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Introduction: The apnea-hypopnea index (AHI), defined as the number of apneas
and hypopneas per hour of sleep, is still used as an important index to assess sleep
disordered breathing (SDB) severity, where hypopneas are confirmed by the
presence of an oxygen desaturation or an arousal. Ambulatory polygraphy
without neurological signals, often referred to as home sleep apnea testing
(HSAT), can potentially underestimate the severity of sleep disordered
breathing (SDB) as sleep and arousals are not assessed. We aim to improve the
diagnostic accuracy of HSATs by extracting surrogate sleep and arousal
information derived from autonomic nervous system activity with artificial
intelligence.

Methods: We used polysomnographic (PSG) recordings from 245 subjects
(148 with simultaneously recorded HSATs) to develop and validate a new
algorithm to detect autonomic arousals using artificial intelligence. A clinically
validated auto-scoring algorithm (Somnolyzer) scored respiratory events, cortical
arousals, and sleep stages in PSGs, and provided respiratory events and sleep
stages from cardio-respiratory signals in HSATs. In a four-fold cross validation of
the newly developed algorithm, we evaluated the accuracy of the estimated
arousal index and HSAT-derived surrogates for the AHI.

Results: The agreement between the autonomic and cortical arousal index was
moderate to good with an intraclass correlation coefficient of 0.73. When using
thresholds of 5, 15, and 30 to categorize SDB into none, mild, moderate, and
severe, the addition of sleep and arousal information significantly improved the
classification accuracy from 70.2% (Cohen’s κ = 0.58) to 80.4% (κ = 0.72), with a
significant reduction of patients where the severity category was underestimated
from 18.8% to 7.3%.

Discussion: Extracting sleep and arousal information from autonomic nervous
system activity can improve the diagnostic accuracy of HSATs by significantly
reducing the probability of underestimating SDB severity without compromising
specificity.
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1 Introduction

Polysomnography (PSG) is the gold standard to assess sleep as well
as associated events. Polygraphy (PG) refers to a recording setup without
neurological signals, often limited to respiration, pulse-oximetry, and
body movements, and is an often-used tool for confirming suspected
obstructive sleep apnea (OSA) in adults (Rosen et al., 2018). These
ambulatory devices are often referred to as home sleep apnea tests
(HSATs). Studies comparing HSATs to simultaneously recorded in-lab
PSG suggest that these polygraphic devices can achieve good
performance for the categorization of sleep disordered breathing
(SDB) severity, especially when compared to the interscorer
variability amongst manual experts scoring PSG. A systematic review
of 59 studies evaluating the diagnostic accuracy of portable sleep tests
without neurological signals compared to polysomnography including
neurological channels concluded that HSATs are an appropriate
diagnostic tool for adults with a high pretest probability of moderate
to severe OSA (El Shayeb et al., 2014). However, they also highlight that
the severity of mild and moderate SDBmight be underestimated, which
may impact the subsequent treatment plan (Bianchi andGoparaju, 2017;
Massie et al., 2018; Van Pee et al., 2022).

The apnea-hypopnea index (AHI), calculated as the number of
apneas and hypopneas per hour of sleep, is the primary measure for
quantifying SDB severity in clinical practice. Diagnostic thresholds of 5,
15, and 30 events per hour are recommended to discriminate between
no, mild, moderate, and severe OSA (Epstein et al., 2009). In full PSGs,
the AHI can be considered to be a very robust measure with high inter-
scorer agreement, with reported intraclass correlation coefficients
(ICCs) across independent manual scorings between 0.84 and 1.00,
depending on the applied hypopnea scoring rules (Kuna et al., 2013;
Magalang et al., 2013; Malhotra et al., 2013; Punjabi et al., 2015; Massie
et al., 2018; Van Pee et al., 2022). Historically, different hypopnea
scoring criteria have been defined, requiring flow amplitude reductions
of 30 or 50 percent, confirmation by 3% or 4% relative desaturations,
confirmationwith orwithout arousals, and sometimes evenwithout any
additional confirmation if the amplitude reduction was at least
50 percent (AASM, 1999; Iber et al., 2007; Berry et al., 2012). The
impact of applying different hypopnea scoring rules on the diagnostic
outcome has been studied in previous work, suggesting that using
arousal events for the scoring of hypopneas facilitates the identification
and treatment of a wider spectrum of symptomatic patients without a
significant loss of scoring reliability (Ruehland et al., 2009; Berry et al.,
2012; Anderer et al., 2022). Therefore, in 2012, the American Academy
of Sleep Medicine (AASM) revised the recommended scoring rule for
hypopneas in PSG recordings of adults: a respiratory event shall be
scored as hypopnea if there is a 30% reduction in peak signal excursions
from the pre-event baseline in the respiratory flow signal for at least 10 s
and there is a ≥3% oxygen desaturation from pre-event baseline or the
event is associated with an arousal (Berry et al., 2012). This limits the
applicability of the rule to PSG recordings because neurological signals,
required to score cortical arousals, are typically not collected during
HSATs. In fact, the crucial role of cortical arousals (to confirm
hypopneas) and of sleep scoring (to obtain total sleep time required
to calculate AHI) underpins the limited capability of HSATs to assess
mild and moderate SDB.

Recently, artificial intelligence-based classifiers achieved remarkable
results in classifying sleep from cardio-respiratory signals like
photoplethysmography (PPG) and respiratory effort/flow or

peripheral-arterial tonometry (PAT), effectively enabling the scoring
of sleep inHSAT recordings without neurological signals (Hedner et al.,
2011; Beattie et al., 2017; Li et al., 2018; Radha et al., 2019; Fonseca et al.,
2020; Sun et al., 2020; Bakker et al., 2021). Although these algorithms do
not yet reach the accuracy of sleep staging using neurological signals, it
has been shown that they can provide accurate estimates of the total
sleep time as well as of REM sleep periods. It thus follows that these
surrogate estimations help improve the diagnostic sensitivity of HSATs
for detecting sleep disordered breathing and can even enable the
detection of REM-related OSA (Bakker et al., 2021; Massie et al.,
2022). Similarly, advances were made in the detection of autonomic
arousals in HSATs as a surrogate for cortical arousals. Using PAT, or
electrocardiography, good agreement in the detection of arousals is
achieved (Pillar et al., 2002; Olsen et al., 2018; Li et al., 2020). A first
device that uses autonomic arousals to aid the detection of respiratory
events is already available (Massie et al., 2018).

