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Microplastics contamination have been extensively reported in aquatic ecosystem
and organisms. It is wildly acknowledged that the ingestion, accumulation and
elimination ofmicroplastics in fishes are species-specific, whichmainly depending
on the feeding behavior. This study aimed to investigate the effects of
microplastics on the morphology and inflammatory response in intestines of
fishes with different feeding types. Largemouth bass (carnivorous fish), grass
carp (herbivorous fish) and Jian carp (omnivorous fish) were used as organism
model. The contributing concentration and size of microplastics were explored as
well as the response time and legacy effect in fishes. Two different sizes of
polystyrene microplastics (80 nm and 8 μm) were set at three concentrations.
And samples were analyzed at different exposure times and depuration times.
Histological analysis indicated that multiple abnormalities in intestines were
presented in three species fishes after acute exposure microplastics. The
mRNA abundance of immune-related genes in the intestine tissues of fishes
were significantly fluctuant. There were differential expressions of genes coping
with differential sizes and concentrations of microplastics exposure in different
fishes. The reason for the difference effects of microplastics on fishes was still
unclear but could be due to the difference in the structure and function of the
digestive system. These results provided a theoretical basis to further analysis of
the mechanism of fish intestinal pathology caused by microplastics.
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1 Introduction

Plastics have been remarkable materials in peoples’ daily life due to its versatile, durable,
and incredibly adaptable. Plastics production reached 390 million tonnes in 2021 worldwide
with approximately 9% increasing rate every year and China contributed to 32% of world’s
plastics production (Plastics Europe, 2022). In the meanwhile, the global total of plastic waste
reached 380 Tg in 2018 with an exponential growth every year (Rai et al., 2021). Once
entering the environment, plastic would degrade or fragment into microplastics through UV
radiation, mechanical transformation or biological degradation by microorganisms (Cole
et al., 2011; Alimi et al., 2018). Microplastics are defined as small plastic pieces or fibers
smaller than 5 mm (NOAA, 2015). They come in many forms, not only secondary sources,
but also primary sources, such as microbeads in personal care products (McDevitt et al.,
2017). Microplastics contamination have been extensively reported in marine, freshwater
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and terrestrial ecosystems (Wang et al., 2020a; Peng et al., 2020; Xu
et al., 2020), thus identified as one of the top 10 emerging global
environmental problems by the United Nations Environment
Program.

Adverse effects of microplastics on fishes have been found in
many literatures (Jacob et al., 2020; Anna et al., 2021; Mallik et al.,
2021). Due to the attractive color, buoyancy, and food-like
properties, fish are particularly prone to ingesting microplastics
(Garrido Gamarro et al., 2020). The ingestion of microplastics by
fish can cause a variety of consequences: 1) microplastics can lead to
physical damage and histopathological alterations (Peda et al., 2016;
Jabeen et al., 2018; Ahrendt et al., 2020); 2) microplastics can cause
impairments in oxidative, and disorders of inflammatory balance
and intestinal microflora (Gu et al., 2020; Huang et al., 2020;
Iheanacho and Odo, 2020); 3) microplastics can also lead to fish
behavior changes (Brun et al., 2019; Guimarães et al., 2021; Rios-
Fuster et al., 2021; Shi et al., 2021); 4) microplastics can act as carriers
to intensify further adverse effects of other pollutants on fish
(Banaee et al., 2019; Zhang et al., 2019; Li et al., 2023a).

It is wildly acknowledged that the ingestion, accumulation and
elimination of microplastics in fishes are species-specific (Mizraji
et al., 2017; Xu and Li, 2021). The field investigation found
microplastic amounts in filter-feeding and omnivorous fish were
higher than that of carnivorous species (Wang et al., 2020b). The
laboratory experiment proved that microplastics ingestion in fish
larvae was influenced by feeding type of fish, and omnivores fish
were less able to eliminate microplastics than filter-feeding fish
(Zhang et al., 2021). However, the physiological effects of micro-
nano plastics on juvenile fish with different feeding habits have not
been reported.

