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Introduction: Diastasis recti abdominis (DRA) is a common condition in
postpartum women. Measuring the distance between separated rectus
abdominis (RA) in ultrasound images is a reliable method for the diagnosis of
this disease. In clinical practice, the RA distance in multiple ultrasound images of a
patient is measured by experienced sonographers, which is time-consuming,
labor-intensive, and highly dependent on experience of operators. Therefore, an
objective and fully automatic technique is highly desired to improve the DRA
diagnostic efficiency. This study aimed to demonstrate the deep learning-based
methods on the performance of RA segmentation and distance measurement in
ultrasound images.

Methods: A total of 675 RA ultrasound images were collected from 94 postpartum
women, and were split into training (448 images), validation (86 images), and test
(141 images) datasets. Three segmentation models including U-Net, UNet++ and
Res-UNet were evaluated on their performance of RA segmentation and distance
measurement.

Results: Res-UNet model outperformed the other two models with the highest
Dice score (85.93% ± 0.26%), the highest MIoU score (76.00% ± 0.39%) and the
lowest Hausdorff distance (21.80 ± 0.76 mm). The average physical distance
between RAs measured from the segmentation masks generated by Res-UNet
and that measured by experienced sonographers was only 3.44 ± 0.16 mm. In
addition, these two measurements were highly correlated with each other (r =
0.944), with no systematic difference.

Conclusion: Deep learning model Res-UNet has good reliability in RA
segmentation and distance measurement in ultrasound images, with great
potential in the clinical diagnosis of DRA.
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1 Introduction

Rectus abdominis (RA) is a long muscle located on both sides of
the midline of anterior abdominal wall in rectus sheath. It plays an
important role in protecting the internal organs and stabilizing the
pelvis and lumbar spine. Diastasis recti abdominis (DRA) refers to a
condition in which the two RAs separate to the sides, accompanied
by extension of linea alba and protrusion of abdominal wall
(Michalska et al., 2018) (Figure 1). The causes of DRA include
changes in hormone levels, mechanical pressure, and other high-risk
factors such as obesity, multiple pregnancies, multiparity, fetal
macrosomia, polyhydramnios, and pre-pregnancy abdominal wall
laxity (Bursch, 1987). After delivery, 20%–60% women experience
varying degrees of DRA (Sperstad et al., 2016). This disease not only
affects the abdominal aesthetics, but also causes other physical
conditions such as the pain in lower back or knee (Fuentes
Aparicio et al., 2021; Wu et al., 2021), leading to both
psychological and physiological stress on patients. Therefore, the
accurate diagnosis of DRA is meaningful to help patients to receive
early rehabilitation trainings or surgical interventions (Fiori et al.,
2021; Ross and Nahabedian, 2021), thus reducing the harm caused
by DRA.

In clinical practice, the diagnosis of DRA in postpartum women
is performed by measuring the distance between RAs. This
measurement can be done by several approaches including
palpation (van de Water and Benjamin, 2016), ultrasound
imaging (Mendes et al., 2007; Mota et al., 2012), and magnetic
resonance imaging (Barbosa et al., 2013). Among these approaches,
ultrasound imaging is the most widely used because it is non-
invasive, real-time, and cost-effective. Figure 2 shows a
representative ultrasound image of RA above the navel of a
patient. The distance between two RAs (red regions) is measured
to diagnose the degree of DRA. Usually, DRA is confirmed when the
measured distance is larger than 2.5 cm. Otherwise, non-separation
is reported. Many studies have demonstrated the reliability and
effectiveness of ultrasound imaging in quantifying the separation
between RAs for the diagnosis of DRA (Liaw et al., 2011; Mota et al.,
2012; Qu et al., 2021). However, the RA distance is usually measured
by sonographers with a manual method. This manual measurement
is quite challenging for less-experienced sonographers because RA is
hardly differentiated from its surrounding tissues in ultrasound

images (Figure 2). In addition, for every patient, multiple (from
4 to 12) images obtaining from different locations in different
posture states should be annotated, so the manual method is
labor-intensive. Therefore, an automated method that can
efficiently measure the distance between RAs in ultrasound
images is highly desired.

To measure the distance between separated RAs in ultrasound
images, the boundaries of two RAs should be first extracted.
However, RA segmentation from ultrasound images is difficult
because of the following reasons: 1) the boundary between RA
and the surrounding tissue is weak; 2) the gray level and texture
feature in RA are inhomogeneous and complicated; 3) the shape of
RA varies across different images. Given all these difficulties, it is
challenging for traditional segmentation techniques to achieve
accurate RA segmentation in ultrasound images.

