
Seasonal changes in free 25-(OH)D
and vitamin D metabolite ratios
and their relationship with
psychophysical stress markers in
male professional football players

Anna Książek1*, Aleksandra Zagrodna1, Giovanni Lombardi2,3 and
Małgorzata Słowińska-Lisowska1

1Department of Biological and Medical Basis of Sport, Faculty of Physical Education and Sports, Wroclaw
University of Health and Sport Sciences, Wroclaw, Poland, 2Laboratory of Experimental Biochemistry and
Molecular Biology, I.R.C.C.S. Istituto Ortopedico Galeazzi, Milan, Italy, 3Department of Athletics, Strength
and Conditioning, Poznań University of Physical Education, Poznań, Poland

Introduction: Novel markers of vitamin D status are currently being investigated,
including free 25-(OH)D (25-(OH)DF) and the vitamin D metabolite ratio (24,25-
(OH)2D3:25-(OH)D3; VMR). The VMR may provide additional functional information
on vitamin D metabolism in athletes. Therefore, the main objective of the current
study was to evaluate 25-(OH)DF, bioavailable 25-(OH)D (25-(OH)DB), VMR, and
psychophysical stress markers during different training periods over a half-season.
The second aim was to assess the association between vitamin D binding protein
(VDBP), total and free 25-(OH)D, VMRs, and psychophysical stress markers in
professional football players. Moreover, we examined the relationship between
25-(OH)D3 and vitamin D metabolites (24,25-(OH)2D3, 3-epi-25-(OH)D3) to
determine if training loads in different training periods influenced the vitamin D
metabolome.

Methods: Twenty professional football players were tested at six different time
points across half a year (V1—June; V2—July; V3—August; V4—October;
V5—December; V6—January).

Results: Analyses indicated a significant seasonal rhythm for VDBP, and total 25-
(OH)D (25-(OH)DT), 25-(OH)DB, 24,25-(OH)2D3, 3-epi-25-(OH)D3, 25-(OH)D3:
24,25-(OH)2D3, and 24,25-(OH)2D3:25-(OH)D3 VMRs throughout the training
period. No correlation was detected between 25-(OH)DT, 25-(OH)DB, 25-(OH)
DF, vitamin D metabolites, VMRs, VDBP, and ferritin, liver enzymes (aspartate
transaminase [AST] and alanine transaminase [ALT]), creatine kinase (CK), cortisol,
testosterone, and testosterone-to-cortisol ratio (T/C) in each period (V1-V6).
However, there was a strong statistically significant correlation between 25-
(OH)D3 and 24,25-(OH)D3 in each training period.

Conclusion: In conclusion, a seasonal rhythm was present for VDBP, 25-(OH)DT,
25-(OH)DB, vitamin D metabolites (24,25-(OH)2D3, 3-epi-25-(OH)D3), and VMRs
(25-(OH)D3:24,25-(OH)2D3, 25-(OH)D3:3-epi-25-(OH)D3). However, no rhythm
was detected for 25-(OH)DF and markers of psychophysical stress (ferritin, liver
enzymes, CK, testosterone, cortisol, and T/C ratio). Moreover, the relationships
between free and total 25-(OH)D with psychophysical stress markers did not
demonstrate the superiority of free over total measurements. Furthermore,
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training loads in different training periods did not affect resting vitamin Dmetabolite
concentrations in football players.
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1 Introduction

Vitamin D is an important compound related to many aspects of
athletic performance and recovery, with the most studied functions of
vitamin D concerning bone (Herrmann et al., 2017) and skeletal muscle
health (Dzik and Kaczor, 2019). Furthermore, vitamin D plays a vital
role in modulating the functions of many other tissues that are
important in a sports context, including those impacting immune
(Martens et al., 2020) and cardiac function (Messa et al., 2014).
Vitamin D status is a common topic in sports science due to the
high prevalence of vitamin D insufficiency in athletes (Farrokhyar et al.,
2015; Harju et al., 2022), which can negatively influencemusculoskeletal
function, power, force production, and recovery from fractures (Owens
et al., 2018; Ribbans et al., 2021). All of these factors are pivotal for
athletes as they may have impact on sport performance and general
health.

In most athlete trials, serum 25-(OH)DT level is a biomarker of
vitaminD status due to its relatively long half-life. Consistentwith the free
hormone hypothesis (Chun et al., 2014), only the non-bounded fraction
(the free fraction, 25-(OH)DF) can enter cells and exert its biological
effects (Bikle, 2021). Some studies have shown that some vitamin D
functions may be closely related to its free fraction than to VDBP bound
25-(OH)DT concentrations (Powe et al., 2011; Shieh et al., 2018). VDBP
levels and activities influence vitamin D bioavailability, altering the
balance between free and bound vitamin D fractions (Bouillon et al.,
2019). In such circumstances, 25-(OH)DT concentration estimations
may be misleading.

Some studies suggest (Cashman et al., 2015; Ginsberg et al.,
2020) that evaluating themolar ratio of 24,25-(OH)2:25-(OH)Dmay
be a better index of vitamin D insufficiency in healthy men (Alonso
et al., 2022) as it is not affected by race (Berg et al., 2015). Recent
evidence demonstrates that VMR strongly associates with higher
bone mineral density (Ginsberg et al., 2018) and parathyroid
hormone (PTH) (Bosworth et al., 2012) than 25-(OH)DT.
Therefore, VMR may provide additional functional information
on vitamin D metabolism in athletes.

