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Spodoptera frugiperda is one of the most harmful pests that attack maize and
other major food crops and causes huge economic loss every year in China and
other countries and regions. Beauveria bassiana, a kind of entomological fungus
that is highly pathogenic to pests, is harmless to the environment and human
beings. However, at present, S. frugiperda has gradually developed resistance to
many pesticides and microbial insecticides. In this study, transcriptome
sequencing was conducted to analyze the differences in gene expression
between B. bassiana-infected and -uninfected S. frugiperda. More than 160 Gb
of clean data were obtained as 150-bp paired-end reads using the Illumina
HiSeq™ 4000 platform, and 2,767 and 2,892 DEGs were identified in
LH36vsCK36 and LH144vsCK144, respectively. In order to explore the roles of
JAK/STAT, Toll, and Imd signaling pathways in antifungal immune response in S.
frugiperda against B. bassiana infection, the expression patterns of those signaling
pathway-related genes in B. bassiana-infected S. frugiperda were analyzed by
quantitative real-time PCR. In addition, antifungal activity experiments revealed
that the suppression of JAK/STAT, Toll, and Imd signaling pathways by inhibitors
could inhibit the antifungal activity to a large extent and lead to increased
sensitivity of S. frugiperda to B. bassiana infection, indicating that JAK/STAT,
Toll, and Imd signaling pathways and their associated genes might be involved
in the synthesis and secretion of antifungal substances. This study implied that
JAK/STAT, Toll, and Imd signaling pathways played crucial roles in the antifungal
immune response of the S. frugiperda larvae, in which the related genes of these
signaling pathways could play special regulatory roles in signal transduction. This
study would improve our understanding of the molecular mechanisms underlying
innate immunity and provide the basis for a wide spectrum of strategies against
antifungal resistance of S. frugiperda.
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Introduction

The immune mechanism of insects belonging to the invertebrate
phylum Arthropoda (Insecta) mainly relies on humoral and cellular
immunity. The humoral immunity of insects is mainly composed of
antimicrobial peptides and lysozymes against pathogenic fungi and
antiviral factors, lectins, and other immune factors against viruses
and other pathogens (Lemaitre and Hoffmann, 2007). The cellular
immunity of insects is mainly based on the ability of blood cells
(hemocytes) of insects, such as granule cells, plasma cells, bead cells,
and granulocytes, to recognize and phagocytose pathogenic
microorganisms and heal the wound of insects (Kanost et al.,
2004; Rao and Yu, 2010).

There are four signaling pathways {JAK/STAT (Janus kinase/
signal transducer and activator of transcription) signaling pathway,
Toll signaling pathway, Imd (immunodeficiency) signaling pathway,
and JNK (c-Jun NH (2)-terminal protein kinase) signaling pathway}
in insects that mediate the immune response to different pathogens.
The Toll signaling pathway and Imd signaling pathway are classical
immune signaling pathways that mediate the transcription and
synthesis of most antimicrobial peptides (AMPs) and other active
substances (Tanji et al., 2007).

The JAK/STAT signaling pathway is guided by a variety of
cytokines and involved in the regulation of many important
physiological processes, including growth regulation (Hirano et al.,
2000), cell proliferation and differentiation, cell apoptosis, embryonic
development (Pires-daSilva and Sommer, 2003), and innate regulation
of immunity (Brivanlou et al, 2002a; Karst et al., 2003; Souza-Neto et al.,
2009). The extracellular binding of peptide ligands to specific
transmembrane receptors initiates the activation of the JAK/STAT
signaling pathway. The receptor undergoes conformational
transformation and self-phosphorylation by receptor-related Janus
kinases, and activated JAKs, in turn, phosphorylate the receptor,
which favors the formation of docking sites for cytoplasmic signal
transducer and activator of transcription (STAT). Then, the
phosphorylated STATs, under the action of JAK, eventually
translocate to the nucleus and activate the transcription of target
genes (Levy and Darnell, 2002; Li, 2008; Zhang et al., 2023).