In recent years, deep learning methods have developed rapidly
and been validated for their effectiveness in many medical fields
(Akkus et al., 2019; Esteva et al., 2019; Kuo et al., 2019; Chan et al.,
2020; Qian et al., 2021). Compared with traditional segmentation
approaches, deep learning-based segmentation models, such as
U-Net (Ronneberger et al., 2015) and their variants
(Diakogiannis et al., 2020; Zhou et al., 2020), have achieved
remarkable success with improvement in both time and accuracy.
In this study, performances of three deep learning models including
U-Net (Ronneberger et al., 2015), U-Net++ (Zhou et al., 2020) and
Res-UNet (Diakogiannis et al., 2020) on the segmentation of RAs in
ultrasound images were compared. Then, the distance between
predicted RA masks was measured for diagnosis of DRA.

2 Materials and methods

2.1 Dataset collection

Dataset used in this study was collected from Affiliated Xiaoshan
Hospital, Hangzhou Normal University (Hangzhou, China). In total,
675 ultrasound images of RA area obtained from 94 patients (aged
29.44 ± 3.98 years) at 42 days postpartum were obtained. For each
patient, 4 to 11 ultrasound images were captured, including images in

FIGURE 1
Schematic diagram of normal rectus abdominis (A) and DRA
around navel (B). DRA, diastasis recti abdominis.

FIGURE 2
An ultrasound image showing RA (red regions) andmeasurement
of RA distance (yellow arrow). RA, rectus abdominis.
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three posture states at four examination locations of RA during the
examination. Specifically, three posture states referred to the relaxed
state, curled-up state and deep inhalation state while retracting the
abdomen towards the spine. Four examination locations referred to
the RA area which was at 5 cm above navel, 3 cm above navel, navel
itself and 3 cmbelow navel. The examinationwas performed usingGE
Voluson E8 ultrasound machine, with a high-frequency linear array
transducer and depth range of 2–40 mm. The distribution of patients
with different DRA conditions in ultrasound images was shown in
Table 1.

Each ultrasound image in the dataset had a size of 1,136 × 852
(pixels). The original images exported directly from the machine
were in DICOM format. Three experienced sonographers in
Affiliated Xiaoshan Hospital of Hangzhou Normal University
were asked to manually label the RA regions from these
ultrasound images. To evaluate the inter-annotator consistency,
we calculated the Dice scores between the labeled masks of the
three annotators We also calculated the Pearson correlation
coefficients between the distance values measured by the three
annotators. The high Dice score and correlation coefficient values
shown in Table 2 indicate inter-annotator agreement. Finally, labels
of the three annotators were averaged as the ground truth of the
model. The manual annotations were checked for multiple times to
ensure their reliability for being the ground truth masks while
training a deep learning model. This study followed the tenets of
Declaration of Helsinki, and was approved by the Ethics Committee
of Affiliated Xiaoshan Hospital of Hangzhou Normal University.
The informed consent was obtained from all patients.

2.2 Deep learning-based segmentation of
RAs in ultrasound images

To measure the distance between two RAs in ultrasound images,
the boundaries of two muscles should be accurately annotated,

which is challenging for a non-experienced sonographer. In this
study, we proposed to use deep learning-based methods to
automatically segment RAs in ultrasound images. The overall
workflow of proposed framework was shown in Figure 3. The
method consisted of three steps including image preprocessing,
deep learning-based RA segmentation, and mask post-processing.

2.2.1 Image preprocessing
Since original ultrasound images are in DICOM format and have

different sizes, they need to be preprocessed before feeding into a
deep neural network. Firstly, we converted the original DICOM
format files into PNG format images. Secondly, we removed the
black regions those contained texts describing the information of
ultrasound device and acquisition setup. These black regions were
generally located in the periphery of image, around the ultrasound
scanning area. We binarized the image using Otsu’s thresholding
technique (Otsu, 1979), and then performed the connected
component analysis to obtain the largest connected region. We
cropped the minimum enclosing rectangle of this region from the
original image, and thus removed the periphery black regions.
Finally, the cropped images were resized to 512 × 512 (pixels) to
feed into deep-learning segmentation models.