In this study, we evaluated the effect of applying the
recommended scoring rules for respiratory events as defined for
PSG, but based on signals acquired solely with HSATs instead. We
used a previously developed cardio-respiratory sleep staging
algorithm to obtain a surrogate measure of total sleep time and
developed a new artificial neural network to detect autonomic
arousals from photoplethysmography (PPG) and respiratory flow.
We evaluated the performance of our autonomic arousal detection
for estimating the arousal index and the AHI estimation as
compared to gold standard PSG. Subsequently, we assessed the
impact of adding sleep and arousal estimation on the SDB severity
classification performance in polygraphic recordings.

2 Materials and methods

2.1 Datasets

To analyze the effect of autonomic arousal detection on the
diagnostic accuracy of HSATs, acquisitions from two databases were
combined to train an artificial neural network to detect autonomic
arousals.

The first database, called Somnoval, has been previously used to
validate the Somnolyzer auto-scoring system (Punjabi et al., 2015). It
consists of 97 routine in-lab PSG recordings of patients referred to
three different sleep laboratories. Each PSG recording was scored
independently for sleep stages, arousals, and respiratory events by
four registered polysomnographic technologists (RPSGTs)
according to the version 1.0 of the AASM scoring guidelines. The
data consisted of approximately one-third diagnostic studies, one-
third positive airway pressure (PAP) titration studies, and one-third
split nights where the first portion of the recording contains a
diagnostic montage confirming OSA while the second portion of the
night is used for PAP titration. The study protocol was approved by
the institutional review board of each clinical site. We artificially
created HSAT recordings by copying a limited set of channels that
would typically be available in a HSAT (respiratory flow, thoracic
effort, SpO2, snoring, pulse rate, body position, raw PPG). Only one
flow signal was retained when creating the reduced (HSAT) versions
of the PSG studies: the nasal pressure flow in diagnostic nights and
for the first portion of split nights, and the treatment device flow
during titration nights and the second portion of split nights.
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The second database, called Somnapatch, consisted of
190 acquisitions with full PSG and simultaneously recorded
HSAT using a shared nasal canula. We used the pressure flow
signals sampled at 100 Hz for exact time-alignment of the parallel
recordings, correcting for clock shift and clock drift using cross-
correlation between the two recordings in moving windows. We
excluded all recordings where the quality of one or both pressure
flow signals was too low to reliably determine the clock shift and
clock drift for the entire recording. Twelve acquisitions were
excluded due to missing data or bad data quality and another
thirty recordings were excluded because the time-alignment
between the PSG and the HSAT recordings was not reliably
possible, resulting in a total number of 148 recordings from this
database that were used in the present study. Informed consent was
obtained during the first visit of each participant, prior to the
monitoring night.

2.2 Scoring of PSG recordings

To obtain ground-truth scorings following the latest standards,
sleep stages, cortical arousals, and respiratory events were scored
with the Somnolyzer auto-scoring system embedded as an optional
component in Sleepware G3 version 4.0.2.0 for all PSG recordings
according to the sleep and sleep disordered breathing scoring rules
recommended in the AASM manual version 2.6 (Berry et al., 2020).
Somnolyzer has recently been validated and shown to be non-
inferior to manual expert scoring regarding sleep stages (Bakker
et al., 2023), as well as the apnea-hypopnea index (AHI) and the

arousal index (ArI) (Anderer et al., 2022). Therefore, the
Somnolyzer auto-scoring system has been cleared by the U.S.
Food & Drug administration to be used with adults to generate
an output that is ready for review and interpretation by a physician
(510K number: K202142). Hypopneas were confirmed by three
percent relative oxygen desaturations and/or cortical arousals. In
full PSG recordings, sleep stages and arousals were derived from
neurological signals using all frontal, central, occipital EEG, both
EOG, and the chin EMG channels. We determined the reference
(cortical) arousal index (ArI) and the AHI from full PSG recordings
based on these Somnolyzer scorings.

2.3 Detection of autonomic arousals using
artificial intelligence

A deep convolutional neural network was developed to detect
autonomic arousals using the raw PPG signal and the respiratory
flow signal as inputs. The model consists of three modules that are
illustrated in Figure 1A. All parts of the model use residual
convolutional network blocks as illustrated in Figure 1B, which
successively increase the feature complexity while reducing temporal
resolution.

The design of the residual convolutional blocks was inspired by
the encoder portion of the atrous spatial pyramid pooling scheme
presented in Chen et al. (2017). One-dimensional convolutions
extract local temporal context information to enrich the extracted
features for each point in time. The dilation rate of a convolutional
layer controls howmany input time steps are skipped by this layer to

FIGURE 1
Architecture overview of the autonomic arousal detection model. Panel (A) provides an overview over the architecture of the autonomic arousal
detectionmodel developed in the present study. There are two feature extractionmodules that extract cardiac features from the photoplethysmography
signal and respiratory features from the respiratory flow signal. The cardiac and respiratory features are combined and used as input for the final arousal
detection module which generates an arousal probability sampled at 2 Hz. All parts of the model use residual convolutional network blocks as
illustrated in panel (B) to successively increase the feature complexity while reducing temporal resolution.
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allow for sparser representations of a larger temporal context. For
example, a dilation rate of two implies that the convolutional layer
only looks at every second sampling point. In the residual
convolutional blocks of our model, multiple one-dimensional
convolutions with small kernels and exponentially increasing
dilation rates were stacked to extract features from a large
temporal context with a relatively small set of network
parameters. Finally, a dense layer was used to create a more
compact representation of these features, and a maximum
pooling layer reduces the temporal resolution. We stacked
residual convolutional blocks in each module to convert the raw
input signals to rich feature sets sampled at the desired output
sampling rate (i.e., 2 Hz).

