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Introduction: The development of insecticide resistance in Spodoptera frugiperda
populations is a serious threat to the crop industry. Given the spread of invasive
resistant populations, prospective monitoring should be accelerated, and the
development of diagnostic tools for rapid and accurate assessments of
insecticide resistance is essential.

Methods: First, the discriminating dose and diagnostic time of the kit were
determined by the glass vial method based on a susceptible strain. Then, pests
that were collected from field populations were used to determine their
susceptibility to seven insecticides by using the diagnostic kit. Finally, the
accuracy of the kit was verified based on correlation analyses and the
likelihood of insecticide control failure was assessed.

Results: Here, we describe a diagnostic kit that enables the rapid detection of
resistance to chlorpyrifos, bifenthrin, deltamethrin, lambda-cyhalothrin, phoxim,
chlorantraniliprole and chlorfenapyr within 1-2 h in S. frugiperda at diagnostic
doses of 0.98, 0.84, 0.38, 1.64, 0.0082, 1.75 and 0.65 μg/cm2, respectively. The
linear equation between mortalities under diagnostic doses and actual resistance
ratios measured by the diet-overlay bioassay was determined. The high
correlation indicates that the insecticide resistance levels diagnosed by the kit
were consistent with the results of the diet-overlay bioassay. Moreover, we found
a significant negative correlation between diagnostic mortality and the likelihood
of control failure for bifenthrin (r= −0.899, p=0.001), deltamethrin (r= −0.737, p=
0.024) and lambda-cyhalothrin (r = −0.871, p = 0.002).

Discussion: The insecticide resistance diagnostic kit for S. frugiperda is a user-
friendly tool (portable, short detection time). Its excellent performance qualifies
the kit as a reliable screening tool for identifying effective insecticides in
sustainable resistance management.
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1 Introduction

The fall army worm (FAW), Spodoptera frugiperda
(Lepidoptera: Noctuidae), is a major transboundary migratory
pest that is native to tropical and subtropical regions of the
Americas (Xiao, 2021). Currently, its presence has rapidly
expanded to more than 100 countries worldwide (Blanco et al.,
2016; Burtet et al., 2017; Ganiger et al., 2018; Guo et al., 2022). It
invaded China through the Yunnan Province on 11 December
2018 and quickly spread across the country via its long-distance
migration abilities (Sun et al., 2021). S. frugiperda is a highly
polyphagous pest that attacks more than 353 host plants, causing
major damage to maize, sugarcane, rice, wheat, sorghum, other
vegetable crops and cotton. This represents a great threat to food
security and results in economic loss (Baudron et al., 2019; Xiao,
2021).

Although maize hybrids that express Bacillus thuringiensis
insecticidal proteins as well as biological control agents have been
developed and applied against S. frugiperda (Jin et al., 2021a),
chemical control remains the most common practice for the
management of S. frugiperda worldwide (Omoto et al., 2016;
Muraro et al., 2021). However, as a consequence of the pest’s
genetic plasticity, high fecundity and particularly strong selection
pressure, S. frugiperda has developed resistance against 45 active
pesticide ingredients, and its reported cases of resistance amount to
200 (APRD, 2023). In particular, considering that the invaded S.
frugiperda populations in China have a genetic background of multi-
insecticide resistance due to its origin in the tropical and subtropical
regions of Americas (Li et al., 2020a; Zhao et al., 2020), subsequent
use of higher concentrations of these insecticides to maintain control
will necessarily result in an increased frequency of resistant
individuals and eventually a control failure (Zhang et al., 2016; Li
et al., 2020b). The primary strategy for mitigating the detrimental
effects of insecticide resistance is the development of an insecticide
resistance management plan, in which the concept of resistance
monitoring was developed as a means to minimize overuse and
prevent or at least delay the development of resistance (Ruscoe,
1987; Mao et al., 2019a; Liao et al., 2020). In S. frugiperda, current
resistance monitoring methods are mainly based on the diet-overlay
bioassay or leaf disk method (Lira et al., 2020; Chen and Palli, 2022).
Although these methods can be used effectively to monitor
resistance to insecticides, one of their limitations is their
complexity, which requires a range of operational procedures and
specialist technicians, and that it takes at least 48 h to obtain results.
This is contrary to the interests of growers, who need reliable data in
a short amount of time, especially during periods of high pest
infestation. Therefore, a reliable and rapid method of resistance
detection needs to be developed and correlated with the field efficacy
of the corresponding insecticide, thus scientifically avoiding the use
of ineffective insecticides and contributing to reversing existing
levels of resistance.