The vitamin D receptor (VDR) is expressed in skeletal muscle
and has essential roles in maintaining mitochondrial function and
recovery (Latham et al., 2021). Latest evidence indicates that vitamin
D signaling contributes to muscle regeneration. In animal models,
VDR protein expression associates closely with 25-(OH)D serum
concentration (Srikuea et al., 2020). The VDR and vitamin
D-activating enzyme CYP27B1 are expressed at a low level in
homeostatic skeletal muscle in vitro and in vivo, evidenced by
immunocytochemical and immunohistochemical visualization
and immunoblotting in C2C12 myoblasts and whole mouse
muscle (Srikuea et al., 2012; Srikuea et al., 2020; Latham et al.,
2021). Vitamin D play role in muscle regeneration supported by
rapidly raised Pax7 and VDR protein expression in skeletal muscle
to take action on the repair response after an acute bout of damaging
high-intensity physical effort (Puangthong et al., 2021),

demonstrating that the myogenic repair and vitamin D systems
are both rapidly and contemporaneously initiated after skeletal
muscle damage (Latham et al., 2021).

There are several studies on seasonal 25-(OH)DT concentration
changes in athletes (Lombardi et al., 2017; Vitale et al., 2018; Krzywański
et al., 2020) though there are none on seasonal changes in 25-(OH)DF

and VMR variations. Moreover, fewer studies considered the different
training periods in conjunction with vitamin Dmetabolites and VMRs.
The main aim of the current study was to assess 25-(OH)DF, VMRs,
(25-(OH)D3:24,25-(OH)2D3, 25-(OH)D3:3-epi-25-(OH)D3, 24,25-
(OH)2D3: 25-(OH)D3), and psychophysical stress markers (ferritin,
liver enzymes, creatine kinase [CK], testosterone, and cortisol) during
different periods of the training season. The second aimwas to examine
the association between VDBP, total, bioavailable and free 25-(OH)D,
VMRs, and psychophysical stress markers in professional football
players. In addition, we assessed whether training loads in different
training periods influenced the vitamin D metabolome. Therefore, we
examined the relationship between 25-(OH)D3 and vitamin D
metabolites (24,25-(OH)2D3, 3-epi-25-(OH)D3) in this cohort.

2 Materials and methods

2.1 Study design, participants, and blood
draws

Forty-two football players were recruited from one club competing
in the highest male football Polish league, the “Ekstraklasa,” providing
a total of 180 records. After initial screening, the study included
20 participants with a mean age of 26.9 ± 4.7 years. Athletes with
injuries, those not present at more than two blood draws, and
participants who used calcium (Ca) or vitamin D supplementation
were excluded. However, sporadic vitamin D intake was permitted.
The competitors who participated in the study were active in all
training periods and had similar athletic performance levels, career
duration, and training loads.

Blood draws followed the first round of the Polish “PKO BP
Ekstraklasa” from June 2021 to January 2022. Sample collections
were performed in June - V1 (before the pre-season), July—V2
(after the pre-season), August - V3 (during the competitive season),
October - V4 (during the competitive season), December—V5 (after the
competitive season), and January - V6 (after off-season). The team
trained regularly and played at latitudes between 50° and 54°N. Table 1
details the content of each of the training periods, considering different
training sessions and durations.

2.2 Biochemical analyses

Blood samples were collected into plain tubes containing a clot
activator (Vacutest, Kima, Italy), stored at room temperature for
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TABLE 1 Training content for each of the training periods.

Day Period V1 V2 V3 V4 V5 V6

Before the
pre-season

After the
pre-season

During the
competitive season

During the
competitive season

After the
competitive season

After the
off-season

Duration Duration Duration Duration Duration Duration

Monday M 60′ ITS 90′ CT rest 70′ CT/TEC 95′ CT/TEC 45′ ITS

A Rest 80′ CT/TEC rest rest rest rest

Tuesday M 45′ ITS 80′ CT 90′ CT/TEC 80′ CT 95′ CT/TEC 60′ ITS

A Rest 80′ TAC 80′ TAC 80′ TAC rest rest

Wednesday M Rest rest rest 60′ TAC rest rest

A 60′ ITS 100′ CT/TEC 65′ CT/TAC rest rest 60′ ITS

Thursday M Rest 70′ CT/TEC 115′ CT/TEC 60′ CT/TEC 50′ CT/TEC rest

A 60′ ITS 60′ TAC rest rest rest 90′ ITS

Friday M Rest 60′ CT 50′ TEC 60′ CT/TEC 80′ CT/TEC rest

A 45′ ITS 90′ TEC rest rest rest 45′ ITS

Saturday M Rest 90′ FG 50′ TAC rest 40′ TAC Rest

A Rest rest rest 90′ LG rest Rest

Sunday M Rest rest 90′ LG rest rest Rest

A Rest rest rest rest 90′ LG Rest

M, morning; A, afternoon; ITS, individual training session; CT, conditioning training (interval training, strength training, stamina training, speed training); TAC, tactical training; TEC, technical training; FG, friendly game; LG, league game.
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1 hour, then centrifuged at 1300 g for 10 minutes at 22 °C. Serum
aliquots were stored at −80°C until assayed.