The first module consists of a cardiac feature extraction module
and comprises four residual convolutional blocks followed by three
dense layers, developed to estimate instantaneous heart rate (IHR) at
a sampling rate of 2 Hz. In the present study, we used PPG as input,
resampled to 100 Hz and pre-processed with a 0.3 Hz high pass
filter. The second module comprises a single residual block which
uses the respiratory flow resampled at 10 Hz and high pass filtered
with a cut-off frequency of 0.03 Hz as input. Both feature extraction
modules produce feature sets sampled at 2 Hz. The final arousal
detection module comprises 3 residual blocks without any further
temporal pooling to produce features also sampled at 2 Hz. Finally,
2 dense layers are used to convert the features into a single arousal
event probability with values between 0 and 1. The entire network
uses a temporal context of approximately ±45 s to determine the
arousal probability at each point in time.

First, the cardiac feature extraction module was trained
separately with an additional data augmentation step, where
inputs were temporally stretched and squeezed within a
predefined range to cover a wide range of possible heart rates.
The target for training this module consisted of IHR derived from
parallelly recorded ECG data from the full PSG using the R-peak
localization algorithm developed by Fonseca et al. (2014). Although
we used PPG in this study, we deliberately chose to use IHR as the
only cardiac feature in the arousal detection model in order for the
final algorithm to be agnostic regarding the actual cardiac input
signal, which can also be ECG or any other cardiac sensor modality.
Afterwards, the entire model was trained end-to-end using cortical
arousals as the target. During this second training phase, the
parameters of the cardiac feature extraction module obtained in
the initial training phase were fixed. The training targets were
sequences sampled at 2 Hz containing the scorings of cortical
arousals.

The output of the model can be interpreted as a continuous
arousal probability sampled at 2 Hz (i.e., a temporal resolution of
0.5 s). Consecutive sequences of output samples where the arousal
probability exceeded a threshold for at least 2 s were considered as
part of (individual) autonomic arousal events.

The dataset contained only one recording per subject and was
split into four folds containing 25% of the subjects of each database.
Subject selection was performed using pseudo-random sampling
without replacement, using a fixed seed to guarantee reproducibility.
Four-fold cross-validation was performed by iteratively and
sequentially combining three folds as training set—used to train
the neural network—and evaluating its performance on the data of
the remaining validation fold, which was never used in the same

iteration to fit, tune or otherwise adjust any parameter of the model
for that iteration. The threshold used to detect autonomic arousal
events from the output probabilities was chosen individually for
each of the four models (one per iteration) by maximizing the F1-
score for the detection of arousals on the corresponding training set.

2.4 Scoring of sleep and autonomic arousals
in HSAT recordings

In HSAT recordings, we used the clinically validated cardio-
respiratory sleep staging (CReSS) algorithm as published in Bakker
et al. (2021) to infer sleep stages and total sleep time. Autonomic
arousals were detected using our novel artificial neural network.
Using cross-validation as described, autonomic arousals were always
scored with the model that had been trained without any data from
the current subject (i.e., when that subject was part of the validation
fold). Respiratory events were also detected using the Somnolyzer
auto-scoring algorithm.

We calculated three different HSAT-derived surrogates for the
AHI. The first estimate corresponds to the traditionally reported
respiratory event index (REIHSAT), which uses the entire monitoring
or recording time as its denominator and does not consider
autonomic arousals for the confirmation of hypopneas. As such,
the respiratory event index was calculated as the number of apneas
and hypopneas (confirmed by oxygen desaturations ≥3%) scored
per hour of recording time. The second estimate (AHICReSS) uses
sleep stages estimated by the CReSS algorithm to filter respiratory
events that were scored during wakefulness: it uses the accurate
estimate of total sleep time derived from the cardio-respiratory sleep
staging and was calculated as the number of apneas and hypopneas
(confirmed by oxygen desaturations ≥3%) scored during sleep, per
hour of sleep as determined by CReSS. Finally, the third estimate
(AHICReSS+AutAr) considers the CReSS-derived sleep-wake
information and additionally uses autonomic arousals to score
hypopneas: it was scored as the number of apneas and
hypopneas (confirmed by oxygen desaturations ≥3% or
autonomic arousals) scored during sleep per hour of sleep as
determined by CReSS.

2.5 Events in wakefulness

Events during wakefulness should not be considered for the
calculation of event indices. Apneas and hypopneas were counted if
they overlapped with a sleep epoch. We considered cortical and
autonomic arousals if they started during sleep or within the first or
last 15 s of a wake period. The tolerance of 15 s was introduced to
also capture arousals that led to awakenings.

2.6 Statistical analyses

2.6.1 Comparison of the autonomic arousal index
To assess the agreement between the HSAT-derived autonomic

arousal index (AutArI) as the number of autonomic arousals per
hour of sleep as determined by CReSS and the arousal index (ArI)
derived from the PSG, we generated scatter plots, calculated the
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intraclass correlation coefficient (ICC) of absolute agreement with
its 95% confidence interval, generated Bland-Altman plots, and
calculated the bias and levels of agreement with 95% confidence
intervals. Furthermore, we replicated the receiver-operating
characteristic (ROC) analysis used by Pillar et al. (2002) and
generated a precision-recall curve to assess the autonomic arousal
index’s performance in detecting a pathological ArI ≥20 by varying
the threshold for the autonomic arousal index.

2.6.2 Comparison of the apnea-hypopnea index
To compare HSAT-derived surrogate measures to the ground-

truth AHIPSG, we generated scatter plots and calculated the intraclass
correlation coefficient (ICC) of absolute agreement with 95%
confidence intervals (Koo and Li, 2016). Furthermore, we
generated Bland-Altman plots and calculated the bias and levels of
agreement with 95% confidence intervals (Bland and Altman, 1999).

