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Exosomes, ranging from 40 to 160 nm in diameter, are extracellular lipid bilayer
microvesicles that regulate the body’s physiological and pathological processes
and are secreted by cells that contain proteins, nucleic acids, amino acids and
othermetabolites. Previous studies suggested thatmesenchymal stem cell (MSC)-
derived exosomes could either suppress or support keloid and hypertrophic scar
progression. Although previous research has identified the potential value of MSC-
exosomes in keloid and hypertrophic scar, a comprehensive analysis of different
sources of MSC-exosome in keloid and hypertrophic scar is still lacking. This
reviewmainly discusses different insights regarding the roles of MSC-exosomes in
keloid and hypertrophic scar treatment and summarizes possible underlying
mechanisms.
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1 Introduction

1.1 Mesenchymal stem cells (MSCs) and conditioned
medium

1.1.1 Mesenchymal stem cells (MSCs)
MSCs are the most widely studied stem cells, featuring self-renewal and multilineage

differentiation capacity. MSCs are generally classified according to their source: bone
marrow, trabecular bone, adipose tissue, synovium, skeletal muscle, lung, deciduous
teeth, and human umbilical cord (Baksh et al., 2004). Different sources of MSCs possess
similar morphological and biological features. MSCs have displayed promising potential in
immune modulation, higher proliferation, tissue regeneration and angiogenesis (Hoang
et al., 2022). It was suggested that human umbilical cord mesenchymal stem cells
(HUCMSCs) exhibit stronger attachment than bone marrow-derived stem cells (BMSCs)
and adipose-derived stem cells (ADSCs) (Wang and Yan, 2013). ADSCs display higher
adipogenic ability, while BMSCs exhibit stronger chondrogenic and osteogenic capacity
(Mohamed-Ahmed et al., 2018). Notably, HUCMSCs can differentiate into osteocytes,
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chondrocytes or adipocytes, displaying stronger chondrogenic and
osteogenic properties than BMSCs(Han et al., 2017). Several studies
have indicated the potential efficacy of BMSCs in skin burns
(Rasulov et al., 2005; Xu et al., 2012), whereas ADSCs might
have advantages due to their biological features in enhancing
keratinocyte growth and secreting factors that facilitate wound
healing (Li et al., 2019; Zhou et al., 2021). However, the limited
sources and low survival rate of MSCs in vivo, as well as the host
immune response towards MSCs, have severely restricted the use of
stem cell-based therapy (Nakamura et al., 2007).

1.1.2 Conditioned medium
Emerging evidence suggests that MSCs exert effects by

generating a wide range of bioactive factors. The factors are
referred to as conditioned medium, consisting of growth factors,
hormones, cytokines, chemokines, cell adhesion molecules, lipid
mediators, ectosomes and exosomes (Li et al., 2019; Praveen Kumar
et al., 2019). MSC-conditioned medium can perform a major role in
immune regulation, tissue repair and regeneration and angiogenesis
(Tokhanbigli et al., 2019; Lin et al., 2021). Compared with direct
MSC transplantation, MSC-conditioned medium is more
convenient and safer to use, displaying greater potential in
clinical application (Lin et al., 2021).

1.2 Biological characteristics of exosomes

1.2.1 Biogenesis
Generally, extracellular vesicles (EVs) are classified into

ectosomes and exosomes. Ectosomes (50 nm–1 μm in diameter)
are vesicles derived from outwards budding of the plasma
membrane and consist of microvesicles, microparticles, and large
vesicles. Exosomes (40–160 nm in diameter) are endosomal vesicles
produced by double invagination of the plasma membrane
(Colombo et al., 2014). The invagination of the plasma
membrane generates early-sorting endosomes (ESEs), which then
evolve into late-sorting endosomes (LSEs) and eventually form
multivesicular bodies (MVBs) with intraluminal vesicles (ILVs).
MVBs can be broken down by lysosomes or autophagosomes, or
release ILVs as exosomes by fusing with the plasma membrane (He
et al., 2018).