As previously described (Książek et al., 2022), total serum Ca
was determined by colorimetric assay using the Konelab 60 system
(bioMérieux, Marcy-l’Etoile, France). Albumin was assayed on a
Siemens Dimension Xpand Plus clinical chemistry system (Siemens,
Munich, Germany).

Albumin-adjusted Ca (ACa) was calculated using the formula:

ACa mg/dL( ) � Ca mg/dL( ) + 4 − albumin g/dL( )( )*0.8[ ]

Intact PTH (iPTH) was determined in serum by an
electrochemiluminescence assay (ECLIA) on an Elecsys analyzer
(Roche, Basel, Switzerland). The intra- and inter-assay coefficients of
variation (CVs) were 4.5% and 4.8%, respectively, and the limit of
detection was at 1.20 pg .mL-1 (0.127 pmol .L-1).

Plasma CK activity was evaluated using diagnostic kits for the
Konelap 60 kinetic enzyme analyzer (bioMérieux, Marcy-l’Etoile,
France). The CK detection limit for the kits was 6 U/l, with an intra-
assay CV of 1.85%.

Serum ferritin and cortisol levels were measured by ECLIA on
the Cobas e601 analyzer (Roche, Mannheim, Germany). Intra-assay
and inter-assay CVs for ferritin and cortisol were 2.5% and 8.1%,
and 5.4% and 10.1%, respectively. Serum total testosterone was
measured by ECLIA on the Cobas e411 analyzer (Roche, Mannheim,
Germany) and had intra-assay and inter-assay CVs of 4.7% and
8.4%, respectively.

The testosterone-to-cortisol ratio (T/C) was calculated as a
surrogate marker of overtraining and psychophysical stress.

Aspartate transaminase (AST) and alanine transaminase (ALT)
levels were measured by enzymatic assay on the Alinity m analyzer
(Abbott Laboratories, IL, USA). The AST intra- and inter-assay CVs
were 0.7% and 1.0%, respectively, and the limit of detection was 3 U/
L. The ALT intra- and inter-assay CVs were 0.9% and 1.5%,
respectively, and the limit of detection was 2 U/L.

2.3 Vitamin D metabolite levels

Vitamin D metabolite levels 25-(OH)D3, 24,25-(OH)D2, 25-
(OH)2D3, and 3-epi-25-(OH)D3), and 25-(OH)D3-to-24,25-
(OH)2D3, 25-(OH)D3-to-3-epi-25-(OH)D3, and 24,25-(OH)2D3-
to-25-(OH)D3 ratios were quantitatively determined by liquid
chromatography coupled with tandem mass spectrometry (LC-
MS/MS).

Vitamin D metabolite standards (25-(OH)D3, 3-epi-25-(OH)
D3, 25-(OH)D2, 24,25-(OH)2D3) and isotope internal standards (25-
(OH)D3-

13C5, 24,25-(OH)3D3-
2H6, 25-(OH)D2-

2H3, 3-epi-25-(OH)
D3-

2H3) hereafter called IS mixture were all obtained from
IsoSciences (Ambler, PA, United States). In order to prepare
calibration standards, vitamin D-free serum was purchased from
Golden West Diagnostics (Temecula, CA, United States). The
following reagents were used for the preparation of mobile
phases or samples: acetonitrile (ACN), methanol (MeOH), water
(H2O), ethyl acetate, and formic acid (FA). The reagents listed above
were obtained from VWR (Pennsylvania, United States). A
derivatization reaction was carried out using 4-(4′-
dimethylaminophenyl)-1,2,4-triazoline-3,5-dione (DAPTAD)
synthesized by Masdiag Laboratory (Warsaw, Poland). A

chromatographic separation was performed using a Zorbax
Eclipse XDB-C18 (1.8µm, 80Å, 100 × 4.6 mm, Agilent Nacalai
Tesque, Santa Clara, United States).

The LC-MS analyses were conducted using a Nexera XR HPLC
system (Shimadzu, Kyoto, Japan) with an Eksigent autosampler
(Sciex, Framingham, MA, United States) coupled with a QTRAP®
5500 mass spectrometer (Sciex, Framingham, MA, United States).
Analyses were performed inmultiple reactionmonitoring (MRM) in
positive ionization using electrospray source (ESI). These ion source
parameters were used: Temperature (TEM) 550°C, Curtain Gas
(CUR) 25 psi, IonSpray Voltage (IS) 4000 V, Ion Source Gas 1
(GS1) 40 psi, Ion Source Gas 2 (GS2) 70 psi. H2O (phase A) and
ACN (phase B), both containing 0.1% formic acid, were used as
mobile phases, with a flow rate of 0.6 mL/min. Gradient elution was
performed as follows: 0 min - 50% B, 2.5 min - 78% B, 3.2 min - 98%
B, 4.5 min - 98% B, 4.6 min - 50% B, 5.5 min - 50% B. Total run time
was 5.5 min. The column oven temperature was 45°C.