In general, the Toll signaling pathway can rapidly mediate the
synthesis and secretion of antifungal and antibacterial peptides
(Tauszig et al., 2000). When pathogens are recognized, the
activated serine protease cascade also activates the Toll signaling
pathway. After entering cells, immune signals complete the cytosolic
signal transduction process through the core signal factors of the
Toll signaling pathway and finally transduce into the nucleus and
initiate the expression of target genes (Imler and Hoffmann, 2001;
Tauszig-Delamasure et al., 2002; Naitza and Ligoxygakis, 2004; Uvell
and Engström, 2007; Ao et al., 2008). The Imd signaling pathway is
another important signaling pathway involved in the regulation of
the innate immune system, which was first identified and
characterized in Drosophila (Corbo and Levine, 1996; Rämet
et al., 2002). The Imd signaling pathway mainly regulates
antimicrobial peptides, such as aggresin, cecropin, drosocin, and
diptericin, that exert effects on Gram-negative bacteria (Levashina
et al., 1998; Kaneko et al., 2004a). After Gram-negative bacteria are
recognized, the activated Imd proteins act on transcription growth
factor kinase 1 (TAK1), which transmits immune signals to IKKs
(including IKK-β and IKK-γ) (Rutschmann et al., 2000; Silverman

et al., 2003). Then, IKKs activate Relish in two ways. One is that
IKKs directly phosphorylate the NF-κB-like signaling factor Relish
and activate it (Silverman et al., 2000). Another way is that IKKs
function on the DREDD–Fadd–Relish complex, which hydrolyzes
and releases the activated Relish protein (Leulier et al., 2002). Relish
has two homologs, Relish1 and Relish2, which are activated and then
enter the nucleus to regulate the transcription of antimicrobial
peptide-related target genes downstream. The cellular immunity
of insects mainly involves recognition and phagocytosis of
pathogenic microorganisms by insect blood cells, such as
granulosa cells, plasma cells, bead cells, and granulocytes, as well
as the wound healing of insect bodies.

Spodoptera frugiperda, a lepidopteran of the family Noctuidae,
originates from tropical and subtropical areas of the Americas (Todd
and Poole, 1980). It is one of the most dangerous agricultural pests in
the world and causes serious damage to maize and other major food
and economic crops every year (Martinelli et al., 2006). S. frugiperda
not only has an adverse impact on social economy and food security
but also leads to a significant increase in the use of highly toxic
pesticides. The feeding characteristics and development of resistance
of S. frugiperda have led to the reuse and overuse of pesticides; these
two interrelated problems potentially give rise to food crises and
human and environmental health problems (Prasanna et al., 2018).
In recent years, the abuse of chemical pesticides has led to a series of
problems, such as drug resistance, excessive pesticide residues, and
environmental pollution. Compared with conventional chemical
control, microbial control has the advantages of specificity and
ecological safety. Microbial pesticides, such as bacteria, fungi, and
viruses, play an important role in the control of S. frugiperda. At
present, entomopathogenic microorganisms such as Beauveria
bassiana, Bacillus thuringiensis, and nuclear polyhedrosis viruses
(SfMNPVs) have been registered and utilized for the control of S.
frugiperda both at home and abroad (Poisot et al., 2018). B. bassiana
is a kind of entomological fungus, which can infect more than
700 types of insects belonging to 149 families and 15 orders. At the
same time, B. bassiana is harmless to the environment and warm-
blooded animals but has a strong virulence for pests; its culture
conditions are relatively simple; and the strain is cheap and easy to
obtain. Currently, this pathogenic fungus is widely used as a
biopesticide to control pests around the world (Ramos et al., 2017).

However, there are few reports on the immune response genes
related to signaling pathways of S. frugiperda, an invasive pest in
China, after its infection with B. bassiana. Therefore, in this study,
high-throughput transcriptome sequencing was performed on S.
frugiperda larvae collected at 36 h and 144 h after B. bassiana
infection to screen out the genes related to the immune response
of S. frugiperda to B. bassiana infection. This study would provide
target genes for improving the control effect of B. bassiana against S.
frugiperda and lay a foundation for understanding themechanism of
resistance of S. frugiperda to B. bassiana.

Materials and methods

Insects and tested strains

The larvae of S. frugiperda, obtained from a wild field, were
reared at 27°C ± 1°C with a relative humidity of 65%~85% and a
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photoperiod of 14 L:10 D at the Institute of Nanfan and Seed
Industry, Guangdong Academy of Sciences, Guangzhou, China.
After at least three generations, the third-instar larvae with the
same individual length and instar and moderate epidermal state
were selected as the experimental subjects.

Preparation of B. bassiana conidial
suspension

B. bassiana was cultured on a potato dextrose agar (PDA)
medium at 27°C ± 1°C for 1 week. Then, 10 ml 0.15 mol/L NaCl
solution was added into the tubes which were then oscillated gently.