The glass vial bioassay, as a user-friendly method (short
detection time and easy to perform), has been successfully used
to detect insecticide resistance levels in a wide range of insects, such
as Drosophila suzukii, Tetranychus urticae, Phlebotomus papatasi
and Lutzomyia longipalpis (Kwon et al., 2010; Denlinger et al., 2016;
Van Timmeren et al., 2019). Previous research has developed a
diagnostic kit for the rapid detection of resistance to imidacloprid,

nitenpyram, clothianidin, dinotefuran, thiamethoxam, isoprocarb
and chlorpyrifos in Sogatella furcifera based on the glass vial
bioassay (Mao et al., 2021). Huang et al. (2022) developed an
insecticide phenotypic resistance diagnostic kit for Aphis gossypii,
where the results can be obtained within 3 h. These successful
applications show that an efficient and rapid method of detecting
the resistance levels of S. frugiperda to insecticides will be possible.

Therefore, the objective of this study was to develop a diagnostic
kit that provides the estimation of resistance to chlorpyrifos,
bifenthrin, deltamethrin, lambda-cyhalothrin, phoxim,
chlorantraniliprole and chlorfenapyr in 1–2 h. Multiple field
populations of S. frugiperda will be used to verify the accuracy
and efficiency of this diagnostic kit. The application of this kit can
help practitioners or farmers quickly screen available agents and
filter out ineffective insecticides, providing an important technical
tool for pest resistance management.

2 Materials and methods

2.1 Insect collection

The field populations of S. frugiperda were collected from field
crops (primarily maize) that were grown in Ruili of Yunnan (RL),
Jiangcheng of Yunnan (JC), Sanya of Hainan (SY), Jingzhou of Hubei
(JZ), Hanzhong of Shanxi (HZ), Nanchang of Jiangxi (NC), Dongyang
of Zhejiang (DY), Huiyang of Guangdong (HY) and Nanning of
Guangxi (NN) during 2021–2022 (Figure 1 and Supplementary
Table S1). A susceptible strain (SS) of S. frugiperda originated from
a population in Yunnan maize fields in 2019 and was reared on an
artificial diet without any insecticide exposure in the laboratory. Third-
instar larvae of the parental (F0) or first generation (F1) were used for the
susceptibility bioassay. S. frugiperda populations were then reared under
chamber conditions [25°C ± 1°C, 70%–80% relative humidity (RH), 14-
h/10-h light/dark photoperiod] for several discrete generations until
they were used in bioassays.

2.2 Reagents

The chlorpyrifos (97.5%), bifenthrin (97%), deltamethrin (98%),
lambda-cyhalothrin (97%), phoxim (96%), chlorantraniliprole
(95%) and chlorfenapyr (96%) used in this study were technical
grade and were provided by Prof. Chaobin Xue (Shandong
Agricultural University, Tai’an, China). Triton X-100 was
purchased from Sigma‒Aldrich (St. Louis, MO, United States)
and acetone (reagent grade) was purchased from Sinopharm
Chemical Reagent Co., Ltd.

2.3 Diet-overlay bioassay

The ingestion bioassay employed a diet overlay method as
described previously (Bolzan et al., 2019). The insecticides were
dissolved in acetone as stock solutions and then diluted to a series
of concentration gradients (concentration selection based on pre-
experiments with different populations) with distilled water
containing 0.1% Triton X-100. An aliquot of 40 μL insecticide
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solution was applied to each well, and after drying, the larvae were
placed on contaminated feed (one 3rd instar larva per well), and a
solution containing only distilled water and surfactant was used as the
control treatment. For complete bioassays, five concentrations, plus a

control (without insecticide), were used for each population and a total
of 48 larvae were treated for each concentration. Each concentration
was replicated three times with sixteen larvae per replicate. All
treatments were maintained at 25°C ± 1°C under 70%–80% relative

FIGURE 1
Sampling locations of Spodoptera frugiperda field populations from China.