2.4 Free 25-(OH)D levels from vitamin D
binding protein analysis

VDBP concentration was measured using a commercially
available enzyme-linked immunosorbent assay (ELISA) (R&D
Systems, MN, United States). The intra-assay CV ranges between
5% and 7%, and the inter-assay CV ranges from 5% to 8%.

Free vitamin D (25-(OH)DF) levels were estimated using a
published mathematical method (Bikle et al., 1986), with the
affinity binding constants for 25-(OH)DT with albumin and
VDBP being 6 × 105 M−1 and 7 × 108 M−1, respectively.

Free 25 − OH( )D � total 25 − OH( )D
1 + 6 x 105x albumin( ) + 7x 108 xVDBP( )

The levels of bioavailable 25-(OH)D (25-(OH)DB) were
calculated using equations adapted from Powe et al. (Powe et al.,
2011)

Bioavailable 25 − OH( )D � 1 + 6x 105( )x albumin( )xFree 25

− OH( )D

The concentration of 25-(OH)DF and 25-(OH)DB were derived
from the respective total (sum of D3 + D2) values.

2.5 Statistical analysis

The sample size was estimated using the G power
3.1.9.2 calculator (http://www.gpower.hhu.de/). Descriptive
statistics were presented using mean and standard deviation. The
Shapiro-Wilk test assessed data normality, and Levene’s test
examined homogeneity of variance. Differences between seasons
(summer—V1+V2+V3 vs. winter - V4+V5+V6) were assessed using
comparison of mixed models with and without seasonal effect, with
players id as random effect. VDBP, vitamin D metabolites (25-(OH)
DT, 25-(OH)DF, 24,25-(OH)2D3, 3-epi-25-(OH)D3), VMRs, and
psychophysical stress markers were processed with single and
population mean cosinor tests to evaluate the presence of a
seasonal rhythm. Seasonal rhythm analysis was performed based
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on the midline estimate statistic rhythm (MESOR) (defined as the
rhythm-adjusted mean value) using the cosinor-fitting equation, y =
MESOR + Amplitude x cos (Frequency (x) + acrophase), where
acrophase is the difference (time) between the MESOR and peak
value in the cosine curve. Multiple regression analysis assessed the
association between VDBP, 25-(OH)DT, 25-(OH)DF, VMR, and
psychophysical stress markers, while Pearson’s correlation
coefficient determined the association between 25-(OH)D3 and
vitamin D metabolites. All analyses employed R for Windows,
version 4.3.1 (R Foundation for Statistical Computing, Vienna,
Austria) (Team, 2016). The significance threshold was p < 0.05.

3 Results

The data analysis included results from 20 football players. Changes
in biochemical parameter levels during the training periods are shown
in Table 2. Significant changes in 25-(OH)DT, 25-(OH)DB, 24,25-
(OH)2D3, 3-epi-25-(OH)D3, 25-(OH)D3:24,25-(OH)2D3, and 24,25-

(OH)2D3:25-(OH)D3VMRconcentrationswere demonstrated between
the measurements recorded throughout the training period (Table 2).
There were no differences in 25-(OH)D3:3-epi-25-(OH)D3 VMR,
ferritin, AST, ALT, CK, hs-CRP, testosterone, cortisol and T/C ratio
between training periods in studied athletes.

We also investigated the differences between seasons (summer
vs. winter) in VDBP, vitamin D metabolites, VMR and
psychophysical stress markers in football players. Table 3 shows
changes in the levels of biochemical parameter between studied
periods (summer (V1-V3) and winter (V4-V6)). In summer
VDBP (p = 0.013), 25-(OH)DT (p < 0.001), 25-(OH)DB (p =
0.006), 24,25-(OH)2D3, 3-epi-25-(OH)D3 (p < 0.001) and 24,25-
(OH)2D3:25-(OH)D3 (p = 0.011) were significantly higher than in
winter period. We also observed that during summer (which covered
preparatory and competitive training periods) AST (p = 0.027) and
ALT (p = 0.018) were significantly higher than during winter. In
winter 25-(OH)D3:24,25-(OH)2D3 (p = 0.004) and 25-(OH)D3:3-epi-
25-(OH)D3 VMR (p = 0.012) were significantly higher than in
summer.

TABLE 2 Changes in the levels of the biochemical parameters of football players (n = 20) during the training periods (V1-V6).