2.6.3 Evaluation of SDB classification performance
To demonstrate the effects of using different AHI surrogates, we

provided confusion tables for the categorization of SDB into None
(AHI <5), Mild (5≤ AHI <15), Moderate (15 ≤ AHI < 30), and
Severe (AHI ≥30). We calculated accuracy, sensitivity, specificity,
positive likelihood ratio (LR+), negative likelihood ratio (LR-), and
the Cohen’s κ for detecting an AHI greater than or equal to
thresholds of 5, 15, or 30. Furthermore, we calculated the
Cohen’s κ, the accuracy for all 4 classes combined, and the
fraction of subjects where SDB severity was under- or
overestimated. We tested for statistically significant differences
between the performance of the AHICReSS and the REI, as well as
between the AHICReSS+AutAR and the REI. Following the guidelines
for statistical testing in clinical trials presented by Kishore and
Mahajan (2020), we used two-sided 95% confidence intervals and
p-values to determine which metrics differed significantly. For
binomial proportions, confidence intervals were estimated
(accuracy, sensitivity, specificity, fraction of under- or
overestimated SDB severity) using the Wilson Score interval with
continuity correction (Newcombe, 1998). We used the method
proposed in Simel et al. (1991) to estimate confidence intervals
for likelihood ratios. The formula for estimating confidence intervals
for Cohen’s κ coefficients was provided by Cohen himself (Cohen,
1960). Given an acceptable false detection rate of 5%, we applied the
Benjamini-Yekutieli procedure to all tests regarding the AHICReSS as
well as to all tests regarding the AHICReSS+AutAr to control the false
discovery rate in multiple tests under arbitrary dependency
(Benjamini and Yekutieli, 2001). The procedure resulted in
thresholds of 0.0012 and 0.0062 for p-values for tests regarding
the AHICReSS and the AHICReSS+AutAr, respectively.

3 Results

A total number of 245 subjects were included in this study.
Table 1 summarizes the demographic information and the
distribution of SDB severity for the two databases. Furthermore,
the distributions of the obstructive apnea index (OAI) and the
central apnea index (CAI) as the number of obstructive or
central apneas per hour of sleep is provided to illustrate that
obstructive and central apnea patients are both well represented

in the data. Further information about clinical co morbidities of the
patients was not available.

3.1 Comparison of the autonomic arousal
index

Figure 2 compares the HSAT-derived autonomic arousal index
(AutArI) to the gold-standard arousal index (ArI) derived from
PSG. The Intra-class correlation coefficient was 0.73 with a 95%
confidence interval of (0.67, 0.78) and a bias in the estimation of the
arousal index of −0.2 events/hour with a 95% CI of (−1.8, 1.3). The
levels of agreement and their respective 95% confidence intervals
were −24.1 (−26.8, −21.5) and 23.7 (21.1, 26.3) events/hour. We
assessed the autonomic arousal index’s diagnostic ability for
detecting an ArI ≥20 (134 out of the 245 subjects in the
database) with a receiver-operating characteristic (ROC) curve,
achieving an area under the ROC curve of 0.83, and a precision-
recall (PR) curve, achieving an area under the PR curve of 0.84.

3.2 Comparison of the apnea-hypopnea
index

Figure 3 illustrates the comparison of HSAT-derived surrogates
to the gold standard AHIPSG for all 245 studies. Using the respiratory
event index reflecting the number of events per hour of monitoring
time (REIHSAT) resulted in an intra-class correlation coefficient of
0.86 with a 95% confidence interval (CI) of (0.80, 0.90) and a mean
difference (bias) of −4.0 events/hour with a 95% CI of (−5.3, −2.7).
When cardio-respiratory staging was used to estimate total sleep
time and to remove false positive events during wakefulness
(AHICReSS), the ICC improved to 0.93 with a 95% CI of (0.90,
0.94) and the bias to −2.0 events/hour with a 95% CI of (−3.1, −1.0).
Finally, by additionally scoring autonomic arousals and confirming
hypopneas associated with them (AHICReSS+AutAr), the ICC was
further improved to 0.94 with a 95% CI of (0.92, 0.95), and the bias
was reduced to 0.0 with a 95% CI of (−1.0, 1.0). With each
improvement of the index estimation, the levels of agreement for
the differences also come closer to the bias. Furthermore, the Bland-
Altman plot in panel (D) comparing the REIHSAT to the AHIPSG
clearly shows an underestimation proportional to the severity, which
is much less pronounced or even absent in panels (E) and (F)
comparing the AHICReSS and the AHICReSS+AutAr to the AHIPSG.

3.3 Evaluation of SDB classification
performance

Table 2 compares the three AHI surrogates with respect to their
ability to assess the severity of sleep disordered breathing. We
generated confusion tables for the three index estimations
comparing the resulting severity classification into no, mild,
moderate, and severe SDB (using thresholds of 5, 15, and 30) to
the ground-truth derived from the full PSG (Epstein et al., 2009).
The diagonals of the matrices (blue) show the number of correct
classifications, while underestimations of SDB severity are found
above the diagonal, and overestimations are located below the
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TABLE 1 Demographic data for the databases used in the cross-validation.

Somnoval Somnapatch

Included subjects 97 148

Age [mean ± std, (min, max)] 57.0 ± 14.0 [22, 81] 53.9 ± 13.0 [23, 80]

Sex (m, f) 60 (62%) m, 36 (37%) f 83 (56%) m, 65 (44%) f

BMI [mean ± std, (min, max)] — 30.1 ± 5.9 [18.3, 55.2]

ArIPSG [mean ± std, (min, max)] 24.5 ± 13.3 [5.3, 75.0] 25.5 ± 18.0 [1.3, 98.4]

AHIPSG [mean ± std, (min, max)] 26.8 ± 20.7 [0.2, 84.6] 32.3 ± 25.5 [0.9, 111.2]

No SDB (AHI <5) 13 (13.4%) 17 (11.5%)

Mild SDB (5 ≤ AHI <15) 21 (21.6%) 24 (16.2%)

Moderate SDB (15 ≤ AHI <30) 23 (23.7%) 41 (27.7%)

Severe SDB (30 ≤ AHI) 40 (41.2%) 66 (44.6%)

OAIPSG [mean ± std, (min, max)] 6.7 ± 9.5 [0.0, 44.2] 20.4 ± 21.6 [0.0, 128.0]

CAIPSG [mean ± std, (min, max)] 2.5 ± 6.4 [0.0, 39.2] 4.1 ± 9.2 [0.0, 71.1]

Included subjects and distributions of age, sex (m: male, f: female), body mass index (BMI), cortical arousal index (ArIPSG), apnea-hypopnea index (AHIPSG), the severity of sleep disordered

breathing (SDB) according to the full polysomnographic recordings, and distributions of obstructive apnea index (OAIPSG) and central apnea index (CAIPSG). For continuous variables, the table

reports the mean and standard deviation as well as the extreme values in square brackets. For categorical data, counts and percentages are reported. In the Somnoval database the BMI, was not

collected, and the sex was not recorded for one subject.