In this study, species-specific effects of microplastics on three
commercial fish species with different feeding types were
investigated. Largemouth bass, Micropterus salmoides is a typical
freshwater carnivorous fish species and widely farmed in China due
to its strong adaptability, fast growth, delicious taste, and high
economic value (Wang et al., 2020c). Grass carp
(Ctenopharyngodon idella), a herbivorous fish species, is one of
the most important freshwater cultivars in China, which annual
production exceeded 5.53 million tons in 2019 (China Fishery
Statistical Yearbook, 2020). Jian carp (Cyprinus carpio var. Jian)
is an omnivorous freshwater fish species with an annual production
of 24.2 million tons worldwide (Lin et al., 2019; Li et al., 2023b). This
study aimed to reveal the effects of microplastics on the morphology
and inflammatory response in intestines of fishes with different
feeding types. To achieve this goal, histopathological sections were
examined, and immune-related genes profiles were used to study the
changes in the intestinal tissue of three fishes after microplastics
exposure. These results would provide a theoretical basis to further
analysis of the mechanism of fish intestinal pathology caused by
microplastics.

2 Material and method

2.1 Materials

Polystyrene microplastics with diameters of 80 nm and 8 μm
were purchased from Dae Technology Company (Tianjin, China).

Largemouth bass, grass carp and Jian carp were bought from a
livestock farm in Shunde City (Guangdong, China). Largemouth
bass was (5.23 ± 0.62) cm in length and (2.97 ± 0.64) g in weight.
Grass carp was (5.81 ± 0.50) cm in length and (3.82 ± 0.91) g in
weight. Jian carp was (3.46 ± 0.16) cm in length and (0.93 ± 0.19) g in
weight. Fish were acclimatized at 25.2 ± 1.5 °C in culture water
(pH 7.1 ± 0.4; dissolved oxygen 6.4 ± 0.5 mg/L) with a 12 h light/
dark cycle. Before the experiment, fish were acclimated in 100 L glass
tanks for 5 d and were fed with 5.0% body weight fodder (Haid
Group, Guangdong, China) twice daily.

2.2 Experimental design

Two different sizes of fluorescent microplastics (80 nm and
8 μm) were set at four concentrations for grass carp and Jian
carp: 0, 0.02 mg/L, 0.2 mg/L and 2 mg/L. Based on the previous
findings (Zhang et al., 2021), carnivorous fish seemed to be more
tolerant to microplastics than other fishes. So, the higher
microplastics exposure concentrations (0.05 mg/L, 0.5 mg/L and
5 mg/L) for largemouth bass were set. The concentrations of
exposure for MPs were selected based on the other studies (Ding
et al., 2018; Li et al., 2020; Zhang et al., 2021). The microplastics with
nanometer particle size (80 nm) and micron particle size (8 μm)
were compared.

In the exposure experiment, tanks (20 cm × 15 cm × 15 cm)
were filled with 2 L of culture water and eight fish. A total of
twenty-four tanks were set for each fish species, including control
group and replicate group. Each species of fish was tested
separately. Three replicate tanks were used for 24 h and 48 h
sampling times. After 48 h exposure, the surviving fish were moved
to an aquarium with clean water containing no microplastics for
48 h. No feeding was done during exposure and depuration. At
24 and 48 h after exposure and clearance, two fish were dissected
from each tank and the intestines were removed for subsequent
analysis. This study was carried out in strict accordance with the
recommendations in the Guide for the Care and Use of Laboratory
Animals of the National Institutes of Health. All surgery was
performed under anesthesia, and all efforts were made to
minimize suffering.

2.3 Histopathological analysis

A total of 24 fish from the control and experimental groups were
anesthetized on ice and intestines were dissected. Intestinal tissue
fixed in general-purpose tissue fixator (Servicebio, Wuhan, China),
embedded in paraffin wax, sectioned at 4 μm thickness, and stained
with hematoxylin-eosin (H&E). Tissue slices were examined and
photographed by a microscopy (Nikon, Tokyo, Japan) with the
Mshot Image Analysis System.

2.4 RNA extraction and cDNA synthesis

The experimental methods of RNA extraction and cDNA
synthesis are presented in Supplementary Text S1. The cDNA
was stored at −80°C until further analysis.
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2.5 Immune and enzyme-related gene
expression

The SYBR green real-time PCR assay was performed on the CFX
Connect TM Real-Time System (BIO-RAD, Hercules, CA, USA) using
the SYBR® Green Premix Pro TaqHS qPCRkit (Accurate Biotechnology
Co., Ltd., Hunan, China) following the manufacturer’s approach.
Specific primer sequences are listed in Table 1. Details of the PCR
program are presented in Supplementary Text S2. Expression levels of
target genes were normalized to the internal reference, and the data were
calculated as the fold change in comparison to the control group.

