prediction. To
provide a binary classification, a threshold at which the
prediction statistic classifies an observation in the positive class
(i.e., compromised sleep), or negative (i.e., uncompromised sleep)
must be established. The models for both female and male cohorts
were run with thresholds ranging from 0.05 to 0.95 in 0.05 intervals
(Table 2). Thresholds that provided high prediction for
compromised sleep (i.e., >85% sensitivity) and reasonable
prediction for uncompromised sleep (i.e., >20% specificity) were
chosen as the adjusted thresholds. This was done to maximise the
sensitivity of the model for the “low-risk” outcomes
(i.e., compromising sleep by incorrectly recommending exercise).
Therefore, two thresholds; 1) a software default threshold of 0.5
(Kuhn, 2008) (i.e., prediction statistic >0.5 = compromised sleep);
and 2) an adjusted threshold optimised to provide to predict
compromised sleep (females = 0.3, males = 0.4; i.e., prediction
statistic>adjusted threshold = compromised sleep) were used in
this analysis.

To assess the predictive ability of the models using both
thresholds, the following statistics were calculated:

• sensitivity (%) = TC/(TC + FU)*100—i.e., percentage of
compromised sleeps correctly predicted by the model

• specificity (%) = TU/(TU + FC)*100—i.e., percentage of
uncompromised sleep correctly predicted by the model

• positive predictive value (%) = TC/(TC + FC)
*100—i.e., percentage of sleeps predicted to be
compromised that were compromised

• negative predictive value (%) = TU/(TU + FU)
*100—i.e., percentage of sleep predicted to be
uncompromised that were uncompromised

• feature importance: ranking of the importance of each feature
within the model (Kuhn, 2008)

Results

The models returned a continuous probability that predictor
variables are indicative of reduced sleep efficiency (i.e., <90).
Receiver operator curves (Figure 1) and prediction statistics
(Table 2) summarise the performance of the models after

TABLE 1 Agreement matrix for binary classification.

Prediction

Compromised Uncompromised

Truth Data Compromised True Compromised (TC) False Uncompromised (FU)

Uncompromised False Compromised (FC) True Uncompromised (TU)
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mapping the model’s continuous probability output into binary
classifications, bifurcated on thresholds ranging from 0.05 to 0.95 in
0.05 intervals. An adjusted threshold was chosen for females and
males to maximise the sensitivity of the model (i.e., correctly
predicting compromised sleep) without compromising the
specificity of the model (i.e., correctly classifying uncompromised
sleep; Tables 3, 4) (Miller et al., 2020a). Figure 2 demonstrates how
the model may be used practically, with model predictions
(i.e., compromised sleep or uncompromised sleep) assigned an
exercise recommendation based on the binary classification. A
recommendation of “exercise” is assigned if the model predicts
uncompromised sleep and “do not exercise” is assigned when the
model predicts compromised sleep.

Females

On average, the female cohort fell asleep at 21:45 ± 1.92 h,
obtained 7.67 ± 2.86 h of sleep, exercised at 68.04% ± 8.70% of
maximum HR for 59.49 ± 40.94 min, and ceased exercise at 20:
34 ± 1.69 h. The predictive model correctly classified 30% of
compromised sleeps (i.e., sensitivity) when bifurcated by the
default threshold, and correctly classified 87% of compromised
sleeps (i.e., sensitivity) when bifurcated by the adjusted
threshold (Table 3). The model correctly classified 92% of
uncompromised sleeps (i.e., specificity) when bifurcated by
the default threshold (i.e., 0.5), and correctly classified 29%
of uncompromised sleeps (i.e., specificity) when bifurcated by
the adjusted threshold (Table 3). The model correctly predicted
57% of sleeps that were actually compromised (i.e., PPV) when
bifurcated by the default threshold (Table 3), and correctly
predicted 32% of sleeps that were actually compromised
(i.e., PPV) when bifurcated by the adjusted threshold
(Table 3). The model correctly predicted 77% of sleeps that
were actually uncompromised (i.e., NPV) when bifurcated by
the default threshold (Table 3), and correctly predicted 85% of
sleeps that were actually uncompromised (i.e., NPV) when
bifurcated by the adjusted threshold (Table 3). Analysis of
feature importance shows that workout end time, fitness
level, average sleep midpoint, and habitual sleep start were
the most powerful predictors in this model (Figure 3).

Males

On average, the male cohort slept at 21:45 ± 1.92h, obtained
7.34 ± 4.60 h of sleep, exercised at 67.68% ± 9.10% of maximum
HR for 59.31 ± 43.96 min, and ceased exercise at 20:53 ± 1.62 h.
The predictive model correctly classified 44% of compromised

TABLE 2 Model performance with adjusted threshold values.