FIGURE 2
Comparison of the autonomic arousal index derived from home sleep apnea tests to the arousal index from polysomnography. Panel (A) shows a
scatter plot to compare the autonomic arousal index (AutArIHSAT) to the cortical arousal index (ArIPSG) and the intraclass correlation coefficient of absolute
agreement with a 95% confidence interval in brackets. Panel (B) illustrates differences between the AutArIHSAT and the ArIPSG in a Bland-Altman plot and
provides bias and levels of agreement together with their respective 95% confidence intervals in brackets. Panel (C) shows the autonomic arousal
index’s receiver operating characteristic (ROC) curve and the area under the curve for detecting an arousal index ≥20. Panel (D) shows the autonomic
arousal index’s precision-recall curve and the area und the curve for detection an arousal index ≥20. We identified four outliers and highlighted them in
red (see the discussion section for information about the outliers).
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diagonal. Overall, using the REIHSAT resulted in the correct severity
classification of 172 subjects (70.2%, κ = 0.58), while severity was
underestimated in 46 subjects (18.8%) and overestimated in
27 subjects (11.0%). After applying cardio-respiratory sleep staging
and using the AHICReSS to estimate severity, 189 subjects (77.1%, κ =
0.67) were classified correctly, and the severity was underestimated in
32 subjects (13.1%) and overestimated in 24 subjects (9.8%). Finally,
when hypopneas were scored with autonomic arousals and the
AHICReSS+AutAr was used to assess SDB severity, the number of
correctly classified subjects increased to 197 (80.4%, κ = 0.72) and
the number of under-diagnosed subjects was further reduced to 18
(7.3%). The number of subjects with overestimated SDB severity
slightly increased to 30 (12.2%). It is worth mentioning that for all
three AHI surrogates, most misclassifications were between adjacent
severity categories. The number of subjects where the severity was
under- or overestimated by more than one severity category was 4
(1.6%), 0, and 1 (0.4%) when using the REIHSAT, AHICReSS and
AHICReSS+AutAr, respectively.

Table 3 summarizes performance measures and provides 95%
confidence intervals for the binary classification tasks of determining
an AHI greater or equal than the diagnostic thresholds of 5, 15, and
30 and presents overall performance statistics with 95% confidence
intervals for the four-class classification problem into none, mild,

moderate, and severe SDB. For the detection of an AHI ≥5, the
introduction of CReSS led to statistically significant (but clinically
irrelevant) changes in the sensitivity and in the negative likelihood
ratio: the sensitivity was reduced from 1.0 to 0.99, and the negative
likelihood ratio increased from 0.0 to 0.01. For an AHI ≥15, the
combination of cardio-respiratory sleep staging and autonomic
arousal detection yielded statistically significant improvements for
the accuracy, which increased from 0.873 to 0.931; the sensitivity
which increased from 0.882 to 0.947; and the Cohen’s κ, which
increased from 0.712 to 0.837. The specificity and the positive and
negative likelihood ratios improved as well, but these changes were
not statistically significant. For the detection of an AHI ≥30, the
introduction of CReSS and the hypopnea scoring using autonomic
arousals led to statistically significant improvements in sensitivity
which increased from 0.755 to 0.934; the negative likelihood ratio
that decreased from 0.256 to 0.073; and the Cohen’s κ, which
increased from 0.728 to 0.835. The accuracy improved as well,
while the specificity and the positive likelihood ratio were both
reduced. However, these changes were not statistically significant.

Table 4 presents performance metrics for the four-class
classification into severity categories. By adding sleep and arousal
information derived from autonomic features, significant
improvements could be achieved regarding the overall accuracy

FIGURE 3
Comparison of respiratory event indices derived from home sleep apnea tests to the apnea-hypopnea index derived from polysomnography. Panels
(A–C) show scatter plots of the respiratory event index as the number of apneas and hypopneas events per hour of monitoring time (REIHSAT), the number
of apneas and hypopneas per hour of total sleep time derived from cardio-respiratory signals (AHICReSS), and the number of apneas and hypopneas per
hour of total sleep time derived from cardio-respiratory signals where autonomic arousals were used to confirm hypopneas (AHICReSS+AutAr), as
compared to the AHIPSG. The respective intraclass correlation coefficients of absolute agreement (ICC) are provided and their respective 95% confidence
intervals displayed in brackets. The green background color indicates areas where both, the surrogate and the gold-standard measurement would yield
the same severity classification using thresholds of 5, 15, and 30. Panels (D–F) show Bland-Altman plots to illustrate differences between the surrogate
measurements REIHSAT, AHICReSS, and the AHICReSS+AutAr and the gold-standard AHIPSG. The bias and levels of agreement for the surrogate measures are
provided with their respective 95% confidence intervals indicated in brackets. One outlier was identified and highlighted in red (see the discussion section
for information about the outlier).
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with an improvement from 0.702 to 0.804, the Cohen’s κ which
increased from 0.58 to 0.716, as well as the fraction of subjects where
SDB severity was underestimated which was reduced from 0.188 to
0.073. There were no significant changes in the fraction of subjects
where SDB was overestimated.

4 Discussion

In this work, we showed that by extracting surrogate sleep and
arousal information from the signals obtained by HSATs, significant
improvements can be made in the estimation of the AHI. We used
cardio-respiratory sleep staging and assessed autonomic arousals in
order to mimic the scoring rules recommended for PSG in PG
recordings. Consequently, the ICC of absolute agreement between
the HSAT-derived surrogate and the gold standard of PSG-derived
AHI increased to 0.94 with a 95% confidence interval of (0.92, 0.95).
This indicates excellent agreement that is in the same range as the
inter-scorer agreement between manual scorers annotating gold-
standard PSGs (Koo and Li, 2016).