2.6 Statistical analysis

All data were quantified as the mean ± standard error (S.E) and
performed by one-way ANOVA using SPSS 17.0 and Excel 2016.

Statistical significance between the control and the experimental
groups was conducted by the Duncan’s multiple range test. A value
of p < 0.05 was set with statistical significance.

3 Results

3.1 Intestinal morphology

After HE staining, intestinal histomorphology of three fishes
were examined using a light microscope. Histopathological sections
showed that the intestinal folds of largemouth bass juvenile were in
disorder and shortened, infiltrated cells, especially when fish were
exposure in higher concentration microplastics of micron scale
(Figure 1). In the intestine of grass carp juvenile, there was no
difference between the control and the treatments for vacuolization,
goblet cell hyperplasia or villus shortening (Supplementary Figure
S1). After combing all the scored histopathology features together,
there was no significant difference in the intestinal muscular
thickness and intestinal villi length between the groups (p > 0.05)
(Supplementary Figure S2). Juvenile Jian carp showed multiple
abnormal intestines after microplastics exposure (Supplementary
Figure S3). The intestinal folds in the experimental group were not
full or regular. However, no significant difference was found in the
muscle thickness or villi length in Jian carp either (p > 0.05).
Histopathological data of Jian carp are listed in Supplementary
Table S1.

3.2 Transcriptional responses of target
genes

After 8 μm microplastics exposure 48 h, the expression levels of
the immune-related gene (IL-8) were significantly upregulated in the
intestines of largemouth bass juvenile (p < 0.05) (Figure 2C). 80 nm
microplastics caused upregulation of IL-8 in 48 h depuration after
exposure 48 h (Figure 2A). Whereas the situation of high
concentration exposure was different with mid and low
concentration exposure (Figures 2A, C). Expression of Caspase 3
gene in the intestines of fish exposed 80 nm microplastics 48 h and
cleaned 8 μmmicroplastics 48 h were significantly lower than that in
the intestines of fish in the control group (p < 0.01) (Figures 2B, D).

The effects of microplastics on the expression of levels of
immune-related genes in intestine tissues of grass carp are shown
in Figure 3. The relative expression levels of IL-1β, IL-8, TGF-β1 and
TNF-α were all observably upregulated (p < 0.01) when exposure
80 nm microplastics at low concentration (20 μg/L) in the start of
24 h. TGF-β1 and TNF-α expression level when exposure 80 nm
microplastics 24 h at middle and high concentration (200 μg/L and
2000 μg/L) were significantly upregulated, rather than IL-1β and IL-
8 expression level. However, there was different gene expression
pattern when exposure 8 μm microplastics.

The mRNA expression levels of IL-1β, IL-10, TGF-β and TLR-2
in intestines of Jian carp juvenile exposed to microplastics of 80 nm
and 8 μm are shown in Figure 4. The upregulation of pro-
inflammatory cytokines, such as IL-1β and TLR-2, or/and
downregulation of anti-inflammatory cytokines including TGF-β1
and IL-10 could cause inflammation in fish. Noteworthily, Jian carp

TABLE 1 List of gene primers used for qPCR.

Fish Genes Sequence, forward/reverse (5′–3′)