1.2.2 Isolation
Currently, various technologies are employed for EV

isolation, including 1) differential ultracentrifugation, which is
most common and simple but time-consuming (Tauro et al.,
2012; Greening et al., 2015); 2) density gradient
ultracentrifugation, which is complicated and time-consuming
but can isolate exosomes with high purity (Tauro et al., 2012;
Greening et al., 2015); 3) size exclusion chromatography,
economical and can keep EVs intact but with no specificity for
nonexosomal substances and lower yield (Böing et al., 2014); 4)
tangential flow filtration, simple and efficient but isolates
exosomes with reduced purity (Heinemann et al., 2014;
McNamara et al., 2018); 5) affinity capture, highly specific and
simple but less efficient and with low yield (Tauro et al., 2012); 6)
polyethylene glycol (PEG) precipitation, simple and cost-
effective but isolating exosomes with rather low purity (Rider

et al., 2016); and 7) reagent kits such as the exoEasy Maxi kit
(QIAGEN), simple but expensive (Zhang et al., 2020). Despite the
development of numerous methods for the extraction of
exosomes, no standard method for exosome isolation has been
established. Therefore, to facilitate the yield and purity,
combining multiple extraction methods might be more efficient.

1.2.3 Characterization
Generally, the characterization of isolated exosomes consists of

three aspects: 1) detection of the morphological structure of
exosomes by scanning electron microscopy (SEM) or
transmission electron microscopy (TEM) (Pisitkun et al., 2004);
2) identification of the size and concentration of exosomes by
nanoparticle tracking analysis technology (NTA) (Maas et al.,
2015) or only the size of exosomes by dynamic light scattering
technology (Gercel-Taylor et al., 2012); and 3) detection of negative
markers, such as calnexin, and positive markers, including integral
exosomal membrane proteins (e.g., CD63, CD9, and CD81) and
inner peripheral membrane proteins (e.g., TSG101, ALIX), by
Western blotting, enzyme-linked immunosorbent analysis or flow
cytometry (Pospichalova et al., 2015; Shao et al., 2018; Théry et al.,
2018). The International Society for Extracellular Vesicles (ISEV)
suggested that at least one negative and three positive EV protein
markers should be detected (Théry et al., 2018).

1.2.4 Function
Exosomes derived from mammals or plants are similar in

morphology and immunophenotype and share common
biological functions, such as proliferation, migration, adhesion,
and apoptosis; however, they present heterogeneous components
and characteristics (Wang et al., 2020; Dad et al., 2021). Unlike
mammals, plants are free of zoonotic or human pathogens.
Therefore, plants derived exosomes exhibit non-immunogenic
and innocuous property over mammals derived exosomes, which
is also attributed to their efficient uptake by recipient cells and
delivery of therapeutic agents, and cost-efficient production (Dad
et al., 2021). Up to date, research suggested exosomes regulate
processes such as development, immune responses,
cardiovascular and metabolic disease, neurodegeneration and
cancer (Kalluri and LeBleu, 2020). Exosomes derived from tissue-
specific MSC exhibit heterogeneous characteristics and application
(Table 1). Compared with MSC, MSC-exosomes display unique
advantages, such as easier access and storage, few ethical issues,
superior bio-compatibility and intrinsic homing effect, possessing
promising therapeutic potential (Zhou et al., 2022).

2 Effect of exosomes and conditioned
medium on keloids and hypertrophic
scars

2.1 Therapeutic role of exosomes in keloids
and hypertrophic scars

ADSC exosomes are the most widely studied and used
intervention in keloid and hypertrophic scar treatment so far.
Researchers have found that ADSC exosomes inhibit proliferation
and extracellular matrix (ECM) production keloid fibroblast (Li et al.,
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2022) and hypertrophic scar fibroblast (Yuan et al., 2021). In addition,
human amniotic epithelial cell exosomes suppress hypertrophic scar
formation (Zhao et al., 2017). Meanwhile, inhibition of lncRNA-
ASLNCS5088 and LINC01605 M2 macrophage-derived exosomes
impairs fibroblast proliferation, migration and invasion (Chen et al.,
2019b; Zhu et al., 2021) (Table 2).