2.2.2 Deep learning-based RA segmentation
We demonstrated three models including U-Net (Ronneberger

et al., 2015), UNet++ (Zhou et al., 2020), and Res-UNet (Diakogiannis
et al., 2020) on ultrasound RA segmentation. U-Net, as one of the
most classic segmentation model, is widely used in the medical field
and serves as a baseline for many other networks. UNet++ improves
upon U-Net by changing the network’s connectivity, making it more
suitable for medical image segmentation. Res-UNet replaces the sub-
modules in U-Net with residual blocks from ResNet (He et al., 2016),
effectively improving the segmentation performance. These three
models have been widely applied and shown good performance in
various segmentation tasks. By utilizing these three classic deep
learning models, we can fully validate the feasibility of deep
learning methods for RA segmentation task.

Preprocessed images obtained by methods described in Section
2.2.1, were split into training (63 patients, 448 images), validation
(12 patients, 86 images), and test sets (19 patients, 141 images) based
on a ratio of 7: 1: 2. Because there may be information redundancy
between different images of the same patient, the dataset was divided
at the patient level, so that different images of the same patient
would not appear in two subsets simultaneously. Data augmentation
including horizontal flipping and contrast change was used to
increase the diversity of dataset and avoid the risk of overfitting.

To optimize the model parameters, we used the cross-entropy
loss as the loss function. The cross-entropy loss measures the
difference between predicted segmentation and ground truth
mask, which is defined as:

L x, y( ) � −∑ylog x

where x is the predicted segmentation result, and y is the annotated
ground truth.

All models were implemented in Pytorch 1.12.1 framework and
trained on a single 3090 GPU for 100 epochs with an initial learning
rate of 0.001 and a momentum value of 0.9. During training,

TABLE 1 Distribution of patients with different DRA conditions in ultrasound
images.

DRA condition Patients
number

Image
number

Total 94 675

Separation only in resting state
(≥2.5 cm)

27 190

Separation in all posture states
(≥2.5 cm)

46 339

Non-diagnostic separation (<2.5 cm) 21 146

DRA, diastasis recti abdominis.

TABLE 2 Consistency between different annotators.

Dice (%) Correlation coefficient (%)

Annotator 1–2 94.41 99.17

Annotator 2–3 94.66 99.36

Annotator 1–3 94.54 98.98
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Adaptive Moment Estimation (Adam) (Kingma and Ba, 2015) was
used to optimize the training process. The batch size was set to 8 to
accommodate the size of our GPU memory. The model updated its
parameters by learning the effective information in the images
through forward and backward propagation. The validation was
performed using the validation set to determine the convergence of
the model. After training, we selected the model parameters with the
best performance on the validation set for testing. The saved model
parameters were used to evaluate the model’s segmentation and
generalization performance on the test set. During the validation
and testing phases, the backpropagation of the model was halted, so
that the model did not update its parameters. The training curves of
the three models (Figure 4) indicate that the model gradually fitted
the dataset during the training process. Based on this curve, we
developed an early stop strategy to solve the overfitting problem of
the model.

2.2.3 Mask post-processing
Outputs of the trained models are maps showing the probability

of pixels belonging to RAs. The predicted probability maps were
binarized by a threshold value of 0.5 to create segmentation masks.
Since the separated RAs usually appear as two disconnected regions
in ultrasound images, there will be segmentation errors if the
number of segmented regions is greater than two (as shown in
Figure 5). This type of error was corrected by performing connected
component analysis on the binary mask image, and the two largest
connected components were selected as the final RA regions.

2.3 RA distance measurement

After mask post-processing, there were one or two connected
regions in the final binary mask. If there was only one connected
region in the segmentation mask image, the RA was thought to be
non-separated, and the RA distance was set to 0. If there were two
connected regions in the segmentation mask image, the distance
between two regions was calculated as the RA separation
distance. Specifically, the minimum bounding rectangles of
two regions were extracted, and then the distance between
right edge of left rectangle and left edge of right rectangle was
calculated as the final RA distance (d) in pixels (Figure 6). Then,
the physical distance (D) between two RAs was computed by the
following equation:

D � Pxpd

where Px represents the pixel size of the image after the resize
operation.