V1 V2 V3 V4 V5 V6 p

VDBP (μmol/L) 2.65 ± 0.74 2.66 ± 0.87 2.97 ± 0.87 2.28 ± 0.94 2.13 ± 0.89 1.42 ±
1.06

25-(OH)DT (ng/mL) 42.0 ± 6.2 45.0 ± 5.9 48.6 ± 7.3 41.8 ± 5.8 37.9 ± 6.1 33.7 ± 4.5 pV1-V3 < 0.001, pV1-V6 = 0.002, pV2-V3 = 0.017, pV2-V4 = 0.022,
pV2-V5 = 0.003, pV2-V6< 0.001, pV3-V4< 0.001, pV3-V5< 0.001,

pV3-V6< 0.001, pV4-V6 = 0.002

25-(OH)DF (pg/mL) 20.1 ± 5.9 21.7 ± 5.6 21.2 ± 5.1 20.3 ± 4.6 19.5 ± 5.3 18.6 ± 3.9

25-(OH)DB (ng/mL) 7.8 ± 2.3 8.7 ± 2.4 8.6 ± 1.9 8.0 ± 1.9 7.7 ± 2.0 5.8 ± 3.3 pV1-V5 < 0.001, pV2-V5 < 0.001, pV3-V5 < 0.001, pV4-V5 < 0.001

24,25-(OH)2D3 (ng/mL) 3.8 ± 0.9 4.3 ± 0.8 4.6 ± 1.0 3.8 ± 0.8 3.2 ± 0.7 2.8 ± 0.7 pV1-V2 = 0.031, pV1-V3 = 0.003, pV1-V6 = 0.017, pV2-V3 = 0.028,
pV1-V5 < 0.001, pV1-V6 < 0.001, pV3-V4 = 0.016, pV3-V5 < 0.001,

pV3-V6 < 0.001, pV4-V5 = 0.02, pV4-V6 = 0.01

3-epi-25-(OH)D3

(ng/mL)
2.0 ± 0.8 2.1 ± 0.5 2.3 ± 0.9 1.8 ± 0.5 1.6 ± 0.7 1.3 ± 0.4 pV3-V6 = 0.038

25-(OH)D3:24,25-
(OH)2D3 VMR

11.4 ± 1.7 10.6 ± 1.1 10.5 ± 1.2 11.0 ± 1.4 11.7 ± 1.8 12.1 ± 2.4 pV1-V2 = 0.021, pV1-V3 = 0.005, pV3-V5 = 0.02

24,25-(OH)2D3:25-(OH)
D3 x100 VMR

8.94 ± 1.43 9.52 ± 0.95 9.65 ± 1.12 9.22 ± 1.18 8.73 ± 1.32 7.31 ±
3.40

pV1-V2 = 0.011, pV1-V3 = 0.015, pV2-V5 = 0.022, pV3-V5 = 0.017

25-(OH)D3:3-epi-25-
(OH)D3 VMR

23.2 ± 6.7 21.8 ± 4.3 22.6 ± 6.7 23.9 ± 6.6 26.3 ± 8.4 27.2 ± 7.7

Ferritin (µg/dL) 107.9 ±
66.4

107.1 ±
68.0

105.0 ±
75.3

104.7 ±
31.3

90.3 ± 30.3 109.9 ±
81.4

AST [U/L] 29.8 ± 11.9 29.6 ± 5.3 28.0 ± 7.5 25.9 ± 5.3 24.9 ± 5.1 26.9 ± 9.4

ALT [U/L] 25.4 ± 8.1 24.2 ± 4.8 25.0 ± 6.5 21.7 ± 4.2 23.8 ± 7.0 21.4 ± 5.2

CK [UI/L] 439.4 ±
241.6

539.6 ±
771.3

380.7 ±
246.4

372.2 ±
186.8

480.4 ±
537.4

243.9 ±
97.8

hs-CRP [mg/L] 3.08 ± 0.17 3.14 ± 0.18 3.21 ± 0.13 3.14 ± 0.21 3.24 ± 0.13 3.16 ± 0.2

Testosterone [nmol/L] 24.3 ± 6.0 22.8 ± 5.2 23.0 ± 5.6 23.2 ± 6.7 24.3 ± 6.0 22.3 ± 4.6

Cortisol [nmol/L] 458.5 ±
71.2

464.4 ±
80.2

457.7 ±
64.4

471.9 ±
69.3

492.1 ±
72.8

456.1 ±
90.9

T/C ratio 0.05 ± 0.02 0.05 ± 0.02 0.05 ± 0.02 0.05 ± 0.02 0.05 ± 0.01 0.04 ±
0.02

VDBP, vitamin D binding protein; AST (asparte), ALT (alanine)—liver enzymes; CK, creatin kinase; T/C–testosterone to cortisol ratio.
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3.1 Mean percent 3-epi-25-(OH)D3 of 25-
(OH)D

3-epi-25-(OH)D3 was detectable in each training period
in the entire study cohort. The mean percent 3-epi-25-(OH)D3

of 25-(OH)D was 4.9%, ranging from 1.3% to 4.3% (V1), 4.7%
ranging from 1.4% to 3.0% (V2), 4.8% ranging from 1.4%
to 4.2% (V3), 4.4% ranging from 1.1% to 3.0% (V4), 4.1%
ranging from 0.9% to 3.5% (V5), 3.6% ranging from 0.8% to
2.0% (V6).

3.2 Seasonal rhythmicity

Seasonal rhythm analysis was performed to evaluate training
period-related fluctuation in VDBP, vitamin D metabolites (25-
(OH)DT, 25-(OH)DF, 24,25-(OH)2D3, 3-epi-25-(OH)D3), VMRs,
and psychophysical stress markers. Cosinor curves (Figure 1,
Figure 2) showed significant seasonal rhythm for VDBP (p =
0.003), 25-(OH)DT, 25-(OH)DB, 24,25-(OH)2D3, 3-epi-25-(OH)
D3, 25-(OH)D3:24,25-(OH)2D3 VMR (p < 0.001), and 25-(OH)
D3:3-epi-25-(OH)D3 VMR (p = 0.007). No significant rhythm was
observed for 25-(OH)DF and all psychophysical stress markers
(ferritin, liver enzymes, CK, testosterone, cortisol, and T/C ratio).
Table 4 shows the rhythmometric parameters of vitamin D
metabolites and ratios.