Largemouth bass β-actin F: ATCGCCGCACTGGTTGTTGAC

R: CCTGTTGGCTTTGGGGTTC

IL-8 F: GAGCCATTTTTCCTGGTGACT

R: TCCTCATTGGTGCTGAAAGATC

Caspase 3 F: GCTTCATTCGTCTGTGTTC

R: CGAAAAAGTGATGTGAGGTA

Grass carp β-actin F: GGCTGTGCTGTCCCTGTA

R: TTATTGTGGTTACGCTGGA

IL-1β F: AGAGTTTGGTGAAGAAGAGG

R: TTATTGTGGTTACGCTGGA

IL-8 F: ATGAGTCTTAGAGGTCTGGGT

R: ACAGTGAGGGCTAGGAGGG

TGF-β1 F: TTGGGACTTGTGCTCTAT

R: AGTTCTGCTGGGATGTTT

TNF-α F: CGCTGCTGTCTGCTTCAC

R: CCTGGTCCTGGTTCACTC

Jian carp 18S F: CTGAGAAACGGCTACCATTC

R: GCCTCGAAAGAGACCTGTATTG

IL-1β F: GAGTGAACTGCACCAAACAAC

R: GTCGGCACTGTCAGAGTAAAT

IL-10 F: CTCCGTTCTGCATACAGAGAAA

R: TCATGACGTGACAGCCATAAG

TGF-β F: ACGTTTCCAGATGGTTCAGAG

R: GCCACTTTCTTTGTTTGGGAATA

TLR-2 F: GTGCTCCTGTGAGTTTGTATCT

R: TGGAGTGTCGCACACATAATAG
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cured better in 8 μm microplastics treatment than in 80 nm
microplastics treatment.

4 Discussion

4.1 Effects of microplastics on intestinal
morphology of fish

The intestinal morphological effects of microplastics with a
dose-dependent way have been explored in various fishes. Over
secretion of goblet cells was found in juvenile guppy (Poecilia
reticulata) after exposing microplastics with 32–40 μm diameter,
and the higher concentration of microplastics, the more goblet cells
secreted (Huang et al., 2020). However, the loss of villus and crypt
cells was significantly increased due to microplastic physical
abrasion in the intestine of juvenile intertidal fish (Girella
laevifrons), and leukocyte infiltration and hyperemia exposure in
the high concentration group were more serious than those in the
low concentration group (Ahrendt et al., 2020). In the European sea
bass (Dicentrarchus labrax L.), intestinal tissues were altered after
fish were fed with polyvinyl chloride (PVC) pellets for 90 days (Peda

et al., 2016). Another morphometric analyses of sea bass fed
polyethylene (PE) microplastics in the diets for 21 days showed a
significant reduction in the amounts of goblet cells as well as a
decrease in villus height (Espinosa et al., 2019). Histological analysis
indicated that multiple abnormalities in intestines are presented in
three species fishes after acute exposure microplastics in this study.

As we all known, intestine is vital for the digestion and
absorption of nutrients, and intestinal morphology characters,
such as muscular layer thickness, villi length, and the number of
goblet cells indicate intestine health in fish. To some extent,
abnormal in the intestinal sections is an immune response to
external stimulus. On one hand, pathological changes of
intestinal tract might be the result of microplastics intrusion. On
the other hand, it is crucial to determine whether this intrusion
outpaces the organism’s ability to repair itself. From
histopathological analysis of intestines of largemouth bass
juvenile exposed to 8 nm and 8 μm microspheres after exposure
48 h and clean 48 h (Figure 1), we found microplastics of lager size
and higher concentration cause more serious damage, and the
damage seems to be irreversible. Obviously, this change makes
fish more sensitive to infection by pathogens. Compared with the
intestinal slices of grass carp and Jian carp, Jian carp with smaller

FIGURE 1
Histopathological analysis of intestines of largemouth bass juvenile exposed to polystyrene microspheres of 80 nm (A) and 8 μm (B) after exposure
48 h and clean 48 h. Exposure concentration and time were shown in the picture. Scale bar = 20 μm.
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intestinal diameter and less perfect villus structure was more
seriously damaged by microplastic invasion.

4.2 Effects of microplastics on immune-
related genes expression of fish

Many animal studies have indicated that exposure to
microplastics impairs oxidative and inflammatory bowel balance
(Choi et al., 2018; Ding et al., 2018). Especially, microplastics cause
intestinal inflammation, manifested by a significant increase in IL-
1α levels in the intestine (Hirt and Body-Malapel, 2020). The
immune function of organs is highly correlated with the
inflammatory response, which is generally considered to be a
typical defense response that protects the host from pathogens
(Zhong et al., 2020). Cytokines mediate the inflammatory
response in fish, which are mainly divided into pro-inflammatory
factors (e.g., TNF-α, IL-1β and IL-10) and anti-inflammatory factors
(e.g., IL-10 and TGF-β). For example, interleukin is a typical class of
cytokines which is mainly involved in regulating all kinds of
lymphocytes in the immune system. Tumor necrosis factor α
(TNF-α), as pleiotropic proinflammatory and potent regulatory
cytokines, can regulate cell proliferation, apoptosis or
differentiation in the immune system (Cao et al., 2020). Toll-like
receptors (TLRs), as a crucial innate receptor, can identify pathogen-
associated molecular patterns (PAMPs) of invading microorganisms
and induce downstream NF-κB activation and the production of
TNF-α, IL-10 and other cytokines (Meng et al., 2021).