TABLE 1 The toxicity of seven insecticides to the susceptible strain (SS) of S. frugiperda determined with the glass vial method.

Insecticide LD50/
(μg/cm2)a

95% confidence limit/
(μg/cm2)

LD90/
(μg/cm2)

95% confidence limit/
(μg/cm2)

Slope (SE) χ2 (df)

chlorpyrifos 0.25 0.20 ~ 0.33 0.98 0.69 ~ 1.64 2.19 (0.27) 2.78 (4)

bifenthrin 0.20 0.15 ~ 0.26 0.84 0.62 ~ 1.26 2.05 (0.23) 0.90 (5)

deltamethrin 0.10 0.061 ~ 0.14 0.38 0.29 ~ 0.51 2.24 (0.33) 1.03 (4)

lambda-
cyhalothrin

0.49 0.39 ~ 0.61 1.64 1.22 ~ 2.48 2.43 (0.27) 2.72 (5)

phoxim 0.0017 0.0011 ~ 0.0024 0.0082 0.0060 ~ 0.012 1.89 (0.21) 2.82 (5)

chlorantraniliprole 0.43 0.33 ~ 0.55 1.75 1.24 ~2.94 2.10 (0.27) 0.57 (4)

chlorfenapyr 0.25 0.21 ~ 0.30 0.65 0.50 ~ 0.96 3.08 (0.38) 3.67 (4)

aValues represent the practical insecticide dose (μg/cm2) in each glass tube = the insecticide concentration (ng/μL) × 350 (μL)/inner surface area of the glass vial (cm2).
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TABLE 2Mortalities of S. frugiperda field populations exposed to LD90 of seven insecticides determined with the glass vial method and resistance determined with
the diet-overlay bioassay.