2.2 Therapeutic role of conditioned medium
in keloids and hypertrophic scars

Exosomes are essential and crucial components of the conditioned
medium, rich in signaling molecules such as protein, mRNA, and
miRNA, but the isolation methods are complicated, time-consuming,

and with low yield and purity. Compared with exosomes, conditioned
medium is rich in growth factors, cytokines, chemokines, but the
preparation process includes trypsin digestion and in vitro culture,
adding the risk of biological contamination (Cai et al., 2020). Studies
have shown the therapeutic effect of conditionedmedium on keloids and
hypertrophic scars. It was revealed that ADSC- and Amnion-MSC-
conditioned medium attenuated keloid fibroblast activation (Liu et al.,
2018; Sato et al., 2018). Human fetal dermal mesenchymal stem cell- and
human Wharton’s jelly stem cell-conditioned medium exerted similar
effects on keloid fibroblasts (Fong et al., 2014; Jiao et al., 2017). Chyle fat-
derived stem cell-conditioned medium prevents hypertrophic scar
fibroblast activation (Chen et al., 2019a). Hu et al. (2019) observed
that hypertrophic scar formation was inhibited by bone marrow
concentrate-induced MSC-conditioned medium(Table 3).

More importantly, combination therapy assisted conditioned
medium in reducing hypertrophic scarring. Botulinum toxin type A
combined with mesenchymal stem cell-conditioned medium could
effectively treat hypertrophic scars (Hu et al., 2020). In addition,
hypertrophic scars could be reduced by combining fractional laser
and human umbilical cord mesenchymal stem cell HUCMSC-
conditioned medium (Zhang et al., 2022). In addition, hydrogels
combined with lyophilized ADSC-conditioned medium reduce scar
formation (Zhang et al., 2021). Consistent with previous research, the
combination of β-glycerophosphate hydrogel and HUCMSC-
conditioned medium prevented the formation of hypertrophic scar
tissue (Zhou. et al., 2019) (Table 4).

2.3 Pathogenic advances of exosomes in
keloids and hypertrophic scars

Exosomes derived from keloids and hypertrophic scars might
contribute to the occurrence and development of keloids and

TABLE 1 Heterogeneous characteristics and application of ADSC, BMSC and HUCMSC exosomes.

Exosomes source Characteristic Application

ADSC mass production wound healing and scar prevention Zhang et al. (2018)

BMSC easier accessibility bone and cartilage regeneration, peripheral-nerve recovery ischemia-reperfusion injury He et al. (2020); He et al. (2020); Fan
et al. (2022)

HUCMSC less immunogenic tissue regeneration, especially skin, angiogenesis Xue et al. (2022)

TABLE 2 Therapeutic exosome in keloids and hypertrophic scars.

Exosomes source Source Molecules Disease

ADSC 100 μg/mL Notch 1 Keloid Li et al. (2022a)

ADSC 10,100 μg/mL - Keloid Wu et al. (2021)

ADSC 20 μg/mL miR-192-5p Hypertrophic scar Li et al. (2021)

ADSC 10 μg/mL miR-29a Hypertrophic scar Yuan et al. (2021)

amniotic epithelial cell 100 μg/mL - Hypertrophic scar Zhao et al. (2017)

M2 Macrophage - ASLNCS5088 Hypertrophic scar Chen et al. (2019)

M2 Macrophage - LINC01605 Hypertrophic scar Zhu et al. (2021)

TABLE 3 Therapeutic conditioned medium in keloids and hypertrophic scars.