Using recommended hypopnea scoring rules, manual experts
were reported to agree on the AHI with a bias of less
than ±1.5 and a 95% limits of agreement of approximately ±18 to
22 events per hour of sleep when scoring full PSG studies (Massie
et al., 2018; Van Pee et al., 2022).We observed a bias of −4 events/hour
when using the REI, confirming our initial hypothesis that PG can and
often does underestimate SDB severity. This bias could be eliminated
by adding cardio-respiratory sleep staging to determine the total sleep
time and confirming hypopneas not only by desaturations, but also by

autonomic arousals. Moreover, the limits of agreement were narrowed
down to less than ±16 events per hour of sleep. As expected, the
agreement between the HSAT-derived REI and the PSG-derived AHI
was below typical inter-scorer reliability reported for the AHI. Adding
sleep and arousal estimations from the autonomic nervous system
raised the agreement between PG and PSG to the same level as
observed between manual scorers scoring full PSG recordings (Massie
et al., 2018; Van Pee et al., 2022), suggesting an improvement on
diagnostic accuracy to a level suitable for clinical applications.

Regarding the binary classification at diagnostic thresholds of 5,
15 and 30, we expected an increase in sensitivity for all three
thresholds, possibly at the cost of small losses in specificity,
contributing to an overall increase in accuracy. The specificity for
detecting an AHI ≥5 increased substantially from 53.3% to 73.3%
when introducing CReSS-derived total sleep time in the AHI
calculation. At first, this might seem counter-intuitive because
the reduction of the denominator in the AHI calculation from
monitoring time to total sleep time should increase the estimated
AHI and therefore increase diagnostic sensitivity. A closer look at
the scorings revealed that some of the false positives (REI ≥5 but
AHI <5) were caused by respiratory events detected during
wakefulness, possibly caused by motion artifacts. CReSS excluded
these respiratory disturbances during wakefulness, effectively
increasing the specificity of the HSAT devices without any
relevant loss in sensitivity. For the task of detecting an AHI ≥15,
the introduction of CReSS increased sensitivity and specificity, and
therefore also the accuracy from 87.3% to 91.8%. Sensitivity and
accuracy were increased further by confirming hypopneas with
autonomic arousals such that the final accuracy was 93.1% with a

TABLE 2 Confusion tables for the classification performance of respiratory event indices derived from home sleep apnea tests.

True class

No Mild Moderate Severe

AHIPSG<5 5≤ AHIPSG<15 15≤ AHIPSG<30 AHIPSG≥30

Predicted class REIHSAT No 16 (53%) 0 (0%) 0 (0%) 0 (0%)

Mild 10 (33%) 38 (84%) 20 (31%) 0 (0%)

Moderate 4 (13%) 7 (16%) 38 (59%) 26 (25%)

Severe 0 (0%) 0 (0%) 6 (9%) 80 (75%)

AHICReSS No 22 (73%) 4 (9%) 0 (0%) 0 (0%)

Mild 8 (27%) 34 (76%) 13 (20%) 0 (0%)

Moderate 0 (0%) 7 (16%) 42 (66%) 15 (14%)

Severe 0 (0%) 0 (0%) 9 (14%) 91 (86%)

AHICReSS+AutAr No 20 (67%) 2 (4%) 0 (0%) 0 (0%)

Mild 10 (33%) 35 (78%) 9 (14%) 0 (0%)

Moderate 0 (0%) 7 (16%) 43 (67%) 7 (7%)

Severe 0 (0%) 1 (2%) 12 (19%) 99 (93%)

Sleep disordered breathing (SDB) was classified into None, Mild, Moderate, and Severe by applying thresholds of 5, 15, and 30 to the apnea-hypopnea index derived from polysomnography

(AHIPSG) and its surrogates derived from home sleep apnea test (HSAT) data: the number of apneas and hypopneas per hour of monitoring time (REIHSAT), the number of apneas and

hypopneas per hour of total sleep time derived from cardio-respiratory signals (AHICReSS), and the number of apneas and hypopneas per hour of total sleep time derived from cardio-respiratory

signals where hypopneas were also confirmed with autonomic arousals (AHICReSS+AutAr). Columns correspond to the true class as obtained from the PSGAHI, and rows correspond to the

predicted class using HSAT-derived surrogates. The cells contain absolute counts and percentages of matching and mismatching classifications.
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sensitivity of 94.7% and a specificity of 89.3%. Again, sensitivity and
specificity both clearly improved when adding the sleep and arousal
information to the HSAT recordings. Finally, for an AHI ≥30,
sensitivity increased significantly from 75.5% to 93.4% while the
specificity remained above 90% and the accuracy improved from
86.9% to 91.8%.

Van Pee et al. (2022) reported interscorer agreement between
manual scorings of the AHI in full PSGs of 93% (κ = 0.69), 90% (κ =
0.79), and 92% (κ = 0.83) at diagnostic thresholds of 5, 15, and 30,

respectively. From the confusion tables presented by Massie et al.
(2018), we can easily derive very similar accuracies and Cohen’s κ
values for the interscorer agreement of 93% (κ = 0.68), 91%
(κ = 0.81), and 89% (κ = 0.76) for the respective diagnostic
thresholds. When comparing these values to our results, it
became clear that the classification performance with REI was
only comparable to the manual scoring of full PSGs for a
diagnostic threshold of the AHI being greater or equal to 5.
When adding sleep and arousal estimations from the autonomic

TABLE 3 Comparison of diagnostic performance for different event indices derived from home sleep apnea tests.

Task Prev Metric REIHSAT AHICReSS P AHICReSS+AutAr P

AHI ≥5 0.878 Acc 0.943 (0.90, 0.96) 0.951 (0.91, 0.97) 0.705 0.951 (0.91, 0.97) 0.705

Sens 1.000 (0.98, 1.00) 0.981 (0.95, 0.99) <0.001 0.991 (0.96, 1.00) <0.001

Spec 0.533 (0.35, 0.68) 0.733 (0.54, 0.85) 0.041 0.667 (0.47, 0.80) 0.199

LR+ 2.143 (1.46, 3.14) 3.680 (2.03, 6.66) 0.074 2.972 (1.79, 4.93) 0.205

LR- 0.000 (0.00, —) 0.025 (0.01, 0.07) <0.001 0.014 (0.00, 0.06) <0.001

κ 0.667 (0.50, 0.84) 0.758 (0.63, 0.89) 0.182 0.743 (0.60, 0.89) 0.299

AHI ≥15 0.694 Acc 0.873 (0.82, 0.91) 0.918 (0.88, 0.95) 0.035 0.931 (0.89, 0.96) 0.006