Threshold Sensitivity Specificity PPV NPV

Females

0.05 100 0 27 NA

0.10 99 0 28 83

0.15 99 0 28 84

0.20 97 1 28 87

0.25 94 15 30 87

0.30 87 29 32 85

0.35 75 49 35 83

0.40 60 67 40 81

0.45 43 81 46 79

0.50 30 92 57 77

0.55 27 97 76 79

0.60 20 97 71 76

0.65 11 99 87 75

0.70 6 99 90 74

0.75 0 100 100 73

0.80 0 100 100 73

0.85 0 100 100 73

0.90 0 100 NA 73

0.95 0 100 NA 73

Males

0.05 100 0 33 NA

0.10 100 0 33 NA

0.15 99 0 34 80

0.20 99 0 34 94

0.25 99 0 34 91

0.30 99 0 34 86

0.35 97 1 35 82

0.40 90 20 36 79

0.45 70 41 38 73

0.50 44 70 43 71

0.55 19 91 52 69

0.60 6 98 59 67

0.65 3 99 79 67

0.70 2 99 86 67

0.75 1 99 90 67

0.80 0 99 85 67

0.85 0 99 83 66

(Continued in next column)

TABLE 2 (Continued) Model performance with adjusted threshold values.

Threshold Sensitivity Specificity PPV NPV

0.90 0 100 NA 66

0.95 0 100 NA 66
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FIGURE 1
Receiver operating characteristic curve for each model. Females (A), and males (B).

TABLE 3 Model performance for the classification of compromised and uncompromised sleeps in the female cohort (default and chosen adjusted threshold).

Dataset Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Training dataset (raw)

Default threshold (0.5) 37 92 63 81

Adjusted threshold (0.3) 92 31 32 92

Training dataset (+synthetic data)

Default threshold (0.5) 47 92 81 71

Adjusted threshold (0.3) 95 31 49 90

Testing dataset

Default threshold (0.5) 30 92 57 77

Adjusted threshold (0.3) 87 29 32 85

Note: PPV, positive predictive value; NPV, negative predictive value.
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sleeps (i.e., sensitivity) when bifurcated by the default threshold,
and correctly classified 90% of compromised sleeps
(i.e., sensitivity) when bifurcated by the adjusted threshold
(Table 4). The model correctly classified 70% of
uncompromised sleeps (i.e., specificity) when bifurcated by the
default threshold (i.e., 0.5), and correctly classified 20% of
uncompromised sleeps (i.e., specificity) when bifurcated by the
adjusted threshold (Table 4). The model correctly predicted 43%
of sleeps that were actually compromised (i.e., PPV) when
bifurcated by the default threshold (Table 4), and correctly

predicted 36% of sleeps that were actually compromised
(i.e., PPV) when bifurcated by the adjusted threshold
(Table 4). The model correctly predicted 71% of sleeps that
were actually uncompromised (i.e., NPV) when bifurcated by
the default threshold (Table 4), and correctly predicted 79% of
sleeps that were actually uncompromised (i.e., NPV) when
bifurcated by the adjusted threshold (Table 4). Analysis of
feature importance shows that workout end time, habitual
sleep start, and average sleep midpoint were the most
powerful predictors in this model (Figure 3).

TABLE 4 Model performance for the classification of compromised and uncompromised sleeps in the male cohort (default and chosen adjusted threshold).

Dataset Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Training dataset (raw)

Default threshold (0.5) 48 73 47 74

Adjusted threshold (0.4) 91 21 36 82

Training dataset (+synthetic data)

Default threshold (0.5) 58 73 68 64

Adjusted threshold (0.4) 94 21 54 77

Testing dataset

Default threshold (0.5) 44 70 43 71

Adjusted threshold (0.4) 90 20 36 79

Note: PPV, positive predictive value; NPV, negative predictive value.

FIGURE 2
Cumulative percentage of correct and incorrect exercise recommendations for females (A), and males (B).
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Discussion

The present study utilised data obtained from the WHOOP
strap 3.0 to provide insights into the relationship between
evening exercise and subsequent sleep. The main finding was
that the predictive model correctly classified 87% of
compromised sleeps for females, and 90% of compromised
sleeps for males when bifurcated by an adjusted threshold.
Along with this high sensitivity, the high negative predictive
value (i.e., percentage of uncompromised sleep correctly
categorised) for females and males suggests that an individual
can be confident that sleep will not be compromised if these
models provide that recommendation.

The rationale behind the adjusted thresholds in the current
study was to maximise the sensitivity of the model for the “low-
risk” outcomes. The sole high-risk outcome for these models was
the misclassification of a compromised sleep as an
uncompromised sleep. If a model prediction of
uncompromised sleep is assigned the recommendation of
“exercise”, an individual may exercise in the evening and be
confident that sleep will not be compromised. If the prediction is
that sleep will be compromised with a recommendation of “do
not exercise”, there will be a high percentage of times when
exercise could have been undertaken but was not. While this is
the main weakness of the model, when compared to avoidance of
evening exercise in all situations, the current models would (1)

FIGURE 3
Relative ranking of the feature importance for individual (age, fitness level), sleep (habitual start, midpoint, exercise-to-sleep period) and exercise
characteristics (duration, intensity) for females (A), and males (B).
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provide the benefit of exercising on 25% of nights, but with only
15% of those nights being compromised for females (Figure 2),
and (2) provide the benefit of exercising on 17% of nights, but
with only 21% of those nights being compromised for males
(Figure 2). If an individual considers the ability to be active on
nights when they otherwise would not (25% for females; 17% for
males) as more beneficial than the cost of having sleep
compromised on a small percentage of those nights (15% for
females; 21% for males), then the current models can be
considered a viable alternative to generalised sleep hygiene
recommendations. Furthermore, if the models are
contextualised to an individual who would ordinarily exercise
in the evening each night, following the current models would
save them from compromising their sleep on 24% of nights
(females) and 30% of nights (males; Figure 2).