Conditioned medium source Disease

ADSC Keloid Liu et al. (2018)

ADSC Keloid Yang et al. (2021)

ADSC Keloid Wang et al. (2018)

Amnion-Derived MSC Keloid Sato et al. (2018)

Fetal dermal MSC Keloid Jiao et al. (2017)

Wharton’s jelly stem cell Keloid Fong et al. (2014)

Chyle fat-derived stem cell Hypertrophic scar Chen et al. (2019a)

BMSC Hypertrophic scar Hu et al. (2019)

BMSC Keloid Fang et al. (2016)

Wharton’s jelly stem cell Keloid Arno et al. (2014)
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hypertrophic scars (Table 5). Keloid fibroblast exosomes release
miR-21 and increase cell proliferation and collagen production (Li
et al., 2021). Consistently, hypertrophic scar fibroblast-released
exosomes promote normal fibroblast proliferation and migration
(Cui et al., 2022). Moreover, exosomes derived from keloid patient
plasma could enhance normal fibroblast proliferation and
fibrogenesis (Hu et al., 2022). Intracellular communication via
exosomes between melanocytes and fibroblasts plays a key role in
forming scars and keloids. Melanocyte-derived exosome miR-7704
facilitates keloid formation by activating the TGF-β/Smad pathway
(SHEN et al., 2022).

3 Possible mechanisms of exosomes in
keloids and hypertrophic scars

Hypertrophic scars and keloids are benign fibroproliferative
disorders that may arise after skin injury. Keloids are dermal
tumors characterized by abnormal fibroblast proliferation and
excessive deposition of extracellular matrix. Clinically, keloids
usually manifest as a hard raised scar that extends beyond the
boundary of the injury. Hypertrophic scars resemble keloids but
exhibit differences in clinical manifestation, histology, and
epidemiology. Hypertrophic scars are generally soft, with
normal skin color, do not grow beyond the original site of
the wound, have low recurrence rates, and histologically exhibit
well-organized type III collagen bundles. Keloids exhibit
disorganized, large thick, type I and III collagen bundles with
no myofibroblast nodules (Gauglitz et al., 2011). Hypertrophic
scars and keloids possess common pathological processes to
varying degrees, involving proliferation, apoptosis inhibition,
fibrosis, angiogenesis, inflammatory response and epithelial
mesenchymal transition (EMT) (Limandjaja et al., 2020;
Wang et al., 2022), which might indicate the possible
therapeutic mechanism of exosomes in keloids and
hypertrophic scars (Figure 1).

3.1 Proliferation inhibition and apoptosis
promotion

ADSC exosomes may attenuate the proliferation and
migration and promote the apoptosis of keloid fibroblasts by
inhibiting the TGF-β1/Smad pathway (Wu et al., 2021). ADSC-
derived exosomes also ameliorated the proliferation and
migration of hypertrophic scar fibroblasts (Li et al., 2021). It
was shown that MSC-exosomes might facilitate tissue
regeneration. However, it was reported that ADSC exosomes
facilitate cell growth at 5 and 10 μg/mL (Ren et al., 2022) but
suppress cell proliferation at 100 μg/mL (Li et al., 2022). It is
hypothesized that the microenvironment and heterogeneity of
fibroblasts might be responsible for the dual role of exosomes in
tissue synthesis. The wound healing process can be divided into
inflammatory phase, proliferative phase and remodelling phase
(Monaco and Lawrence, 2003). In the proliferative phases,
myofibroblasts are activated, producing ECM components
and contracting wound. In the remodelling phase,
myofibroblasts secreted matrix metalloproteinase and
synthesizing collagen type I. Research suggests that fibroblast
in different phase of wound healing display different function
and response to growth factors and other molecules (Talbott
et al., 2022). Therefore, exosomes might display different role
towards fibroblasts, promoting tissue regeneration in the early
phase (Hu et al., 2016) and inhibiting excessive ECM synthesis
to prevent scar formation in the latter remodelling phase (Wang
et al., 2017). However, due to complicated process of wound
healing, further research is required to elucidate the role of
exosomes in different phase of wounding healing and various
subtypes of fibroblasts, such as reticular fibroblasts, papillary
fibroblasts and myofibroblasts. In addition, ADSC-conditioned
medium suppresses keloid fibroblast growth and facilitates
apoptosis through the arachidonic acid-derived
cyclooxygenase-2/prostaglandin E2 cascade (Yang et al.,
2021). Consistently, human fetal dermal mesenchymal stem
cells suppressed the growth of keloid fibroblasts and induced
apoptosis by regulating BCL2/BAX protein expression (Jiao
et al., 2017). However, BMSC-conditioned medium inhibited
hypertrophic scar fibroblast and keloid fibroblast proliferation
and migration but did not induce apoptosis (Fang et al., 2016).
Similarly, Wharton’s jelly mesenchymal stem cell conditioned
medium significantly prevented the growth of keloid
fibroblasts, with no significant effect on the apoptosis rate
(Arno et al., 2014). Except for exosomes, the conditioned
medium includes soluble factors, which might exhibit anti-
apoptotic effects.