Sens 0.882 (0.82, 0.92) 0.924 (0.87, 0.95) 0.110 0.947 (0.90, 0.97) 0.007

Spec 0.853 (0.75, 0.91) 0.907 (0.81, 0.95) 0.247 0.893 (0.80, 0.94) 0.422

LR+ 6.02 (3.48, 10.4) 9.90 (4.88, 20.1) 0.168 8.88 (4.61, 17.1) 0.245

LR- 0.138 (0.09, 0.21) 0.084 (0.05, 0.14) 0.068 0.059 (0.03, 0.11) 0.010

κ 0.712 (0.62, 0.81) 0.812 (0.73, 0.89) 0.013 0.837 (0.76, 0.91) <0.001

AHI ≥30 0.433 Acc 0.869 (0.82, 0.90) 0.902 (0.86, 0.93) 0.147 0.918 (0.88, 0.95) 0.022

Sens 0.755 (0.66, 0.82) 0.858 (0.77, 0.91) 0.013 0.934 (0.86, 0.96) <0.001

Spec 0.957 (0.90, 0.98) 0.935 (0.88, 0.96) 0.296 0.906 (0.84, 0.94) 0.015

LR+ 17.5 (7.93, 38.5) 13.3 (7.02, 25.1) 0.394 9.99 (5.94, 16.8) 0.035

LR- 0.256 (0.18, 0.36) 0.151 (0.09, 0.24) 0.028 0.073 (0.04, 0.15) 0.001

κ 0.728 (0.64, 0.82) 0.799 (0.72, 0.88) 0.067 0.835 (0.77, 0.90) 0.003

Diagnostic performance for binary classification tasks at thresholds of 5, 15, and 30 for the apnea-hypopnea index (AHI). For each diagnostic threshold, the table shows the prevalence (Prev.)

within our dataset. Accuracy (Acc), sensitivity (Sens), specificity (Spec), positive likelihood ratio (LR+), negative likelihood ratio (LR-), and Cohen’s κ (κ) for AHI, surrogates derived from

HSAT, are listed. Point estimates and two-sided 95% confidence intervals are compared in three columns for the number of apneas and hypopneas per hour of monitoring time (REIHSAT), per

hour of total sleep time derived from cardio-respiratory signals (AHICReSS), and per hour of total sleep time derived from cardio-respiratory signals where hypopneas were also confirmed with

autonomic arousals (AHICReSS+AutAr). Metrics for the AHICReSS, and AHICReSS+AutAr were tested for statistically significant differences to the REI, and corresponding p-values are provided in the

columns next to the point estimates and confidence intervals. Statistically significant results are highlighted in grey.

TABLE 4 Comparison of the severity classification performance for different event indices derived from home sleep apnea tests.

Metric REIHSAT AHICReSS P AHICReSS+AutAr P

Accuracy 0.702 (0.64, 0.75) 0.771 (0.71, 0.82) 0.019 0.804 (0.75, 0.85) <0.001

Underestimated 0.188 (0.14, 0.24) 0.131 (0.09, 0.18) 0.022 0.073 (0.05, 0.11) <0.001

Overestimated 0.110 (0.08, 0.15) 0.098 (0.07, 0.14) 0.624 0.122 (0.09, 0.17) 0.596

Cohen’s κ 0.580 (0.50, 0.66) 0.674 (0.60, 0.75) 0.014 0.716 (0.64, 0.79) <0.001

Diagnostic performance for the four-class classification task of categorizing sleep disordered breathing into no, mild, moderate, and severe using thresholds of 5, 15, and 30. Accuracy, the

fraction of subjects where the severity was underestimated, the fraction of subjects where the severity was overestimated, and Cohen’s κ for AHI, surrogates derived fromHSAT, are listed. Point

estimates and two-sided 95% confidence intervals are compared in three columns for the number of apneas and hypopneas per hour of monitoring time (REIHSAT), per hour of total sleep time

derived from cardio-respiratory signals (AHICReSS), and per hour of total sleep time derived from cardio-respiratory signals where hypopneas were also confirmed with autonomic arousals

(AHICReSS+AutAr). Metrics for the AHICReSS, and AHICReSS+AutAr were tested for statistically significant differences to the REI, and corresponding p-values are provided in the columns next to the

point estimates and confidence intervals. Statistically significant results are highlighted in grey.
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nervous system to the HSAT analysis, the SDB classification
performance improved to the same level as observed between
manual experts scoring full PSG recordings with accuracies of
95% (κ = 0.74), 93% (κ = 0.84), and 92% (κ = 0.84) at the
respective thresholds. When classifying the SDB severity into
four classes, Massie et al. (2018) reported an interscorer
agreement on full PSGs of 81% with a Cohen’s κ of 0.74, and
Van Pee et al. (2022) reported an interscorer agreement of 77% with
a Cohen’s κ of 0.66. As can be seen in Table 4, using the REI as
surrogate for the AHIPSG clearly fell below the reported inter-scorer
agreement. However, by adding cardio-respiratory sleep staging and
autonomic arousal information to the polygraphies, classification
performance increased to the level of interscorer agreement amongst
manual experts scoring full PSG recordings. Using the combination
of sleep and arousal information derived from cardio-respiratory
signals, the overall classification performance was significantly
improved regarding the overall accuracy, Cohen’s κ, and the
percentage of participants where SDB was underestimated. At the
same time, the increase of over-diagnosed patients from 11% to
12.2% was neither statistically significant (p = 0.596) nor clinically
relevant. These results confirm that using the AHICReSS+AutAr to
assess SDB severity instead of the REI significantly improves the
diagnostic sensitivity of HSAT devices, leading to much smaller
likelihood of underestimating SDB severity.