The conidia and hyphae were transferred into a centrifuge tube with
20 μL Tween-80, vortex-shaken for 10 min, and then filtered. The
spores were counted using a blood count plate and diluted with
0.15 mol/L NaCl solution to a concentration of 108 spores/ml. Then,
1 mL of the prepared conidia suspension was added into 10 mL
potato dextrose (PD) medium and then cultured at 30°C ± 1°C,
180 rpm for 3 days. The mixture of hyphae and blastospores were
autoclaved at 121°C for 20 min to generate the heat-inactivated
suspension of B. bassiana. Finally, the B. bassiana conidial
suspension and inactivated B. bassiana conidial suspension were
used for immune induction in S. frugiperda.

cDNA library construction, transcriptome
sequencing, assembly, and functional
annotation

The larvae of S. frugiperda were treated with 1 × 108/mL spore
suspension of B. bassiana Bb378, while those treated with 0.05%
Tween-80 solution were set as controls. The infected larvae were
collected at 36 and 144 h after treatment, then flash-frozen with
liquid nitrogen, and stored at −80°C. Each treatment was performed
using three biological replicates. For every sample, the total RNA
was extracted using TRIzol reagent (Invitrogen, United States)
according to the manufacturer’s instructions. Contaminating
genomic DNA was removed using RNase-free DNase I (TaKaRa
Biotechnology Co., Ltd., Dalian, China), and then, the quantity and
quality of RNA were assessed. RNA with high concentration,
integrity, and purity was chosen for cDNA library construction
and final Illumina sequencing at Novogene Bioinformatics
Technology Co., Ltd. (Beijing, China). The obtained cDNA was
then tested and sequenced on the Illumina HiSeq™ 4000 platform as
150-bp paired-end reads.

The adapters, primers, ambiguous “N” nucleotides, and low-
quality (50% of the bases had a quality value ≤5) sequences were
removed from the raw data to obtain clean reads. Then, the quality
of the clean reads was assessed by Q30 (percentage of bases with a

TABLE 1 Summary of the transcriptome of LH36vsCK36 and LH144vsCK144.

Sample Library Raw reads Clean reads Clean bases (G) Q30 (%) GC content (%)

LH36_1 FRAS210259905-1r 97,307,128 91,547,490 13.73 93.33 48.15

LH36_2 FRAS210259906-1r 94,644,560 90,998,532 13.65 93.2 46.61

LH36_3 FRAS210259907-1r 97,734,360 93,820,384 14.07 93.43 45.84

LH144_1 FRAS210259908-1r 93,791,202 91,461,146 13.72 93.01 45.82

LH144_2 FRAS210259909-1r 103,049,876 10,0721,280 15.11 93.63 44.24

LH144_3 FRAS210259910-1r 95,564,128 93,807,964 14.07 93.12 43.95

CK36_1 FRAS210259911-1r 93,592,914 91,906,106 13.79 92.52 44.32

CK36_2 FRAS210259912-1r 89,752,454 86,375,972 12.96 92.71 48.01

CK36_3 FRAS210259913-1r 101,765,194 97,638,290 14.65 93.37 47.7

CK144_1 FRAS210259914-1r 97,647,622 93,568,604 14.04 93.03 47.41

CK144_2 FRAS210259915-1r 87,894,578 82,166,954 12.33 93.16 47.88

CK144_3 FRAS210259916-1r 103,089,480 97,402,612 14.61 93.38 46.85

FIGURE 1
DEGs in LH36vsCK36 and LH144vsCK144.
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FIGURE 2
Secondary GO annotation of DEGs. (A) Top 20 functional enrichment DEGs in biological process, cellular component, and molecular function in
LH36vsCK36; (B) top 20 functional enrichment DEGs in biological process, cellular component, and molecular function in LH144vsCK144.

FIGURE 3
Top 20 pathways of KEGG enrichment of (A) LH36vsCK36; (B) LH144vsCK144.
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Phred value of at least 30), the GC content, and sequence duplication
level. The clean data were assembled into de novo contigs using
Trinity software (Grabherr et al., 2011). Subsequently, transcripts
were assembled and obtained by using the de Bruijn graph method.
Finally, unigenes were formed from the assembled transcripts using
the TGI Clustering tool (Quackenbush et al., 2001; Pertea et al.,
2003).

Annotations of all unigenes were performed using BLASTx
against a pooled database of the National Center for
Biotechnology Information non-redundant (NCBI-NR)
protein, UniProt, Gene Ontology (GO), and Kyoto
Encyclopedia of Genes and Genomes (KEGG) with an
E-value <10−5. The annotation of unigenes was obtained using
HMMER software (Eddy, 1998), and then, Gene Ontology (GO)
annotations were performed on all unigenes using Blast2GO.
Subsequently, WEGO was used to determine GO functional
classification and evaluate the distribution of gene functions at
the macro-level (Ye et al., 2006). Metabolic pathway annotations
for the unigenes were predicted based on the KEGG annotations
(Kanehisa et al., 2008).