3.3 VDBP, 25-(OH)DF, vitamin Dmetabolites,
VMRs and psychophysical stress markers

Multiple regression analysis was performed to analyze the
association between VDBP, 25-(OH)DT, 25-(OH)DB, 25-(OH)
DF, vitamin D metabolites, VMRs, and psychophysical stress
markers. However, no correlation was detected between VDBP,
25-(OH)DT, 25-(OH)DB, 25-(OH)DF, 24,25-(OH)2D3, 3-epi-25-
(OH)D3, 25-(OH)D3:24,25-(OH)2D3, 25-(OH)D3:24,25-
(OH)2D3, 25-(OH)D3:3-epi-25-(OH)D3, ferritin, liver enzymes
(AST, ALT), CK, cortisol, testosterone, and T/C ratio in each
period (V1-V6).

3.4 25-(OH)D3, 24,25-(OH)2D3 and 3-epi-
25-(OH)D3

Pearson’s correlation coefficient was calculated to define the
association between 25-(OH)D3 and vitamin D metabolites during
different training periods. Table 5 shows the relationship between
25-(OH)D3 and vitamin D metabolites. There was a strong
statistically significant association between 25-(OH)D3 and 24,25-
(OH)D3 in each training period (V1-V4: p < 0.001; V5: p < 0.01; V6:
p < 0.01). The association between 25-(OH)D3 and 3-epi-25(OH)D3

was observed only after the pre-season period (V2: p < 0.01)
(Table 5).

TABLE 3 Changes in the levels of the biochemical parameters of football players (n = 20) between summer and winter period.

Summer (V1+V2+V3) Winter (V4+V5+V6) p

VDBP (μmol/L) 2.76 ± 0.15 1.95 ± 0.37 0.013

25-(OH)DT (ng/mL) 45.25 ± 6.94 38.08 ± 6.34 <0.001

25-(OH)DF (pg/mL) 21.00 ± 5.45 19.52 ± 4.61 0.12

25-(OH)DB (ng/mL) 8.38 ± 2.20 7.20 ± 2.61 0.006

24,25-(OH)2D3 (ng/mL) 4.21 ± 0.93 3.32 ± 0.86 <0.001

3-epi-25-(OH)D3 (ng/mL) 2.15 ± 0.76 1.58 ± 0.58 <0.001

25-(OH)D3:24,25-(OH)2D3 VMR 10.85 ± 1.40 11.56 ± 1.86 0.004

24,25-(OH)2D3:25-(OH)D3 x100 VMR 9.37 ± 1.20 8.47 ± 2.24 0.011

25-(OH)D3:3-epi-25-(OH)D3VMR 22.53 ± 5.89 25.71 ± 7.53 0.012

Ferritin (µg/dL) 106.48 ± 68.58 100.20 ± 51.32 0.64

AST [U/L] 29.14 ± 8.53 25.84 ± 6.66 0.027

ALT [U/L] 24.88 ± 6.50 22.38 ± 5.59 0.018

CK [UI/L] 452.98 ± 478.17 360.22 ± 330.55 0.23

hs-CRP [mg/L] 3.15 ± 0.17 3.18 ± 0.19 0.32

Testosterone [nmol/L] 23.37 ± 5.55 23.34 ± 5.85 0.68

Cortisol [nmol/L] 460.25 ± 70.82 474.56 ± 77.08 0.24

T/C ratio 0.05 ± 0.02 0.05 ± 0.02 0.51

VDBP, vitamin D binding protein; AST (asparte), ALT (alanine)—liver enzymes; CK, creatin kinase; T/C–testosterone to cortisol ratio.
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4 Discussion

This is the first study to examine seasonal changes in vitamin D
metabolites, VMRs, and markers of psychophysical stress in male
football players.

We found significant seasonal rhythms for VDBP, 25-(OH)DT,
and 25-(OH)DB. Similarly, Vitale el al. (Vitale et al., 2018). observed
a significant circannual rhythm in 25-(OH)DT concentrations in
male and female professional skiers. The higher vitamin D
concentrations appeared in July, with the rhythm-adjusted mean
and amplitude comparable between the two groups. Lombardi et al.
(Lombardi et al., 2017) evaluated vitamin D, CK, testosterone, and

cortisol in three professional football teams to investigate circannual
rhythms. The authors documented statistically significant
circannual rhythms for 25-(OH)DT cortisol, testosterone and T/C
ratio. In contrast, the current study found no seasonal rhythm for
these psychophysical stress markers.