Insecticide Population Mortality under discriminating dosea of
insecticide/%

LC50 (95% confidence limit)
mg/L

Resistance
ratiob

chlorpyrifos SS 95.0 ± 1.89 ab 39.4 (29.5 ~ 61.4) 1.00

RL 32.5 ± 6.74 d 246 (224 ~ 280) 6.24

JC 92.5 ± 2.50 abc 47.3 (36.3~ 65.8) 1.20

SY 96.3 ± 1.83 a 38.2 (30.6 ~ 49.7) 0.97

JZ 80.0 ± 3.27 c 82.4 (68.7~ 106) 2.09

HZ 97.4 ± 1.83 a 18.9 (14.2 ~ 27.0) 0.48

NC 81.3 ± 2.95 bc 68.6 (55.5 ~ 91.9) 1.74

bifenthrin SS 92.5 ± 1.64 a 6.92 (5.47 ~ 8.89) 1.00

RL 88.8 ± 1.25 a 14.2 (11.0 ~ 17.9) 2.05

JC 85.0 ± 3.27 a 12.5 (9.89 ~ 15.8) 1.80

SY 41.3 ± 4.41 c 151 (103 ~ 274) 21.8

JZ 70.0 ± 2.67 b 52.6 (43.8 ~ 65.6) 7.60

HZ 93.8 ± 2.63 a 6.12 (3.93 ~ 11.9) 0.88

NC 67.5 ± 4.91 b 66.9 (53.3 ~ 93.2) 9.66

deltamethrin SS 95.0 ± 1.89 a 9.57 (7.50 ~ 12.6) 1.00

RL 90.0 ± 2.50 a 12.3 (9.43 ~ 15.4) 1.28

JC 92.5 ± 1.89 a 9.05 (7.44 ~ 11.1) 0.95

SY 75.0 ± 1.89 b 133 (95.5 ~ 223) 13.9

JZ 83.8 ± 2.63 ab 92.0 (83.4 ~ 105) 9.61

HZ 90.0 ± 4.23 a 10.1 (8.09 ~ 13.0) 1.06

NC 86.3 ± 3.24 ab 75.6 (60.1 ~ 104) 7.90

lambda-
cyhalothrin

SS 90.0 ± 1.89 a 15.4 (12.7 ~ 18.9) 1.00

RL 60.0 ± 3.27 cd 144 (117 ~ 177) 9.34

JC 73.8 ± 3.24 bc 74.6 (59.7 ~ 89.4) 4.84

SY 77.5 ± 3.66 ab 44.1 (37.6 ~ 52.7) 2.86

JZ 73.8 ± 3.24 bc 89.6 (75.4 ~ 111) 5.81

HZ 57.5 ± 3.66 d 138 (115 ~ 176) 8.98

NC 78.8 ± 2.95 ab 50.5 (41.3 ~ 63.3) 3.28

phoxim SS 88.8 ± 1.25 a 1.13 (1.01 ~ 1.34) 1.00

RL 31.3 ± 2.95 e 22.0 (19.8 ~ 24.9) 19.5

JC 51.3 ± 2.95 c 18.6 (16.5 ~ 20.9) 16.5

SY 70.0 ± 2.67 b 3.78 (3.29 ~ 4.42) 3.35

JZ 55.0 ± 2.23 c 10.2 (8.45~ 12.5) 9.00

HZ 37.5 ± 3.66 de 21.6 (18.1 ~ 28.8) 19.2

NC 48.8 ± 3.50 cd 13.1 (10.8~17.5) 11.6

chlorantraniliprole SS 90.0 ± 1.89 ab 0.65 (0.51 ~ 0.82) 1.00

RL 88.8 ± 2.27 ab 0.45 (0.33 ~ 0.62) 0.69

(Continued on following page)
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humidity and a 14-h/10-h light/dark photoperiod. Mortality was
assessed after 72 h, and larvae showing no coordinated movement
were recorded as dead when touched with a brush.

2.4 Glass vial bioassay

The concentration-mortality bioassay was administered by a
glass vial method as described previously (Mao et al., 2021). The
internal surface area of each glass vial (Guangzhou Li-ge
Technology Co., LTD.) was 35.2 cm2 (diameter was 2.3 cm,
and height was 4.3 cm). Concentrations of the insecticide were
diluted in acetone, and five-seven concentrations were used to
obtain concentration-mortality curves for the SS strain. Briefly, a
glass vial containing 350 μL of insecticide solution and a roller
mixing device was used to ensure that its interior was evenly
coated with insecticide, and a total of thirty 3rd instar larvae were
treated for each concentration. There were three replicates for
each concentration and 6–9 doses for each insecticide. Mortality
was recorded after 60 min of exposure to chlorpyrifos, bifenthrin,
deltamethrin, lambda-cyhalothrin and phoxim and after 120 min
of exposure to chlorantraniliprole and chlorfenapyr. Glass vials
were placed in a chamber at 25°C ± 1°C and 70%–80% RH. For
mortality detection in nine field-collected populations, the
experimental design was completely randomized with eight
replicates per population (10 larval replicates−1).

2.5 Development and accuracy verification
of diagnostic kit

The diagnostic kit was designed to include seven insecticides test
vials (chlorpyrifos, bifenthrin, deltamethrin, lambda-cyhalothrin,
phoxim, chlorantraniliprole, and chlorfenapyr), and the LD90 for

each insecticide was used as the discriminating dose based on the
susceptible strain of S. frugiperda prepared by the glass vial bioassay.

A total of nine field populations were used to test and validate the
accuracy of the kit. Mortalities of S. frugiperda field populations (RL, JC,
SY, JZ, HZ, and NC) were exposed to LD90 of seven insecticides
determined with the glass vial method and resistance determined
with the diet-overlay bioassay. Seven mortality-resistance ratio linear
correlation equations were conducted. By detecting the mortalities
under the discriminating dose, the theoretical resistance ratio was
calculated according to the mortality-resistance ratio correlation
equation. Significant difference and correlation analyses between
theoretical and actual resistance ratios were performed for seven
insecticides evaluated in the DY, HY, and NN field populations.

2.6 Assessment of the control failure
likelihood

The minimum recommended label rates of registered insecticides
are shown in Supplementary Table S2 (http://www.chinapesticide.org.
cn/). Based on the toxicity regression equation, the minimum
recommended concentration of insecticide is converted to obtain the
achieved mortality, and the achieved mortality is calculated with the
expectedmortality (80%) according to the following formula to evaluate
the control failure likelihood. The control failure likelihood (CFL) = [1-
achieved mortality (%)/expected mortality (e.g., 80%)] × 100%, where
the value of the control failure likelihood >0% indicates a risk of control
failure (Guedes, 2017).