Expression analysis by real-time
quantitative PCR

The expression of 28 tested genes related to the Toll signaling
pathway, Imd (immunodeficiency) signaling pathway, and JAK/
STAT (Janus kinase/signal transducer and activator of
transcription) signaling pathway was verified by real-time
quantitative PCR (qRT-PCR) with specific primers
(Supplementary Table S1). Tissue samples were collected from
the infected larvae of S. frugiperda at 12, 24, 36, 48, 60, 72, and
144 h after treatment with three biological replicates. A total of
10 annotated unigenes were selected randomly and quantified by
real-time quantitative PCR (qRT-PCR) with specific primers
(Supplementary Table S2) to verify the quality of the mRNA-
seq data and expression level. The total RNA of S. frugiperda was
extracted from samples from LH36, CK36, LH144, and
CK144 using the TRIzol method (TaKaRA, Japan). To obtain
the first-strand cDNAs, 1 μg of total RNA from the transcriptome
samples was reverse-transcribed in a 20-μL reaction system,
according to the manufacturer’s instruction (PrimeScript™ RT

FIGURE 4
Expression ratios of 10 genes in (A) LH36vsCK36; (B) LH144vsCK144. Note: The fold changes in the genes were calculated as the log2 value of each
comparison and are shown on the x-axis. Each error bar indicates the standard error with SEMs from the analysis of three replicates (p < 0.05).
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Reagent Kit, TaKaRa, Japan). qRT-PCR was performed using
LightCycler®480 SYBR Green I Master (Roche Diagnostics, Basel,
Switzerland) and run on the LightCycler®480 Real-time PCR
system (Roche Diagnostics Ltd.) according to the
manufacturer’s instructions. Each reaction was conducted in a
10-μL reaction system with 1 μL cDNA (2 ng/μL), 5 μL SYBR
Green I Master (LightCycler®480 SYBR Green I Master, Roche
Diagnostics Ltd., Lewes, United Kingdom), 0.5 μL/primer, and
3 μL ddH2O. The amplification conditions for qRT-PCR were as
follows: denaturation at 95°C for 5 min, followed by 40 cycles for
5 s at 95°C, 20 s at 60°C, and 20 s at 72°C. gapdh was used as the
internal reference gene, and each gene was tested in triplicate.
The relative expression levels of the candidate chemosensory
genes normalized to the internal control gene were calculated

using the 2−ΔΔCT method (Livak and Schmittgen, 2001). Analysis
of the relative gene expression data was carried out using real-
time quantitative PCR and the 2−ΔΔCT method.

The effect of signaling pathway inhibitors on
antifungal activity in S. frugiperda

The third-instar larvae were injected with the Toll inhibitor
(BAY 11-7082), Imd inhibitor (parthenolide), JAK/STAT
inhibitor mix (20 μM tyrphostin AG 490, Selleck Chemicals,
S1143; 5 μM nifuroxazide, Selleck Chemicals, S4182), heat-
inactivated B. bassiana conidial suspension, and 0.15 mol/L
NaCl solution (as the control), with a volume of 1 μL. A total

FIGURE 5
Expression patterns of Toll signaling pathway-related genes in S. frugiperda infected by B. bassiana.

FIGURE 6
Expression patterns of Imd signaling pathway-related genes in S. frugiperda infected by B. bassiana.
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of 60 larvae were injected in each treatment and performed in
triplicate. After 24 h, the injected S. frugiperda larvae were
submerged in B. bassiana conidial suspension (108 spores/mL,
with 1% penicillin–streptomycin) for 5 s and then reared with
fresh corn at 70% humidity and 26°C ± 2°C. The number of dead
larvae was recorded every 12 h. A lethal time of 50% (LT50) was
used to show the resistance of S. frugiperda larvae against B.
bassiana. LT50 and confidence intervals of 95% of each treatment
were analyzed and calculated using SPSS21.0.

Data accessibility

The Illumina reads of S. frugiperda were submitted to the NCBI
Short Archive (SRA) with BioProject PRJNA987447. Their
accession numbers are SAMN35982286, SAMN35982287,
SAMN35982288, and SAMN35982289.