Previous research in adult male zebrafish (Danio rerio) showed
that exposure to 1,000 μg/L of 0.5 μm microplastics for 14 days

significantly upregulated the transcription levels of IL-1α, IL-1β,
and Ifn in the intestine (Jin et al., 2018). In the present study,
microplastics exposure significantly induced or restrained the
mRNA expression of immune-related genes in the intestine
tissues of fishes. There were differential expressions of genes
coping with differential sizes and concentrations of
microplastics in different fishes. Similarly, in other species, such
as rats (Wei et al., 2021) and prawn (Li et al., 2023a/b), the mRNA
abundance of immune-related genes was increased with
microplastics exposure.

4.3 Response time and legacy effect of
microplastics with different concentration
and size

In terms of damage to intestinal morphology, acute exposure did
not cause significant damage at the size and concentration of
microplastics exposed in this paper. From the perspective of gene
expression level, when exposed to nanoscale microplastics at low
concentration, fish can promote self-repair through the upregulation
of some inflammatory factors. For micron-scale microplastics, we
hypothesized that part of microplastics could be removed by fish
excretion after ingestion. Therefore, there was no significant
difference in gene expression between the experimental fish and
the control group during the recovery period. The effects of
microplastics on juvenile fishes are species-specific, the specific
mechanism needs to be further studied.

Although time had no significant effect on intestinal
morphology, we hypothesized that it was related to exposure

FIGURE 2
The relative gene expression levels (fold change) of IL-8 (A,C) andCaspase 3 (B,D) in intestines of largemouth bass juvenile exposed tomicroplastics.
Data are expressed as mean ± standard deviation. Significant differences from control are shown (*p < 0.05; **p < 0.01).
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conditions. Thankfully, even when exposed to extremely high
concentration (mg/L) of microplastics, there is no immediate
visible damage to the intestinal morphology of fish. Response

time and recovery time of gene expression was species-specific.
Grass carp has the longest intestinal tract, followed by Jian carp, and
largemouth bass has the shortest intestinal tract, which is related to

FIGURE 3
The relative gene expression levels (fold change) in intestines of grass carp juvenile exposed to microplastics of 80 nm (A–D) and 8 μm (E–H). Data
are expressed as mean ± standard deviation. Significant differences from control are shown (*p < 0.05; **p < 0.01).
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their feeding habits. We hypothesize that the lag time of
microplastics in fish intestine is related to the length of the
intestine. A methodology to assess how effective Mediterranean
fish species, that are known to have ingested marine plastic, were
considered gut length as well, which showed fish with smaller gut
length is more representative (Bray et al., 2019).

5 Conclusion

In this study, species-specific effects of microplastics on three fishes
with different feeding types were investigated. The contributing
concentration and size of microplastics, as well as the response time
and legacy effect in fishes were also explored. Two different sizes of

FIGURE 4
The relative gene expression levels (fold change) in intestines of Jian carp juvenile exposed to microplastics of 80 nm (A–D) and 8 μm (E–H). Data
are expressed as mean ± standard deviation. Significant differences from control are shown (*p < 0.05; **p < 0.01).
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fluorescent microplastics (80 nm and 8 μm) were set at four
concentrations. Multiple abnormalities in intestines were presented in
three species fishes, and there were differential expressions of genes coping
with differential sizes and concentrations of microplastics exposure in
different fishes. The results of this study would be beneficial for
extrapolating microplastics contamination risks to commercial fishes.
The reason for the difference effects of microplastics on fishes was still
unclear but could be due to the difference in the structure and function of
the digestive system. This study will provide a valuable steppingstone for
future research, where we hope to address the microplastics research gap
between various fish species.
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