2.7 Statistical analysis

The mortality data were corrected using the control
mortality with Abbott’s formula (Abbott, 1925). Probit

TABLE 2 (Continued) Mortalities of S. frugiperda field populations exposed to LD90 of seven insecticides determined with the glass vial method and resistance
determined with the diet-overlay bioassay.

Insecticide Population Mortality under discriminating dosea of
insecticide/%

LC50 (95% confidence limit)
mg/L

Resistance
ratiob

JC 53.8 ± 3.24 cd 1.58 (1.29 ~ 2.02) 2.43

SY 81.3 ± 3.50 b 0.90 (0.69 ~ 1.31) 1.38

JZ 45.0 ± 3.78 d 1.68 (1.30 ~ 2.16) 2.58

HZ 96.3 ± 1.83 a 0.13 (0.10~ 0.15) 0.20

NC 63.8 ± 3.75 c 1.38 (1.20 ~ 1.63) 2.12

chlorfenapyr SS 90.0 ± 1.89 a 2.19 (1.77 ~ 2.69) 1.00

RL 75.0 ± 3.78 b 3.90 (3.22 ~ 4.76) 1.78

JC 72.5 ± 3.66 b 5.21 (4.02 ~ 7.29) 2.38

SY 55.0 ± 3.27 c 9.24 (7.74 ~ 11.2) 4.22

JZ 22.5 ± 2.50 e 13.1 (11.3~ 15.6) 5.98

HZ 73.8 ± 1.83 b 6.94 (5.70 ~ 9.44) 3.15

NC 38.8 ± 4.79 d 12.0 (10.2 ~ 14.2) 5.48

aThe LD90 of each insecticide against the susceptible strain of S. frugiperda by the glass vial method was identified as the discriminating dose.
bResistance ratio (RR) = LC50 value of field population/LC50 value of susceptible strain.
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analysis was performed to evaluate the LC50 (the insecticide
concentration that is required to kill 50% of the tested larvae)
value, LC90 (the insecticide concentration that is required to kill

90% of the tested larvae) value, confidence limit (95% CL) and
slopes, χ2 and degrees of freedom (df) (Finney, 1964). Mortality
of S. frugiperda to insecticides in different field populations was

FIGURE 2
The correlation analysis between the mortality of Spodoptera frugiperda field populations under the discriminating dose of seven insecticides and
the resistance ratio. (A) chlorpyrifos, (B) bifenthrin, (C) deltamethrin, (D) lambda-cyhalothrin, (E) phoxim, (F) chlorantraniliprole, (G) chlorfenapyr. The
black spot represents the mortality-resistance ratio for the SS, RL, JC, SY, JZ, HZ and NC field populations. The red spot represents the mortality-
resistance ratio for the three field populations (DY, HY and NN). The dashed line represents the 95% confidence interval for the mortality-resistance
ratio linear equation.
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tested by one-way ANOVA and Tukey’s multiple comparison
test, and differences with different small letters were statistically
significant (p < 0.05). The correlation between mortality and the
resistance ratio was calculated using Pearson’s method, as well
as significant differences between theoretical and actual
resistance ratios using t-tests via IBM SPSS Statistics 20.0,
and p values that were less than 0.05 were considered
statistically significant.

3 Results

3.1 Development of a diagnostic kit to detect
insecticide resistance

To rapidly detect S. frugiperda’s resistance levels to
insecticides, a diagnostic time of 1–2 h was determined by
pretesting based on a susceptible strain. The LD90 (0.98, 0.84,

TABLE 3 Pairwise correlation coefficient comparison between themortalities of S. frugiperda field populations under the discriminating doses of seven insecticides
and the resistance ratio.