Results

Overview of the transcriptome in S.
frugiperda

After removing the low-quality reads, trimming off the
adapter sequences, sequencing, and a subsequent quality
control process, a total of 1,155,833,496 raw reads and
1,111,415,334 clean reads were obtained from those
12 libraries. Furthermore, more than 160 Gb of clean data
were obtained. The Q20, Q30, and GC content of each library
were over 97.30%, 92.52%, and 43.95%, respectively (Table 1).
Unigenes obtained from these transcriptomes were annotated in
public databases, including the National Center for
Biotechnology Information non-redundant (NCBI-NR)
protein, Gene Ontology (GO), and Kyoto Encyclopedia of
Genes and Genomes (KEGG) databases. Based on the
annotated results of those transcriptomes, the unigene
annotation information from LH36vsCK36 and
LH144vsCK144 was selected and analyzed.

Differential gene expression analysis and
functional annotation

According to the statistical analysis, 2,767 and 2,892 DEGs were
identified in LH36vsCK36 and LH144vsCK144, respectively. In
LH36vsCK36, 1,541 DEGs were upregulated and 1,226 DEGs
were downregulated, while in LH144vsCK144, 1,261 DEGs were
upregulated and 1,631 DEGs were downregulated (Figure 1).

GO enrichment analyses for the DEGs were processed in
LH36vsCK36 and LH144vsCK144. A total of 623 and 670 DEGs
of LH36vsCK36 and LH144vsCK144 were enriched in GO
annotation under three main terms, respectively. In
LH36vsCK36, 338, 63, and 222 DEGs were enriched in
“biological process,” “cellular component,” and “molecular
function,” while in LH144vsCK144, 365, 63, and 241 DEGs were
enriched, respectively (Figure 2). A corrected p-value <1 was used to
screen the significantly enriched GO terms, and the up- and
downregulated DEGs in significantly enriched GO terms in
LH36vsCK36 and LH144vsCK144 were statistically analyzed.

From the KEGG enrichment results, the most significant
20 KEGG pathways were selected to draw a scatter plot. In
LH36vsCK36, the DEGs were mainly enriched in the
“biosynthesis of cofactors” and “carbon metabolism,” followed by
“fatty acid metabolism,” “metabolism of xenobiotics by cytochrome
P450,” and “drug metabolism—cytochrome P450,” while in
LH144vsCK144, the DEGs were mainly enriched in the
“biosynthesis of cofactors,” “lysosome,” and “drug
metabolism—other enzymes,” followed by “drug
metabolism—cytochrome P450,” “metabolism of xenobiotics by
cytochrome P450” and “retinol metabolism” (Figure 3).

Validation of DEG data by qRT-PCR

A total of 10 unigenes were randomly selected for qRT-PCR to
confirm the result of the DEG expression using Illumina sequencing
in LH36vsCK36 and LH144vsCK144, respectively. Data were
presented as log2 values of fold changes in gene expression,
normalized to gapdh relative to each sample. In LH36vsCK36,

FIGURE 7
Expression patterns of JAK/STAT signaling pathway-related genes in S. frugiperda infected by B. bassiana.
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the qRT-PCR results supported the data obtained by DEG analysis
(Figure 4). In LH144vsCK144, the results of the changing trend of
qRT-PCR underpinned the reliability of the DEG results.

Expression patterns of factors related to the
Toll signaling pathway in S. frugiperda
infected with B. bassiana

Sfruspatzle is an extracellular ligand protein of Toll-like
receptors (TLRs). The qPCR result revealed that after being

infected with B. bassiana, the relative expression of Sfruspatzle
was slightly upregulated in the early stage of infection, while it
was sharply upregulated 48 h after infection (Figure 5). The
expression patterns of different Toll receptor genes showed
significant differences. After being infected with B. bassiana, in S.
frugiperda, the peaks of relative expression of Sfrutoll3 occurred at
24, 48, and 144 h; those of Sfrutoll6 occurred at 12 and 36 h; those of
Sfrutoll7 appeared at 12 and 60 h; those of Sfrutoll18w occurred at
48 and 72 h; and Sfrutollo showed a high relative expression from
12 to 60 h (Figure 5).

The cytoplasmic signal transduction factors, including Sfrutube,
Sfrupell, Sfrumyd88, Sfrucactus, and Sfrudif, have become the core
signal transfer factors in the Toll signaling pathway. The relative
expression of Sfrutube was significantly upregulated within 48–60 h
after infection; the relative expression of Sfrucactus was upregulated
and peaked within 60–72 h after infection; the relative expression of
Sfrupell and Sfrumyd88 peaked at 36 and 48 h, respectively
(Figure 5); and there was no significant change in the relative
expression of Sfrudif throughout the infection stage. These results
suggest that there may be different regulatory modes of intracellular
signal transduction factors in the Toll signaling pathway of S.
frugiperda to conduct an immune response against B. bassiana
infection.