2.4 Evaluation

Three metrics including Dice coefficient, mean intersection-
over-union (MIoU) and Hausdorff distance (HD) were calculated
for evaluating the segmentation performance of three deep learning
models. The equations for computing Dice, MIoU and HD were as
follows:

FIGURE 3
Overall workflow of automatic segmentation and distance measurement of RAs based on deep learning. RA, rectus abdominis; D, physical distance.
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Dice � 2 A ∩ B| |
A| | + B| |

MIoU � A ∩ B| |
A ∪ B| |

HD � max h A, B( ), h B, A( )( )
where A was the model prediction mask, B was the ground truth
mask, h(A, B) represented the maximum of the shortest distance
from each pixel in A to B, and h(B,A) represented the maximum of
the shortest distance from each pixel in B to A. The larger the Dice
and MIoU and the smaller the HD, the better the segmentation.

We defined a metric average physical distance error (APDE) to
compare the RA distance calculated by our method with manual
measured distance. APDE was expressed as:

APDE � 1
N
∑

N

i
p i( ) d i( ) − d̂

i( )∣∣∣∣∣∣
∣∣∣∣∣∣

where N was the number of image samples, d(i) was the RA distance
in image sample imanually measured by experienced sonographers,
d̂
(i)

was the computed distance between the two largest connected
domains predicted by our model in image sample i, and p(i) was the
pixel size of image sample i.

3 Results

3.1 RA segmentation results of three deep
learning models

We compared the performance of three models including
U-Net, UNet++ and Res-Unet on RA segmentation in
ultrasound images. After five independent repeated experiments,
the evaluation metrics calculated on the test dataset using three

FIGURE 4
The training loss and validation set IoU and Dice curves of the three models.

FIGURE 5
Schematic diagram of post-processing.
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models were shown in Table 3. Res-Unet outperformed U-Net
and UNet++ in all four metrics with the largest Dice score
(85.93% ± 0.26%), the largest MIoU score (76.00% ± 0.39%),
the smallest HD score (21.80 ± 0.76 mm) and the smallest
APDE (3.42 ± 0.16 mm). The segmentation results of three
exemplar ultrasound images by the three models were shown in
Figure 7. We observed that a subset of samples exhibited
suboptimal segmentation results, as shown in Figure 8. The
complex organizational structure leads to imperfect
segmentation performance in Figure 8A, while weak edges lead
to unsatisfactory segmentation performance in Figure 8B.

3.2 RA distance measurement

We compared the RA distance of 141 test images between
computed using the three model and measured manually by
experienced sonographers. Figure 9A showed the scatter plot of
RA distance computed from the proposed method (y-axis) versus
manual ground truth values (x-axis). The Pearson correlation
coefficient of the Res-UNet method was calculated to be
0.944 with p < 0.001. This indicated a strong positive correlation
between the measured and true values and a high degree of statistical
significance. Figure 9B showed the Bland-Altman analysis of two
measurements for three methods. The line of equality (Predicted -
Manual = 0) was within the 95% confidence interval of mean
difference, illustrating no significant systematic difference
between two measurements.

4 Discussion

DRA is a common condition in postpartum women, and it is
harmful to the physical andmental health of patients if left untreated
(Fuentes Aparicio et al., 2021; Wu et al., 2021). Manually measuring
the distance between separated RAs in ultrasound image has been a
golden standard for the diagnosis of DRA (Keshwani et al., 2018).
However, due to the measurement at multiple locations and in
multiple posture states of patient, the manual method can be time-
consuming and labor-intensive. Additionally, the recognition of RAs
from an ultrasound image is quite challenging for an inexperienced
sonographer since RAs are very similar to their surrounding tissues.
Therefore, an automatic method that can efficiently segment RAs
and measure RA distance in ultrasound images would benefit an
objective and accurate diagnosis of DRA.

In this study, we proposed a fully automatic pipeline based on
deep learning methods for RA segmentation and measurement of
RA distance. The most commonly used deep learning segmentation
model U-Net, and its two variants U-Net++ and Res-UNet, were
evaluated on the ultrasound segmentation of RAs. Results showed
that, Res-UNet model outperformed the other two models with the
highest Dice score (85.93% ± 0.26%), the highest MIoU score
(76.00% ± 0.39%) and the lowest Hausdorff distance (21.80 ±
0.76 mm). The average physical distance of RAs between
measured by Res-UNet model and measured by experienced
sonographers was only 3.44 ± 0.16 mm. In addition, these two
measurements were highly correlated with each other (r = 0.944),
with no systematic difference.