Resistance ratio

Chlorpyrifos Bifenthrin Deltamethrin Lambda-cyhalothrin Phoxim Chlorantraniliprole Chlorfenapyr

Mortality −0.996**
(p = 0.000)

−0.988**
(p = 0.000)

−0.947**
(p = 0.001)

−0.976**
(p = 0.000)

−0.944**
(p = 0.001)

−0.972**
(p = 0.000)

−0.969**
(p = 0.000)

**Negative correlation between mortality and the resistance ratio at the 0.01 level.

TABLE 4 Verification of the accuracy of the tested resistance levels to seven insecticides in the field populations of S. frugiperda under the discriminating dose.

Insecticide Correlation
equation

Population Mortality under the
diagnostic dose/%

Theoretical
resistance ratio

Actual resistance
ratioa

p-valueb

chlorpyrifos y = −11.7x + 105 DY 98.8 0.54 0.33 0.098

HY 86.3 1.61 1.62 0.940

NN 97.5 0.64 0.66 0.896

bifenthrin y = −2.45x + 92.6 DY 95.0 1.58 1.04 0.672

HY 83.8 3.63 3.20 0.795

NN 78.8 5.67 6.21 0.844

deltamethrin y = −1.33x + 95.2 DY 93.8 0.87 0.66 0.490

HY 86.3 6.16 6.26 0.819

NN 87.5 5.10 6.11 0.896

lambda-
cyhalothrin

y = −3.50x + 91.1 DY 91.3 1.02 1.00 0.969

HY 77.5 3.88 3.62 0.843

NN 73.8 4.95 5.13 0.890

phoxim y = −2.48x + 83.0 DY 62.5 8.27 4.62 0.253

HY 50.0 13.3 15.4 0.454

NN 60.0 9.27 11.3 0.428

chlorantraniliprole y = −21.1x + 106 DY 67.5 1.80 1.68 0.580

HY 98.8 0.32 0.28 0.511

NN 57.5 2.27 2.48 0.170

chlorfenapyr y = −12.2x + 103 DY 62.5 3.31 3.36 0.928

HY 81.3 1.77 2.11 0.464

NN 67.5 2.90 2.67 0.665

aActual resistance ratio = LC50 value of field population/LC50 value of susceptible strain.
bp-value of less than 0.05 was thought to be statistically significant.
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0.38, 1.64, 0.0082, 1.75 and 0.65 μg/cm2, respectively) of
chlorpyrifos, bifenthrin, deltamethrin, lambda-cyhalothrin,
phoxim, chlorantraniliprole and chlorfenapyr was identified as
the discriminating dose (Table 1). Under this dose, the mortality
of the tested insecticide against the SS strain ranged from 88.8%
to 95% (Table 2), which was in line with the expected mortality
of 90%.

3.2 Detection by the kit in field populations
of S. frugiperda

Pests that were collected from six field populations (RL, JC, SY,
JZ, HZ and NC) were used to rapidly determine their susceptibility
to seven insecticides by using the diagnostic kit. As shown in Table 2,
all six S. frugiperda strains exhibited resistance to lambda-
cyhalothrin, phoxim and chlorfenapyr relative to the SS strain,
with diagnostic mortality ranging from 55.7% to 78.8%, 31.3%–
70.0% and 22.5%–75.0%, respectively. Only one field population
remained susceptible to bifenthrin and chlorantraniliprole
(mortality ≥90%), while the other five populations showed
resistance to bifenthrin (41.3%–88.8%) and chlorantraniliprole
(45.0%–88.8%). In addition, half of the field populations
remained susceptible to chlorpyrifos at the diagnostic dose. The
detection results showed that the kit could quickly distinguish
between resistant and sensitive populations and assessed their
susceptibility levels to the seven insecticides within 1–2 h.

3.3 Verification of kit accuracy

The LC50 values that were obtained from the diet-overlay
bioassay were 18.9–246 mg/L (chlorpyrifos), 6.12–151 mg/L
(bifenthrin), 9.05–133 mg/L (deltamethrin), 44.1–144 mg/L
(lambda-cyhalothrin), 3.78–22.0 mg/L (phoxim), 0.13–1.68 mg/L