Our results indicated significant seasonal rhythms in 24,25-
(OH)2D3, 3-epi-25-(OH)D3, 25-(OH)D3:24,25-(OH)2D3, and
25-(OH)D3:3-epi-25-(OH)D3 ratios. Tang et al. (Tang et al.,
2019) conducted research on 940 young and healthy
United Kingdom army recruits and found circannual rhythms
for all vitamin D metabolites (25-(OH)D, 24,25-(OH)2D) and
VMRs (25-(OH)D:24,25-(OH)2D, 1,25-(OH)2D:24,25-(OH)2D),

FIGURE 1
Seasonal rhythm of VDBP (A), 25-(OH)DT (B), 25-(OH)DB (C), 25-(OH)DF (D).
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except for 1,25-(OH)2D, when fitted to cosinor curves. Our
cohort of professional football players showed similar trends.
Indeed, 3-epi-25-(OH)D3 and 24,25-(OH)2D3 had a propensity
to fluctuate with 25-(OH)DT, with changes between summer and
winter periods. Furthermore, 25-(OH)D3:24,25-(OH)2D3 and
25-(OH)D3:3-epi-25-(OH)D3 VMRs were less susceptible to
seasonal fluctuation. It should be noted that sunlight exposure
is one of the major factor, which influences on vitamin D
metabolites levels, especially in countries situated at latitude
above 40°. Therefore, the results of this study show that higher
concentration of vitamin D metabolites (25-(OH)DT, 25-(OH)
DB, 25-(OH)DF, 24,25-(OH)2D3, 3-epi-25-(OH)D3) occurred in

summer time (July, August) compare to fall or winter months.
Other factors, which may affecting on vitamin Dmetabolite levels
is dietary intake of vitamin D or use of supplements.

The primary aim of athletes training is to supply stimulation that
disrupts homeostasis to bring about adaptive responses that enhance
physical performance. Therefore, maximizing the training stimulus
is a key rule of athletic training. On the other hand, the ability to
recover fast is crucial so that competitors can perform at high
intensities more frequently. Human skeletal muscle counters to
training stimuli and/or tissue damage through remodeling
(Dahlquist et al., 2015). Some recent studies suggest that vitamin
D might play an important role in skeletal muscle repair and

FIGURE 2
Seasona rhythm of 24,25-(OH)2D3 (A), 3-epi-25-(OH)D3 (B), 25-(OH)D3:24,25-(OH)2D3 (C), 25-(OH)D3:3-epi-25-(OH)D3 (D).
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remodeling (Owens et al., 2018), and others have reported on the
relationship between 25-(OH)DT muscle damage biomarkers, and
overtraining symptoms. The results of these studies found no
relationship between 25-(OH)DT and ferritin (Jastrzebska et al.,
2017) or CK (Lombardi et al., 2017; Ferrari et al., 2020) in athletes
from different sports disciplines. Based on the free hormone hypothesis,
some vitamin D functions may be closely linked to its free fraction than
total serum 25-(OH)D concentrations (Powe et al., 2011; Shieh et al.,
2016). Hence, we examined whether 25-(OH)DF was associated better
with psychophysical stress markers than 25-(OH)DT. However, we
documented no significant association of 25-(OH)D fractions (total and
free) with psychophysical stress markers in football players in each
training period.

Testosterone is the principal male sex hormone and stimulates
anabolic metabolism, causing an increase in muscle and skeletal system
volume, strength, and endurance. Moreover, testosterone facilitates
muscular adaptations to exercise and improves their recovery ability.
Male reproductive physiology is influenced by 25-(OH)D (Crewther
et al., 2011), with VDRs and vitaminDmetabolizing enzymes expressed
in Leydig cells (Jensen, 2012; Boisen et al., 2017), suggesting a direct role
for vitamin D in steroidogenesis regulation. Based on this evidence,
vitamin D may have a role in regulating testosterone levels. However,
we found no correlation between 25-(OH)DT, 25-(OH)DF, and
testosterone concentration in football players, which is in line with
our previous study (Książek et al., 2021) in young, healthy men.

Krzywański et al. (Krzywański et al., 2020) also evaluated the
relationship between plasma 25-(OH)DT and testosterone
concentrations in professional track and field athletes. Similar to the
current study, they found no significant correlation between 25-(OH)
DT and testosterone concentrations in male and female athletes, from
strength or endurance disciplines, in any season. Crewther et al.
(Crewther et al., 2020) assessed the interplay between 25-(OH)DT,
cortisol, and testosterone and their effects on exercise performance in
88 male ice hockey players (<20 years), with no correlation evident
between vitamin D and both hormones. Other studies also
demonstrated no relationship between 25-(OH)DT and cortisol and
testosterone concentration in elite soccer players (Lombardi et al., 2017;
Ferrari et al., 2020) and ice hockey players (Fitzgerald et al., 2018).