Our study has provided significant insights into the effectiveness
of proposed methods for the segmentation and measurement of RA
distance in ultrasound images. Firstly, the high correlation between
our automatic RA distance measurements and the ground truth
manual measurements by sonographers indicates the validity and
reliability of our methods. The Bland-Altman analysis further
supports this finding, showing no significant systematic difference
between the two measurements. This suggests that our automatic
measurements can serve as a reliable alternative to manual
measurements, saving time and effort for clinicians. Secondly, our
segmentation models, particularly Res-UNet, demonstrate excellent
performance in segmenting the RA region, as evidenced by the high
Dice coefficient, high MIoU, and small HD. This indicates that our
deep learning-based approach effectively captures RA boundaries and
accurately separates it from surrounding tissues, which is crucial for
precise distance measurements. Furthermore, the small measurement
errors achieved by our method in the task of RA separation
measurement highlight its accuracy in quantifying the degree of
separation. This is crucial for diagnosing DRA and monitoring its

FIGURE 6
Schematic diagram of measuring the distance between two
segmented RAs. RA, rectus abdominis.

TABLE 3 Performance of three models on RA segmentation and distance measurement.

Method Dice (%) MIoU (%) HD (mm) APDE (mm)

U-Net 81.21 ± 0.93 69.66 ± 1.21 28.75 ± 3.15 4.72 ± 0.42

U-Net++ 82.31 ± 1.06 71.28 ± 1.26 28.18 ± 4.90 4.62 ± 0.84

Res-UNet 85.93 ± 0.26 76.00 ± 0.39 21.80 ± 0.76 3.44 ± 0.16

RA, rectus abdominis; MIoU, mean intersection-over-union; HD, hausdorff distance; APDE, average physical distance error. The Res-UNet, method is significantly superior to the other two

methods (p <0.05).
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progression. The combination of accurate segmentation and precise
distance measurement enhances the diagnostic capability of our
method, providing valuable information for healthcare professionals.

Although the methods used in our study have been
demonstrated to measure RA distance reliably and accurately in
ultrasound images, this study still has certain limitations. Due to the
difficulty of data collection and annotation, and ethical issues, the
amount of data is relatively small, with only 93 patients having been

investigated. Therefore, a larger dataset is needed to evaluate the
effectiveness of our workflow. Nevertheless, we believe that our
experiment can still prove the potential of deep learning algorithms
in DRA assessment and can be applied to the future screening
of DRA.

Our study has demonstrated the effectiveness of deep learning-
based methods in the segmentation and measurement of RA and
diagnosis of DRA. The integration of advanced imaging technology

FIGURE 7
Segmentation results using three models on three rectus abdominis ultrasound images.

FIGURE 8
Sample examples that cannot be easily segmented. Challenges in dividing examples: (A) Complex organizational structure; (B) Weak edges.
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with deep learning algorithms has the potential to revolutionize the
assessment and screening of DRA, providing objective and accurate
measurements that benefit both healthcare professionals and
patients. Further research and clinical validation are warranted to
fully explore the clinical utility and applicability of our proposed
methods in the field of DRA assessment.

5 Conclusion

In this study, we demonstrated the ability of deep learning-based
methods on RA segmentation in ultrasound images. The method we
proposed to measure RA distance correlate very well with manual
ground truth, thus can be reliably used for evaluating RA separation
degree and has great potential to improve the clinical workflow of
DRA diagnosis.
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FIGURE 9
(A) Scatter plot of Pearson correlation analysis between computed values and manually measured values (ground truth). r, Pearson correlation
coefficient. (B) Bland-Atman plot between the predicted rectus abdominis distance and manually measured values.

Frontiers in Physiology frontiersin.org08

Wang et al. 10.3389/fphys.2023.1246994

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1246994


References

Akkus, Z., Cai, J., Boonrod, A., Zeinoddini, A., Weston, A. D., Philbrick, K. A., et al.
(2019). A survey of deep-learning applications in ultrasound: artificial intelligence-
powered ultrasound for improving clinical workflow. J. Am. Coll. Radiol. 16, 1318–1328.
doi:10.1016/J.JACR.2019.06.004

Barbosa, S., De Sá, R. A. M., and Coca Velarde, L. G. (2013). Diastasis of rectus
abdominis in the immediate puerperium: correlation between imaging diagnosis and
clinical examination.Arch. Gynecol. Obstet. 288, 299–303. doi:10.1007/S00404-013-2725-Z