(chlorantraniliprole) and 3.90–13.1 mg/L (chlorfenapyr) for the
six field populations (Table 2). By combining the mortalities at
diagnostic doses with the insecticide resistance ratios as measured by
the diet-overlay bioassay, seven mortality-resistance ratio linear
correlation equations were obtained (Figure 2). Furthermore, a
pairwise correlation analysis showed that the diagnostic mortality
of the field population was significantly correlated with the
resistance ratio for chlorpyrifos (r = −0.996, p = 0.000),
bifenthrin (r = −0.988, p = 0.000), deltamethrin (r = −0.947, p =
0.001), lambda-cyhalothrin (r = −0.976, p = 0.000), phoxim
(r = −0.944, p = 0.001), chlorantraniliprole (r = −0.972, p =
0.000) and chlorfenapyr (r = −0.969, p = 0.000) (Table 3).

Additionally, three populations (DY, HY and NN) of S.
frugiperda that were collected in the field in 2022 were used to
verify the accuracy of the kit. Exposure to the diagnostic doses of
the seven insecticides that exhibited mortality corresponded to
field populations of DY (98.8%, 95.0%, 93.8%, 91.3%, 62.5%,
67.5% and 62.5%), HY (86.3%, 83.8%, 86.3%, 77.5%, 50.0%,
100% and 81.3%) and NN (97.5%, 78.8%, 87.5%, 73.8%, 60.0%,
57.5% and 67.5%) (Table 4). The theoretical resistance ratios
that were calculated from the mortality-resistance ratio
correlation equation ranged from 0.54 to 8.27, 0.26–13.3 and
0.64–9.27 for DY, HY and NN, respectively, all of which were
within the 95% confidence interval of the linear equation, while
the resistance ratios that were determined by the diet-overlay
bioassay were 0.33–4.62, 0.028–15.4 and 0.66–11.3 (Table 4),
with significant correlations between the two data sets (r =
0.960, p = 0.000), and no significant differences (p > 0.05) were
found between the theoretical and actual resistance ratios in the
three field populations (Table 4).

3.4 Assessment of the control failure
likelihood by the diagnostic kit

We conducted studies that estimated the likelihood of chemical
control failure in nine field populations of S. frugiperda. The
likelihood of control failure for deltamethrin was reported in all
populations, and lambda-cyhalothrin and bifenthrin were at risk of
control failure in one and five out of nine populations, respectively.
Potential control failure populations were not identified for
chlorpyrifos, phoxim, chlorantraniliprole and chlorfenapyr
(Figure 3). Furthermore, a significant negative correlation was
found between diagnostic mortality and the likelihood of control
failure for bifenthrin (r = −0.899, p = 0.001), deltamethrin
(r = −0.737, p = 0.024) and lambda-cyhalothrin (r = −0.871, p =
0.002) (Supplementary Table S3). Finally, three linear models were
constructed for bifenthrin (y = −1.99x + 175), deltamethrin
(y = −4.25x + 443) and lambda-cyhalothrin (y = −2.98x + 271),
and based on this, it was hypothesized that the diagnostic mortality
rate could only be used to control brown flies after exceeding 88.4%,
100% and 91.2%, respectively.

4 Discussion

Resistance monitoring and recording are critical to
understanding and addressing both existing and developing

FIGURE 3
Likelihood of control failure of seven insecticides for Spodoptera
frugiperda in nine field populations. Each dot represents a population,
while the red dots (CFL> 0%) represent populations that control failure
likelihood.
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pesticide resistance issues, and the development of reliable bioassays
facilitates the reporting, sharing and straightforward comparison of
resistance data (Chanda et al., 2016; Sparks et al., 2021). Here, we
present a diagnostic kit that enables practitioners and farmers to
quickly detect the resistance levels of S. frugiperda to seven
insecticides and thereby reduce the impact of S. frugiperda on
crop yields worldwide.