In Figure 3, we identified one outlier where the AHI was severely
overestimated by all three HSAT-derived estimates. The AHIPSG for
this recording was 21.9, while HSAT-derived estimates varied
between 64.3 and 66.0. A review of the raw data revealed that
this recording contained numerous central apneas during epochs
that contained rapid transitions between wake and sleep. The
occurrence of sleep transition apnea may yield immediate
hyperventilation leading to central apnea upon resumption of
sleep (Malhotra and Owens, 2010). This alternating pattern has
been described as state instability in previous research (Roberts et al.,
2022). In this example, most of these epochs had to be scored as
wake, because the EEG data indicated wakefulness for more than
half of each 30 s epoch. Consequently, most of these apneas were not
considered for the calculation of the AHIPSG. This presents a more
fundamental limitation of scoring sleep stages in 30-s epochs and
could only be fully resolved by adopting, for example, as discussed
by Perslev et al. (2021), high-frequency sleep staging, especially for
diagnosing a population experiencing sleep apnea. Due to the lack of
sleep information, these events were included in the calculation of
the REIHSAT. The cardio-respiratory sleep staging algorithm scored
these transitional epochs as sleep. Therefore, the estimated AHI in
this recording remained high even when adding sleep and arousal
estimations to the HSAT scoring.

Interscorer agreement for the number of arousals and the
arousal index have been reported with intraclass correlation
coefficients between 0.52 and 0.80 with outliers as low as 0.09,
indicating only limited reliability (Bonnet et al., 2007; Kuna et al.,
2013; Magalang et al., 2013; Malhotra et al., 2013; Punjabi et al.,
2015). In an early attempt at detecting autonomic arousals from
ECG, agreement between cortical and autonomic arousals has been
reported with an ICC of 0.19 (Basner et al., 2007). More recently
developed algorithms based on PAT or ECG inputs report Pearson’s
correlation coefficients between 0.58 and 0.84, depending on the
OSA severity distribution of the patients (Pillar et al., 2002; Li et al.,

2020). Olsen et al. (2018) report an event-by-event sensitivity of
0.63 and positive predictive value of 0.72. Thus, the agreement
between the autonomic arousal index derived from our model and
PSG fell within the range of normal interscorer reliability of scoring
cortical arousals in a full PSG and is similar to the performance
reported for PAT devices detecting autonomic arousals. The ICC
between the autonomic arousal index derived from our model (using
PPG and respiratory flow as inputs) and the cortical arousal index
(derived from neurological signals in the PSGs) was 0.73 with a 95%
confidence interval of (0.67, 0.78), indicating moderate to good
agreement.

We identified four outliers when comparing the cortical arousal
index to the autonomic arousal index (highlighted in Figure 2). In one
case a cortical arousal index of 75.0 was heavily underestimated, with an
autonomic arousal index of 24.2. A review of the raw data revealed that
this patient had severe cardiac arrhythmia which probably reduced the
sensitivity of the autonomic arousal detection. Moreover, we identified
three cases where relatively low cortical arousal indices of 5.3, 8.2, and
16.0 were overestimated with autonomic arousal indices of 59.2, 54.5,
and 64.8. In two of these cases, the autonomic arousals were associated
with respiratory events that were not associated with cortical arousals.
The third case contained periodic leg movements that were associated
with autonomic arousals but not with cortical arousals. Both
phenomena have been described previously: Olsen et al. (2018)
reported that 81% of autonomic arousals not associated with a
matching cortical arousal could be related to respiratory events or
leg movements, and Pillar et al. (2002) reported that the agreement
between the cortical and autonomic arousal index could be increased
significantly when excluding patients with periodic legmovements from
the comparison. In our case, the ICC between the autonomic arousal
index and the cortical arousal index increased from 0.73 (with 95%
CI of 0.67, 0.78) to 0.79 (with 95% CI of 0.74, 0.84) when excluding
these four outliers. Although these outliers are exceptions in the
overall performance of our method, they also reflect an inherent
limitation of this approach: autonomic arousals are not equivalent
to cortical arousals and not every cortical arousal coincides with an
autonomic arousal, and vice versa; and it has been reported how
some respiratory events, and especially periodic limb movements,
can appear associated with autonomic arousals without a
corresponding cortical arousal (Sforza et al., 2000; Sforza et al.,
2002; Olsen et al., 2018).

Due to the study design, heart rate information was the only
cardiac feature considered for the detection of autonomic arousals.
Future studies might provide insights whether the use of additional
features extracted from the PPG signal, (i.e., pulse wave amplitudes
and waveform or baseline changes) can improve the accuracy of the
autonomic arousal detection further. Keeping in mind the growing
popularity of wearable devices with PPG sensors (e.g., smart-
watches), future research should assess potential improvements of
the sleep stage classification and the arousal detection when using
these additional PPG-derived features. All data used in this study
was recorded in sleep laboratories under supervision. Therefore, the
algorithm performance might be slightly overestimated compared to
an unsupervised real-world HSAT scenario. However, the relative
improvement when comparing the AHICReSS+AutAr to traditionally
used REI should still be similar, because both methods suffer from
the same data quality issues when sensors are self-applied, and
recordings are not supervised. Our study does not evaluate the
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algorithm’s performance in the presence of cardiac arrhythmia,
autonomic dysfunction, impaired heart rate variability, and
medication altering heart rate and respiration rate variability
(e.g., beta blockers). Future research is required to assess whether
the algorithm performs robustly in these patient populations.
Literature, as well as our data, suggest that it is not uncommon
that respiratory events or periodic leg movements are associated
with autonomic arousals that do not lead to cortical arousals (Olsen
et al., 2018). Therefore, future studies could also address the question
of whether it might be useful to complement the neurological
arousal scoring with the detection of autonomic arousals in
full PSGs.

In conclusion, this study is the first to show that adding sleep
and arousal information derived from autonomic nervous system
activity can improve the diagnostic sensitivity of PGs by significantly
reducing the risk of underestimating SDB severity, without a
relevant decrease in specificity. In particular, the confirmation of
hypopneas using autonomic arousals can raise the sensitivity to a
level similar to that of a full PSG recording. The focus of this study
was limited to the AHI as the primary tool for assessing SDB
severity. Future research could evaluate if similar improvements
in accuracy can be achieved for alternative measures relying on
respiratory event detection such as hypoxic burden, arousal
intensity, or apnea-specific pulse-rate responses (Azarbarzin
et al., 2019; Azarbarzin et al., 2021; Malhotra et al., 2021).
Another interesting research topic might be to assess how the
detection of autonomic arousals might complement the scoring
of cortical arousals in the interpretation of PSG. Finally, to fully
assess the performance and utility of new devices or methods, a next
step also requires validation on independent and publicly available
datasets to make the results reproducible and comparable for the
scientific community.
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