TABLE 4 Combination therapy of stem cell conditioned medium in hypertrophic scars.

Conditioned medium source Assisted therapy Disease

MSC Botulinum toxin type A Hypertrophic scar Hu et al. 2020

HUCMSC Fractional laser Hypertrophic scar Zhang et al. (2022a)

ADSC Polysaccharide hydrogel Hypertrophic scar Zhang et al. (2021)

HUCMSC Thermosensitive Hydrogel Hypertrophic scar Zhou et al. (2019a)

TABLE 5 Pathogenic role of exosomes in keloids and hypertrophic scars.

Exosomes source Molecules Disease

Keloid fibroblasts miR-21 Keloid Li et al. (2021a)

Hypertrophic scar
fibroblasts

TAK1 Hypertrophic scar Cui et al.
(2022)

Keloid patient plasma miR-193a-5p Keloid Hu et al. (2022)

Melanocyte miR-7704 Keloid SHEN et al. (2022)
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3.2 Fibrosis

Keloids and hypertrophic scars are fibroproliferative diseases
characterized by the pathological accumulation of ECM (Andrews
et al., 2016; Lian and Li, 2016). A large and growing body of
literature has demonstrated that MSC-exosomes display antifibrotic
effects on hypertrophic scars and keloid fibroblasts. To determine the
antifibrotic effect of ADSC-exosomes, Wang et al. detected the mRNA
expression of ECM-related genes in keloid fibroblasts. The results showed
that themRNA levels of PAI-1, TIMP-1, and collagen 1were significantly
inhibited byADSC-conditionedmedium (Wang et al., 2018).Meanwhile,
ADSC-derived exosomes may inhibit the proliferation, migration, and
collagen synthesis of keloid fibroblasts by inhibiting the TGF-β1/Smad
pathway, thus reducing scar formation (Wu et al., 2021). In addition,
Yuan et al. (2021) found that miR-29a-modified ADSC-exosome therapy
can downregulate the TGF-β2/Smad3 signaling pathway to attenuate
collagen deposition andECMsynthesis in hypertrophic scarfibroblasts. It
was reported that miR-192-5p prevents hypertrophic scar fibrosis by
targeting IL17RA (Li et al., 2021). miR-let-7d mimics effectively
ameliorated hypertrophic scar fibrosis (Zhao et al., 2023). Collectively,
these studies outlined a crucial antifibrotic role of exosomes in
hypertrophic scars and keloid fibroblasts.

3.3 Angiogenesis

During the wound healing process, excessive angiogenesis
significantly facilitates keloid formation by continuously
supplying nutrients, which is similar to tumours (Viallard and

Larrivée, 2017; Korntner et al., 2019). Thus, we mainly discussed
the effect of exosomes on angiogenesis in tumors. Wang et al. (2018)
first demonstrated that ADSC-exosomes disrupted the microvessel
structure in keloid tissue explants, with reduced CD31+ and CD34+

vessels. Similarly, it was reported that BMSC exosome-derived miR-
16 could attenuate angiogenesis and tumor progression by directly
targeting vascular endothelial growth factor (VEGF) in breast cancer
(Lee et al., 2013). In addition, BMSC exosome-derived miR-100
inhibited VEGF expression via the mTOR/HIF-1α pathway, thereby
suppressing the angiogenesis of breast cancer (Pakravan et al., 2017).
However, it was revealed that MSC-exosomes activated the
extracellular signal-regulated kinase 1/2 (ERK1/2) pathway,
thereby elevating VEGF expression and eventually contributing
to tumor angiogenesis (Zhu et al., 2012). Overall, these studies
suggested a critical role of MSC-exosomes in angiogenesis.