The kit was developed based on a glass vial assay, which is
suitable for diagnosing susceptibility to a wide range of insecticide
classes, thus meeting the criteria for easier use (Snodgrass, 1996).
The bioassays in this study (30 min vial drying time and health
assessments at 1 or 2 h) were designed to maximize efficiency, which
is much easier than the diet-overlay bioassay or leaf disc method
(Lira et al., 2020; Chen and Palli, 2022). In addition, the low cost of
monitoring ensures the sustainability of enacted plans (Sikaala et al.,
2014). In previous studies, we developed rapid diagnostic kits for
resistance to seven insecticides based on the approach in S. furcifera,
and the simple glass vials greatly reduced monitoring costs (Mao
et al., 2021). Glass vials that contain a given insecticide can be
prepared in advance and can be made in large quantities with simple
roller equipment. Having an easy method with inexpensive
equipment increases its likelihood to be adopted by crop scouts,
extension agents, and growers to conduct resistance testing. Given
the advantages of the kit’s low cost and simplicity of operation, it is
possible to increase the number of sentinel sites for S. frugiperda on a
national scale, such as community-based monitoring (CDCP, 2010;
Sikaala et al., 2014), which allows the continuous detection of
resistance changes during the annual in and out migration
periods (Ge et al., 2022).

This diagnostic kit has greater efficiency (1 or 2 h diagnosis
time) and is easier to implement than the traditional bioassay
method. As a comparison, all kit-based assays can be performed
immediately after field collection of S. frugiperda, whereas other
bioassays usually complete testing at F1 or F2, which results in a
minimum of 1 month to obtain resistance data (Jin et al., 2021b;
Li et al., 2022). Because the S. frugiperda has overlapping
generations in the field, it is guaranteed that insects of the
appropriate life stage required for the test will be present. This
not only minimizes the risk of not detecting resistant
populations due to loss of selection pressure when rearing
multiple generations in the laboratory (Tabashnik et al.,
1994; Zhang et al., 2021), but also allows for a “race” with
the pest, as the feeding of S. frugiperda is phenomenal. Once this
kit is promoted at the agroecosystem level, farmers are expected
to screen available insecticides in a short time, thus avoiding the
use of ineffective crop protection compounds and the loss of
valuable products from the overuse of single insecticides.

Using a diagnostic dose method can provide rapid and
reliable monitoring to support the widespread implementation
of resistance monitoring. The WHO has established criteria that
indicate resistance in mosquitoes if they have a mortality that is
less than 90% to insecticides (WHO, 2013). In the present study,
the LD90 values of the insecticides that were identified for
susceptible S. frugiperda were used as the diagnostic doses,
and they were able to effectively separate susceptible and
resistant populations of S. frugiperda from nine geographical
populations. Furthermore, linear equations for the mortality-
resistance ratio were obtained for seven insecticides that were

based on six field populations and susceptible strains.
Subsequently, the validity of this equation was verified in the
other three field populations. The high correlation indicated that
the actual resistance ratios that were estimated by the linear
equation were consistent with those obtained with the diet-
overlay bioassay. In particular, we found a high risk of control
failure for the control of S. frugiperda with bifenthrin,
deltamethrin and lambda-cyhalothrin (Figure 3), and these
results are consistent with those of previous studies also
showing that invasive S. frugiperda populations have developed
resistance to pyrethroids (Li et al., 2022), which points to the
relevance of assessing the likelihood of control failure based on
the concentration of the pesticide in commercial formulations.
Notably, we found a significant negative correlation between
diagnostic mortality and the likelihood of control failure
(bifenthrin, deltamethrin and lambda-cyhalothrin), and based
on the model set, the detection criteria that would need to be met
for the insecticide to be reintroduced. In addition, we found that
chlorpyrifos, phoxim, chlorantraniliprole and chlorfenapyr had
good control effects on S. frugiperda (CFL < −22%), which
indicates that the use of these insecticides can continue to be
recommended, but the risk of cross-resistance needs to be added
to resistance management (Zhao et al., 2020). The results provide
important guidance on the value of re-excavating insecticides.

The development of timely and accurate resistance monitoring
methods in resistance monitoring and management must be
integrated into S. frugiperda control programs so that available
insecticides can be used judiciously and the efficacy of chemical-
based control can be sustained for the long term (Mao et al., 2019b;
Tay et al., 2023). The standardization of testing techniques and the
promotion of products can facilitate extensive cooperation between
agriculture technical extension centers or local plant protection
stations, family farms and individual households so that the
effectiveness of resistance management can be maximized
(Chanda et al., 2016). The successful development of this kit
demonstrates that this methodology can be applied to other
lepidopteran pests, as well as to different insecticides.
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