The aim of these models is not to recommend evening
exercise in lieu of morning or daytime exercise, but to provide
evening exercise as an alternative for individuals who may not
have the opportunity to otherwise be active. This is an important
outcome given that lack of time is commonly identified as a
barrier to undertaking daily exercise (Cerin et al., 2010).
Individuals with a small window of “free time” may have to
choose between prioritising exercise or sleep (Miller et al.,
2020c). However, if models like the one presented in this
study can be applied to easily accessible continuous wearable
data, individuals may be able to consider evening exercise as a
viable alternative to morning or afternoon exercise.

The predictors related to sleep and exercise utilised in this
study are standard metrics, available to anyone with a validated
wearable device. It is likely that wearable technology companies
may be able to utilise proprietary algorithms and individualised
data to create algorithms with better performance than the model
presented in this study. For example, the definition of
compromised sleep, while similar to previous research
(Sathyanarayana et al., 2016), may be considered generalised
rather than individualised. That is, the 90% sleep efficiency “cut-
off” may be less sensitive for some individuals. If an individual
that averages 97% sleep efficiency experiences a reduction to 91%,
it would not be classified as “compromised” by the present model.
While a sleep efficiency of 91% would not be considered clinically
low sleep efficiency, it would translate to ~29 min less sleep for a
typical 8-h sleep and is therefore relevant for the individual. It is
also important to consider the methodology used to calculate
sleep efficiency with the WHOOP device. Sleep efficiency
thresholds for sleep research are often applied to sleep
measurement systems that acquire manual initiation of “time
in bed” period, which form the basis of sleep efficiency
calculations in that context (i.e., sleep efficiency = total sleep/
time in bed * 100) (Sathyanarayana et al., 2016). The WHOOP
device, along with most modern wearables, automatically detect
sleep with no input from the user. Devices operating under this
functionality detect the initiation of sleep rather than the start of
time in bed (i.e.,. sleep efficiency = total sleep/sleep period * 100).
It is possible that this methodology in combination with the
healthy sample resulted in a higher sleep efficiency compared to
previous studies. Which is another reason why a higher threshold
for the classification of compromised sleep was used for this
study.

The analysis of feature importance shows that features such as
habitual sleep start, fitness level, and average sleep midpoint were
strong predictors in the models (Figure 3). This suggests that
variables relating to an individual’s habitual behaviour may be
strong predictors of sleep quality in conjunction with acute
exercise variables, supporting the notion that algorithms tailored
to individual behaviours may outperform the current model. A
limitation of the current model includes the lack of experimental
control for other behavioural factors (e.g.,. meal size and/or timing),
environmental factors (e.g., indoor/outdoor exercise/season of the
year), and additional individual characteristics (e.g., body mass
index, menstruation). Wearable technology and associated
software are now able to collect self-reported behavioural data,
which could be used as a predictor in future models.

Another way in which such algorithms could be improved is
by including additional variables that are not readily available, or
easily interpretable within smartphone applications. The
emergence of temperature sensors and associated data could
prove to be a valuable predictor of disturbed sleep. One of the
main concerns for evening exercise is that core body temperature
increases as a function of muscular contraction (Waterhouse
et al., 2005; Sawka et al., 2011; Miller et al., 2020c)—which may
impact the onset of sleep (Ramos-Campo et al., 2019). However, a
laboratory study investigating this relationship has shown that
moderate evening exercise did not result in elevated body
temperature at bedtime following a 90-min exercise sleep
latency and did not impact sleep (Miller et al., 2020c). If
accurate temperature data can be obtained, a metric related to
the reduction of core body temperature during the exercise-to-
sleep period could be a powerful predictor of sleep quality.

Conclusion

The main finding of this study was that the models were able to
predict a high percentage of nights with compromised sleep based
on individual characteristics, exercise characteristics and habitual
sleep characteristics. Therefore, individuals may be confident that
their sleep will not be compromised if the models recommend that
exercise will not impact their sleep. Compared to avoidance of
evening exercise (i.e., do not exercise in the evening), the current
models allow for some evening exercise to be performed with only a
small percentage of sleeps being compromised. Interpretations of
the results should be made with boundary conditions in mind.
Participants included in the study were physically active; it is unclear
whether similar results would be obtained with less active
individuals. Future investigations could assess individual-level
algorithms to provide daily recommendations regarding the
timing, type, intensity, and duration of exercise that can be
without compromising sleep.
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