Bursch, S. G. (1987). Interrater reliability of diastasis recti abdominis measurement.
Phys. Ther. 67, 1077–1079. doi:10.1093/PTJ/67.7.1077

Chan, H. P., Samala, R. K., Hadjiiski, L. M., and Zhou, C. (2020). Deep learning in
medical image analysis. Adv. Exp. Med. Biol. 1213, 3–21. doi:10.1007/978-3-030-33128-
3_1

Diakogiannis, F. I., Waldner, F., Caccetta, P., and Wu, C. (2020). ResUNet-a: A deep
learning framework for semantic segmentation of remotely sensed data. ISPRS
J. Photogrammetry Remote Sens. 162, 94–114. doi:10.1016/J.ISPRSJPRS.2020.01.013

Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., et al.
(2019). A guide to deep learning in healthcare. Nat. Med. 25, 24–29. doi:10.1038/
S41591-018-0316-Z

Fiori, F., Ferrara, F., Gobatti, D., Gentile, D., and Stella, M. (2021). Surgical treatment
of diastasis recti: the importance of an overall view of the problem. Hernia 25, 871–882.
doi:10.1007/S10029-020-02252-0

Fuentes Aparicio, L., Rejano-Campo, M., Donnelly, G. M., and Vicente-Campos, V.
(2021). Self-reported symptoms in women with diastasis rectus abdominis: A systematic
review. J. Gynecol. Obstet. Hum. Reprod. 50, 101995. doi:10.1016/J.JOGOH.2020.101995

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, Las Vegas, NV, USA, December 2016, 770–778. doi:10.
1109/CVPR.2016.90

Keshwani, N., Mathur, S., and McLean, L. (2018). Relationship between interrectus
distance and symptom severity in women with diastasis recti abdominis in the early
postpartum period. Phys. Ther. 98, 182–190. doi:10.1093/PTJ/PZX117

Kingma, D. P., and Ba, J. L. (2015). Adam: A method for stochastic optimization. in
Proceedings of the 3rd International Conference on Learning Representations, ICLR
2015. San Diego, CA, USA, May 2015, doi:10.48550/arxiv.1412.6980

Kuo, C.C., Chang, C.M., Liu, K. T., Lin,W. K., Chiang,H. Y., Chung, C.W., et al. (2019).
Automation of the kidney function prediction and classification through ultrasound-based
kidney imaging using deep learning.NPJ Digit. Med. 2, 29. doi:10.1038/S41746-019-0104-2

Liaw, L. J., Hsu, M. J., Liao, C. F., Liu, M. F., and Hsu, A. T. (2011). The relationships
between inter-recti distance measured by ultrasound imaging and abdominal muscle
function in postpartum women: A 6-month follow-up study. J. Orthop. Sports Phys.
Ther. 41, 435–443. doi:10.2519/JOSPT.2011.3507

Mendes, D. D. A., Nahas, F. X., Veiga, D. F., Mendes, F. V., Figueiras, R. G., Gomes, H.
C., et al. (2007). Ultrasonography for measuring rectus abdominis muscles diastasis.
Acta Cir. Bras. 22, 182–186. doi:10.1590/S0102-86502007000300005

Michalska, A., Rokita, W., Wolder, D., Pogorzelska, J., and Kaczmarczyk, K. (2018).
Diastasis recti abdominis - a review of treatment methods. Ginekol. Pol. 89, 97–101.
doi:10.5603/GP.A2018.0016

Mota, P., Pascoal, A. G., Sancho, F., and Bø, K. (2012). Test-retest and intrarater
reliability of 2-dimensional ultrasound measurements of distance between rectus
abdominis in women. J. Orthop. Sports Phys. Ther. 42, 940–946. doi:10.2519/JOSPT.
2012.4115

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE
Trans. Syst. Man. Cybern. SMC- 9, 62–66. doi:10.1109/tsmc.1979.4310076

Qian, X., Pei, J., Zheng, H., Xie, X., Yan, L., Zhang, H., et al. (2021). Prospective
assessment of breast cancer risk from multimodal multiview ultrasound images via
clinically applicable deep learning. Nat. Biomed. Eng. 5, 522–532. doi:10.1038/S41551-
021-00711-2

Qu, E., Wu, J., Zhang, M., Wu, L., Zhang, T., Xu, J., et al. (2021). The ultrasound
diagnostic criteria for diastasis recti and its correlation with pelvic floor dysfunction in
early postpartum women.Quant. Imaging Med. Surg. 11, 706–713. doi:10.21037/QIMS-
20-596

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: convolutional networks for
biomedical image segmentation. Available at: https://arxiv.org/abs/1505.04597v1
(Accessed September 6, 2021).