Expression patterns of factors related to the
Imd signaling pathway in S. frugiperda
infected with B. bassiana

In this study, the expression patterns of three signal factors
associated with Imd signaling pathways were detected after
infection by B. bassiana. After infection with B. bassiana, the
expression of related factors of the Imd signaling pathway was
changed, and there were significant differences in expression
patterns. The relative expression of Sfrufadd and Sfrupgrp-lb all
showed a trend of upregulating and then downregulating, and
they reached the peak at 60 and 72 h after infection with B.
bassiana, respectively, and then downregulated. On the other
hand, the relative expression of Sfrurelish2 was significantly
upregulated from 48 to 60 h after being infected with B.
bassiana, and in other infection stages, it showed no
significant differences (Figure 6).

Expression patterns of factors related to the
JAK/STAT signaling pathway in S. frugiperda
infected with B. bassiana

In the JAK/STAT signaling pathway, STAT is the core signal
transduction factor that is the pattern recognition receptor which
can recognize the β-l,3-glucan of fungi (the main component of
the fungal cell wall) and lead to the subsequent immune response.
When S. frugiperda was infected with B. bassiana, both Sfructl4
and Sfrustat5B showed a significantly upregulated pattern at
72 and 144 h (Figure 7); Sfrusocs2, Sfrusocs4, Sfrusocs5,
Sfrutab1, and Sfruken are negative regulatory factors of the
JAK/STAT signaling pathway, but the mode of regulation
remains unclear. After infection with B. bassiana, the

FIGURE 8
Effects of signaling pathway inhibitors on resistance of S.
frugiperda larvae against B. bassiana infection. (A) Test with the Toll
signaling pathway inhibitor; (B) test with the Imd signaling pathway
inhibitor; and (C) test with JAK/STAT signaling pathway
inhibitor mix.
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expression patterns of these five regulatory factors were
significantly different. The relative expression levels of
Sfrusocs2 and Sfrusocs4 presented a similar trend during the
whole infection stages; Sfrusocs5 was significantly upregulated
48 h after infection with B. bassiana and peaked at 60 h; and the
relative expression levels of Sfrutab1 were significantly
upregulated at 24 and 48 h (Figure 7).

The effect of signaling pathway inhibitors on
the survival rate of S. frugiperda infected
with B. bassiana

In order to confirm the functions of Toll, Imd, and JAK/STAT
signaling pathways in S. frugiperda against B. bassiana infection,
the effect of signaling pathway inhibitors on the survival rate of S.
frugiperda infected by B. bassiana was tested. The results showed
that dead larvae could be found earliest at 48 h and overgrown by
the fungus approximately 144 h after injection. In Figure 8,
compared to the control group, the survival rate curve was
significantly shifted leftward in the group injected with
inhibitors (Figure 8). Moreover, the LT50 analysis confirmed
this observation. As shown in the tables, LT50 of the group
injected with the Toll inhibitor was 20 h less than that of the
control group (Supplementary Table S3); LT50 of the group
injected with the Imd inhibitor was 21 h less than that of the
control group (Supplementary Table S4); and LT50 of the group
injected with the JAK/STAT inhibitor mix was 24 h less than that
of the control group (Supplementary Table S5), indicating that the
inhibition of Toll, Imd, and JAK/STAT signaling pathways could
accelerate the pathogenicity of B. bassiana against S. frugiperda.

Expression patterns of some genes of
antibacterial peptides in S. frugiperda
infected with B. bassiana

The relative expression levels of five genes of antibacterial
peptides, Sfrugloverin, Sfrucecropin, Sfrulebocin, Sfrulysozyme, and
Sfruattacin, were analyzed. Sfrugloverin and Sfrulysozyme showed a
similar relative expression trend; they all showed relative high
expression from 24 to 72 h after being infected with B. bassiana;
the relative expression of Sfrucecropin and Sfruattacin was first
upregulated, then downregulated and again upregulated, and
again downregulated; and the relative expression of Sfrulebocin
showed the highest relative expression at 36 h after being infected
with B. bassiana (Figure 9).

Discussion

In this study, the transcriptome of S. frugiperda infected with B.
bassiana was analyzed using Illumina HiSeq™ 4000 technology.
More than 160 Gb of clean data were obtained. Different DEGs were
identified in LH36vsCK36 and LH144vsCK144 libraries, and the
upregulated and downregulated genes also showed differences,
which might be attributed to the length of time that S. frugiperda
was infected with B. bassiana. This transcriptome sequencing
dataset provides a repository for future studies on the interaction
mechanism between S. frugiperda and B. bassiana.