3.4 Inflammatory response

Excessive inflammation in the wound healing phase causes
abnormal scarring that contributes to a range of abnormal
phenotypes, such as hypertrophic and keloid scars (Ogawa, 2017).
Studies have revealed that macrophages, mast cells, dendritic cells
(DCs) and regulatory T cells are involved in the occurrence of
keloids (Zhang et al., 2006; Onodera et al., 2007; Murao et al., 2014;
Direder et al., 2022). MSC-exosomes exert immunomodulatory effects
and alleviate the inflammatory response by suppressing immune cell
function and the synthesis of inflammatory cytokines (Harrell et al.,
2019). M2 macrophage polarization and regulatory T-cell expansion

FIGURE 1
Possible mechanism of exosomes in keloids and hypertrophic scars. EMT epithelial mesenchymal transition, VEGF vascular endothelial growth
factor.
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were induced by MSC-exosomes (Cho et al., 2018; Sun et al., 2022).
MSC-exosomes could decrease the number of mast cells in skin lesions
and the maturation of bone marrow DCs, alleviating DC-induced
immune responses (Shahir et al., 2020). BMSC exosomes prevented
the growth and induced the apoptosis of CD4+ T cells (Del Fattore et al.,
2015). The proliferation and differentiation of B lymphocytes was
inhibited by BMSC exosomes (Conforti et al., 2014). In microglial
cells treated with MSC-exosomes, the production of inflammatory
cytokines (TNFα and IL-1β) was inhibited, while the generation of
anti-inflammatory cytokines (IL-10 and TGF-β) was enhanced (Harrell
et al., 2019). These findings suggested that MSC-exosomes exhibit anti-
inflammatory effects by transforming proinflammatory immune cells
(M1 macrophages, DCs, CD4+ T cells) into anti-inflammatory
M2 macrophages, tolerogenic DCs and regulatory T cells.

3.5 EMT

EMT is a cellular process in which epithelial cells acquire a
mesenchymal phenotype, elevating invasiveness. Epithelial-
mesenchymal transition plays a role in the development of
hypertrophic scars and keloids (Dongre and Weinberg, 2019;
Xia et al., 2022). Numerous studies have revealed that MSC-
derived EVs ameliorate EMT. It was found that MSC-exosomes
alleviated the EMT of radiation-induced alveolar epithelial cells
(Li et al., 2022). HUCMSC-derived exosomes suppressed EMT in
cholangiocarcinoma (Li and Wang, 2022) and significantly
downregulated colorectal cancer cell EMT via the miR-100/
mTOR/miR-143 pathway (Jahangiri et al., 2022). In addition,
the EMT of breast cancer cells was restrained by BMSC-derived
exosomes (Zhang et al., 2022). In contrast, Shi et al. (2016) found
that BMSC-derived exosomes enhanced the EMT of
nasopharyngeal carcinoma cells. Similarly, Zhou et al. (2019)
observed that HUCMSC-EVs induced EMT by activating the
ERK pathway, contributing to breast cancer development and
metastasis. These findings collectively suggested that exosomes
might exhibit a dual role in EMT, and their specific role in keloids
and hypertrophic scars needs to be explored in the future.

4 Conclusion

In summary, MSC-exosomes exhibit multiple effects on keloid
and hypertrophic scar formation and progression and function as a
promising clinical cell-free therapy. Differences in exosome dose

and source might explain its dual role in keloids and hypertrophic
scars. To date, researchers have only explored the role of MSC-
exosomes in keloids and hypertrophic scar fibroblasts. In contrast,
the impact of MSC-exosomes on keloid and hypertrophic scar
keratinocytes and immune cells remains unknown. In addition,
the clinical application and combination therapy of MSC-exosomes
in keloid and hypertrophic scar treatment is still at the initial stage.
Therefore, further research is required to elucidate their molecular
mechanism and facilitate clinical application.
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