Ross, D., and Nahabedian, M. (2021). How to bridge the gap: understanding and
optimising management of rectus diastasis. Hernia 25, 1–2. doi:10.1007/s10029-021-
02459-9

Sperstad, J. B., Tennfjord, M. K., Hilde, G., Ellström-Engh, M., and Bø, K. (2016).
Diastasis recti abdominis during pregnancy and 12 months after childbirth: prevalence,
risk factors and report of lumbopelvic pain. Br. J. Sports Med. 50, 1092–1096. doi:10.
1136/BJSPORTS-2016-096065

van de Water, A. T. M., and Benjamin, D. R. (2016). Measurement methods to assess
diastasis of the rectus abdominis muscle (dram): A systematic review of their
measurement properties and meta-analytic reliability generalisation. Man. Ther. 21,
41–53. doi:10.1016/J.MATH.2015.09.013

Wu, L., Gu, Y., Gu, Y., Wang, Y., Lu, X., Zhu, C., et al. (2021). Diastasis recti
abdominis in adult women based on abdominal computed tomography imaging:
prevalence, risk factors and its impact on life. J. Clin. Nurs. 30, 518–527. doi:10.
1111/JOCN.15568

Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N., and Liang, J. (2020). UNet++:
redesigning skip connections to exploit multiscale features in image segmentation.
IEEE Trans. Med. Imaging 39, 1856–1867. doi:10.1109/TMI.2019.2959609

Frontiers in Physiology frontiersin.org09

Wang et al. 10.3389/fphys.2023.1246994

https://doi.org/10.1016/J.JACR.2019.06.004
https://doi.org/10.1007/S00404-013-2725-Z
https://doi.org/10.1093/PTJ/67.7.1077
https://doi.org/10.1007/978-3-030-33128-3_1
https://doi.org/10.1007/978-3-030-33128-3_1
https://doi.org/10.1016/J.ISPRSJPRS.2020.01.013
https://doi.org/10.1038/S41591-018-0316-Z
https://doi.org/10.1038/S41591-018-0316-Z
https://doi.org/10.1007/S10029-020-02252-0
https://doi.org/10.1016/J.JOGOH.2020.101995
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1093/PTJ/PZX117
https://doi.org/10.48550/arxiv.1412.6980
https://doi.org/10.1038/S41746-019-0104-2
https://doi.org/10.2519/JOSPT.2011.3507
https://doi.org/10.1590/S0102-86502007000300005
https://doi.org/10.5603/GP.A2018.0016
https://doi.org/10.2519/JOSPT.2012.4115
https://doi.org/10.2519/JOSPT.2012.4115
https://doi.org/10.1109/tsmc.1979.4310076
https://doi.org/10.1038/S41551-021-00711-2
https://doi.org/10.1038/S41551-021-00711-2
https://doi.org/10.21037/QIMS-20-596
https://doi.org/10.21037/QIMS-20-596
https://arxiv.org/abs/1505.04597v1
https://doi.org/10.1007/s10029-021-02459-9
https://doi.org/10.1007/s10029-021-02459-9
https://doi.org/10.1136/BJSPORTS-2016-096065
https://doi.org/10.1136/BJSPORTS-2016-096065
https://doi.org/10.1016/J.MATH.2015.09.013
https://doi.org/10.1111/JOCN.15568
https://doi.org/10.1111/JOCN.15568
https://doi.org/10.1109/TMI.2019.2959609
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1246994

	A deep learning-based approach for rectus abdominis segmentation and distance measurement in ultrasonography
	1 Introduction
	2 Materials and methods
	2.1 Dataset collection
	2.2 Deep learning-based segmentation of RAs in ultrasound images
	2.2.1 Image preprocessing
	2.2.2 Deep learning-based RA segmentation
	2.2.3 Mask post-processing

	2.3 RA distance measurement
	2.4 Evaluation

	3 Results
	3.1 RA segmentation results of three deep learning models
	3.2 RA distance measurement

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Conflict of interest
	Publisher’s note
	References