The effects of a single exercise on vitamin D (Sun et al., 2017; Dzik
et al., 2022) and its metabolites (Mieszkowski et al., 2020) have been
documented. However, there are no such data on the effects of varied
training loads over different training periods on the vitamin D
metabolome. Therefore, we explored the relationship between 25-
(OH)D3, 24,25-(OH)2D3, and 3-epi-25-(OH)D3 in each training
period, and found that 25-(OH)D3 correlated strongly with 24,25-
(OH)2D3 in all periods. Although 24,25-(OH)2D and 3-epi-25-(OH)D
are deemed to be biologically inactive metabolites, studies in animal
models indicated that 24,25-(OH)2D exerts a pivotal role inmaintaining
bone integrity, function, and healing (Seo et al., 1997; Seo and Norman,
1997). Moreover, 3-epi-25-(OH)D3 levels are directly connected with
the cardiovascular risk profile, and 3-epi-1α,25(OH)2D, a derivative of
3-epi-25-(OH)D, successfully decrease blood PTHwithout affecting Ca
levels (Brown et al., 2005; Lutsey et al., 2015). The biological function of
24,25-(OH)2D and 3-epi-25-(OH)D is not well understood. Therefore,
studying the effects of vitamin D metabolite actions on skeletal muscle
function in athletes is vital.

This study had strengths and limitations. One of the study’s
strengths is the homogeneity of the cohort and the athletes having
similar training loads/volumes. In addition, vitamin D metabolites
were measured using gold-standard methods. The main limitation
of this study was that the data collection period covered only half of
the year instead of the whole year. Also, a greater number of
participants would have increased the power of statistical

TABLE 4 Rhythmometric analysis of VDBP, vitamin D metabolites and ratios of football players.

PR [%] p-value MESOR [mean and 95% cl] Amplitude [mean and
95% cl]

Acrophase [mean and
95% cl]

VDBP (μmol/L) 94 0.003 2.47 [2.30–2.65] 0.35 [0.09–0.62] −1.50 [-2.19 to −0.81]

25-(OH)DT [ng/mL] 35.3 <0.001 39.70 [38.20–41.19] 6.97 [4.66–9.28] −1.48 [−1.79 to −1.18]

25-(OH)DB [ng/mL] 11.6 <0.001 7.41 [6.85–7.96] 1.36 [0.46–2.26] −1.38 [−1.93 to −0.82]

25-(OH)DF [pg/mL] 32 0.082 19.87 [18.61–21.12] 1.39 [-0.48–3.26] −1.55 [-2.85 to −0.24]

24,25-(OH)2D3 [ng/mL] 32.5 <0.001 3.50 [3.30–3.71] 0.91 [0.59–1.23] −1.47 [−1.78 to −1.16]

3-epi-25-(OH)D3

[ng/mL]
19.6 <0.001 1.75 [1.59–1.91] 0.46 [0.24–0.69] 1.47 [0.93–2.01]

25(OH)D3:24,25(OH)2D3 10.7 0.001 11.49 [11.11–11.88] 0.95 [0.30–1.59] −1.33 [−1.85 to −0.81]

25(OH)D3:3-epi-
25(OH)D3

7.5 0.007 24.70 [23.07–26.34] 2.51 [0.41–4.62] 1.34 [0.27–2.40]

PR: percentage of rhythm. MESOR: Midline Estimating Statistic of Rhythm. Amplitude: half the difference between the highest and the lowest points of the cosine function best fitting the data.

Acrophase indicates the time in which the highest values occur.

TABLE 5 Correlations between 25-(OH)D3 and vitamin D metabolites in each
training period.

25(OH)D3 (ng/mL)

Vitamin D
metabolites V1 V2 V3 V4 V5 V6

R

24,25(OH)2D3 (ng/mL) 0.75b 0.85b 0.83b 0.81b 0.69a 0.74a

3-epi-25(OH)D3 (ng/mL) −0.02 0.63a 0.46 0.43 0.48 0.28

ap < 0.01.
bp < 0.001.
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analysis. Nevertheless, football teams usually have no more than
25 players. Moreover, we assessed 25-(OH)DF concentrations using
a calculated method rather than directly measuring free vitamin D
metabolite levels. Nonetheless, findings emerging from various
studies indicate that VMRs, particularly the 24,25-(OH)2D-to-25-
(OH)D ratio (i.e., the ratio indicating how much precursor could be
converted into the bioactive form), may better represent the vitamin
D status than 25-(OH)D alone since it considers the different metabolic
fates. Specifically, the ratio of 24,25-(OH)2D:25-(OH)D should range
between 4% and 12%, which reflects correct vitamin D status regardless
of the absolute 25-(OH)D level (Alonso et al., 2022).

5 Conclusion

In conclusion, a seasonal rhythm was present for VDBP, 25-
(OH)DT, 25-(OH)DB, vitamin D metabolites (24,25-(OH)2D3, 3-
epi-25-(OH)D3), and VMRs (25-(OH)D3:24,25-(OH)2D3, 25-(OH)
D3:3-epi-25-(OH)D3), though none was detected for 25-(OH)DF or
psychophysical stress markers (ferritin, liver enzymes, CK,
testosterone, cortisol, and T/C ratio). Furthermore, no correlation
was observed between total or free 25-(OH)D, VMRs, or
psychophysical stress markers. As such, the association between
free and total 25-(OH)D and psychophysical stress markers do not
demonstrate the superiority of free measurements over total
measurements. The results of the present study did not provide
evidence that 25-(OH)DT and 25-(OH)DF influence testosterone
concentration in football players during different training periods.
Moreover, training loads in different training periods did not affect
resting vitamin D metabolite concentrations.
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