Insects defend against pathogens, such as bacteria, fungi, and
viruses, via some evolutionarily conserved signaling pathways,
including Toll, Imd, and JAK/STAT (Janeway and Medzhitov,
2002; Nakamoto et al., 2012). These pathways are based on

FIGURE 9
Temporal expression patterns of AMPs in the S. frugiperda larvae induced by B. bassiana.
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different pattern recognition receptors (PRRs) which recognize
characteristic molecules of pathogens and then induce
downstream effectors against viral infection (Kumar et al., 2009;
Palmer et al., 2018). The Toll signaling pathway is a classical
signaling pathway of insect innate immunity. It has been
reported that the Toll signaling pathway is activated by fungi and
Lys-type peptidoglycan (PG) of Gram-positive bacteria via
peptidoglycan recognition protein (PGRP)-SA, PGRP-SD, and
Gram-negative binding protein 1 (GNBP1) (Michel et al., 2001;
Gobert et al., 2003; Bischoff et al., 2004; Kiyoshi and Shizuo, 2013).
In this study, we investigated the role of five Toll-like receptors
(TLRs) (Sfrutollo, Sfrutoll3, Sfrutoll6, Sfrutoll7, and Sfrutoll18w), five
cytoplasmic signal transduction factors (Sfrumyd88, Sfrupell,
Sfrutube, Sfrucactus, and Sfrudif), and Sfruspatzle in the Toll
signaling pathway in S. frugiperda against B. bassiana infection.
The Toll pathway is activated by the activation of Spätzle (Spz), the
Toll receptor ligand (Morisato and Anderson, 1994; Schneider et al.,
1994).

The relative expression levels of Toll-like receptors (Sfrutollo,
Sfrutoll3, Sfrutoll6, Sfrutoll7, and Sfrutoll18w) and Sfruspatzle,
Sfrumyd88, Sfrutube, and Sfrupell all showed a significant
upregulation at 36 or 48 h after infection, indicating that the Toll
signaling pathway of S. frugiperda was activated after B. bassiana
infection and the relative high expression of their corresponding
proteins. We speculated that this might be related to the formation
of a receptor-proximal oligomeric complex assembled by proteins
Spz, Toll receptors and MyD88, Tube, and Pelle, and this complex
will further trigger the phosphorylation and regulation of expression
of different antimicrobial peptides (AMPs) (Towb et al., 2001). The
relative expression levels of Sfrutollo, Sfrutoll6, and Sfrutoll7
presented a similar trend, which could be supported by the
previous research on Bombyx mori (Imamuraand and Yamakawa,
2002; Mita et al., 2004), while the relative expression levels of
Sfrutoll3 and Sfrutoll18w showed a difference. The variations in
the expression levels of S. frugiperda TLRs after B. bassiana infection
suggested that S. frugiperda TLRs might play different roles in
antifungal immune responses, and the cytoplasmic signal
transduction process of the Toll signaling pathway in S.
frugiperda had a complex regulatory mechanism, which needed
to be further studied.

In order to further verify the role of the Toll signaling pathway in
defense against B. bassiana in S. frugiperda, the antifungal activity in
vivo was conducted by inhibition assay. The result showed that BAY
11-7082 increased the sensitivity of S. frugiperda to B. bassiana
infection and decreased the antifungal activity of the hemolymph of
S. frugiperda, suggesting that the Toll signaling pathway plays a
crucial role in the synthesis of antifungal substances against B.
bassiana infection.

The Imd signaling pathway is one of the important signaling
pathways in the insect innate immune system. The activated Imd
protein acts on TAK 1, which then sends immune signals to IKKs
that activate Relish. The activated Relish proteins enter the nucleus
to regulate the transcription of target genes such as antimicrobial
peptides. It is generally believed that in Drosophila, the Imd
pathway is activated by meso-diaminopimelic acid (DAP)-type
PG of Gram-negative bacteria and some bacilli species (Choe et al.,
2002; Gottar et al., 2002; Gobert et al., 2003; Kaneko et al., 2004b),
while the results of this experiment show that the Imd signaling

pathway of S. frugiperda is different from that of Drosophila
(Zhong et al., 2012). In our study, the relative expression levels
of Sfrufadd, Sfrupgrp-lb, and Sfrurelish2 all presented a gradual
upregulated trend after infection with B. bassiana, suggesting that
B. bassiana could activate the Imd signaling pathway in S.
frugiperda. In a previous study on B. mori, Staphylococcus
aureus, Escherichia coli, and B. bassiana were all able to
activate the Imd signaling pathway (Cheng et al., 2006). A
relatively high expression level of Sfrulysozyme was observed at
24 h after infection by B. bassiana, which was also found in the
previous research on Galleria mellonella larvae (Wojda and
Jakubowicz, 2007). The variation in the trend of the relative
expression level of the rest of the AMP genes in S. frugiperda
was similar to that in B. mori in a previous study (Geng et al.,
2016), indicating that they might act as antifungal effectors in S.
frugiperda. The upregulated expression of antimicrobial peptide
genes may be due to the active regulation of S. frugiperda
antimicrobial peptide expression by B. bassiana to inhibit the
growth of other bacteria to protect its own nutritional and
parasitic requirements (Lee et al., 2005).

The JAK/STAT signaling pathway, which is involved in the
regulation of a variety of important physiological processes, is the
key signal pathway of immune regulation (Brivanlou et al., 2002b).
STAT is the core signal transduction factor of the JAK/STAT
signaling pathway, and CTL is a pattern recognition receptor that
recognizes fungal β-l,3-glucan (a major component of the fungal
cell wall) and guides subsequent immune responses. After
infection with B. bassiana, the relative expression pattern of
Sfructl4 was synchronized with that of Sfrustat5B, indicating
that in S. frugiperda, the JAK/STAT signaling pathway was
activated after infection with B. bassiana, and Sfructl4 and
Sfrustat5B might play an important role in antifungal immune
response (Liu et al., 2015). At the later stage of infection progress,
Sfrustat5B was upregulated, which might be due to the production
of a large number of spores and vegetative hyphae in the late stage
of infection, and β-l,3-glucan, the main component of the fungal
cell wall, may induce stronger immune responses in S. frugiperda.
SOCS and Ken are negative regulators of the JAK/STAT signaling
pathway. SOCS inhibits the activity of JaK kinase or cytokine
receptor (such as STAT) (Cooney, 2002), and Ken selectively
regulates the expression of some target genes (Arbouzova et al.,
2006). In this study, the relative expression of Sfrusocs2, Sfrusocs4,
Sfrusocs5, and Sfruken was maintained at a low level in the early
stages of infection progress, suggesting that these genes might be
involved in the immune response in S. frugiperda infected by B.
bassiana, which indicates that S. frugiperda could activate JAK/
STAT-mediated immune responses by downregulating the
repressors Sfrusocs2, Sfrusocs4, Sfrusocs5, and Sfruken (Kausar
et al., 2022). The result of the antifungal activity in vivo
experiment showed that, compared with the control group, the
test group (injected with inhibitors) had a lower survival rate and a
20 h reduction in LT50. So the JAK/STAT signaling pathway might
regulate the synthesis of antifungal substances in S. frugiperda,
which further indicates that the JAK/STAT signaling pathway
plays an important role in the resistance of S. frugiperda to B.
bassiana infection. However, there are also complex regulatory
mechanisms in the JAK/STAT signaling pathway, which need to be
further studied.
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AMPs play an irreplaceable role in the process of innate immunity
in insects, and a wide range of antimicrobial peptides display both
antibacterial and antifungal functions (Goto et al., 2001; Cerenius et al.,
2010; Loof et al., 2011; Browne et al., 2013; Ragland and Criss, 2017;
Sheehan et al., 2020). In this study, the relative expression of
Sfrulysozyme showed a high level from 24 to 72 h after infection by
B. bassiana (Figure 9); a similar finding was also found in a previous
study onG.mellonella larvae (Wojda and Jakubowicz, 2007), suggesting
that it might be an antifungal function in S. frugiperda. The relative
expression of Sfrucecropin, Sfruattacin, Sfrugloverin, and Sfrulebocin all
showed upregulated expression patterns to a varying degree after S.
frugiperda was infected with B. bassiana, indicating that these
antimicrobial peptides were involved in the immune response of S.
frugiperda to B. bassiana infection.

In summary, the different expression patterns of Toll, Imd, and
JAK/STAT signaling pathway-related genes revealed their different
and specific functions in immune signal transduction in S.
frugiperda. Further studies are needed to investigate the
resistance mechanism of S. frugiperda to pathogenic
microorganisms. This study not only lays a solid foundation for
the research and development of new fungal agents to control S.
frugiperda and other pests but also provides an important scientific
basis for the development and use of new biocontrol agents.
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