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Introduction: This study proposes an algorithm for preprocessing VCG records to
obtain a representative QRS loop.

Methods: The proposed algorithm uses the following methods: Digital filtering to
remove noise from the signal, wavelet-based detection of ECG fiducial points and
isoelectric PQ intervals, spatial alignment of QRS loops, QRS time synchronization
using root mean square error minimization and ectopic QRS elimination. The
representative QRS loop is calculated as the average of all QRS loops in the VCG
record. The algorithm is evaluated on 161 VCG records from a database of 58
healthy control subjects, 69 patients with myocardial infarction, and 34 patients
with bundle branch block. The morphologic intra-individual beat-to-beat
variability rate is calculated for each VCG record.

Results and Discussion: Themaximum relative deviation is 12.2% for healthy control
subjects, 19.3% for patients with myocardial infarction, and 17.2% for patients with
bundle branch block. The performance of the algorithm is assessed bymeasuring the
morphologic variability before and after QRS time synchronization and ectopic QRS
elimination. The variability is reduced by a factor of 0.36 for healthy control subjects,
0.38 for patients with myocardial infarction, and 0.41 for patients with bundle branch
block. The proposed algorithm can be used to generate a representativeQRS loop for
each VCG record. This representative QRS loop can be used to visualize, compare,
and further process VCG records for automatic VCG record classification.
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1 Introduction

The development of algorithms for an automatic classification of vectorcardiographic
(VCG) records for the purpose of heart disease recognition helps include VCG among the
commonly used diagnostic methods. Based on the facts from recent studies [e.g., Lee et al.,
1968; Simonson, 1976; Ge, 2008; Huebner et al., 2010; Romero et al., 2010; Dehnavi et al.,
2011; Correa et al., 2016; Lingman et al., 2016], VCG achieves more accurate results than the
standard 12-lead electrocardiographic (ECG) method. Compared to the empirically assessed
12-lead ECG, VCG diagnostics offers a quantitative description of the heart’s electrical field
and of the objective view on the heart vector propagation. Thanks to the three orthogonal X,
Y, and Z leads, VCG represents a suitable alternative for computerized data processing with
no redundant information (Kral, 2006).

Preprocessing of a VCG record is an important initial step of the classification process
commonly involving techniques of filtering, which meets the requirements for diagnostic
ECG frequency bands (Kligfield et al., 2007), fiducial time instants of the QRS peak, QRS
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onset, and QRS end; P- and T-wave peaks, onsets, and ends;
isoelectric PQ interval assessment (Pan and Tompkins, 1985;
Dokur et al., 1996; Soria-Olivas et al., 1998; Vullings et al., 1998;
Martínez et al., 2004; Mazomenos et al., 2012); spatiotemporal QRS
loop alignment (van Alsté et al., 1986; Sörnmo, 1993; Sörnmo, 1998;
Astrom et al., 2000; Vullings et al., 2013); and finally a representative
P-QRS-T loops of a VCG record evaluation.

Recent studies (Sörnmo, 1998; Astrom et al., 2000; Vullings et al.,
2013) propose various methods for QRS loop alignment by
transformations which consist of rotation and lead-independent or
lead-dependent scaling. A crucial modeling issue is, however, whether
the diagnostic information of the signals is retained or becomes
distorted when these transformations are applied, especially in
pathological cases, where the QRS loop planarity is not retained
(Schellong, 1939; Pipberger et al., 1962). Moreover, the performance
of these methods is strongly dependent on signal-to-noise ratio (SNR)
conditions or on a priori information about these transformations.

As a representative template of the QRS loop, characterizing a
VCG record, theoretically any of the detected QRS loops of a record
could be selected. However, a more accurate method is to evaluate an
average QRS loop, where effects of heart movement during the
respiration cycle and distance between surface electrodes and the
heart variations, along with effects of random noises caused, e.g., by
muscular activity, are minimized by the averaging. Ectopic
heartbeats, if presented, should be automatically detected and
excluded from the record before evaluation of the average
heartbeat (Berbari et al., 1993).

Kijonka et al. (2022) focused on the fiducial points of P-QRS-T
wave detection based on wavelet transform evaluated on the
Physikalisch Technische Bundesanstalt (PTB) diagnostic database
and validated on the Common Standards for Quantitative
Electrocardiography (CSE) multilead database of 125 records of
patients with various diagnoses, including healthy controls (HCs)
and patients with myocardial infarction (MI), bundle branch block
(BBB), and aspecific conduction defects with significant changes in
the ECG image, causing a wide QRS (>120 ms). The QRS peak was
evaluated correctly for all of 1,467 beats. The QRS onset and QRS
end were detected with standard deviation comparable to or better
than other well-known algorithms (Pan and Tompkins, 1985;
SAHAMBI et al., 1997; MAZOMENOS, 2012; VULLINGS et al.,
1998). The isoelectric interval was detected correctly between the P
end and QRS onset for all the cases. The algorithm well-evaluated a
wide QRS based on automated wavelet scale switching.

This study builds on the validated QRS loop boundaries and
isoelectric coordinate detector presented in Kijonka et al. (2022) for
the purpose of further signal processing—the representative QRS loop
of a record evaluation technique presented here. This study deals with
a suitable digital finite impulse response (FIR) filter design, including
automatic notch filter design, a technique of QRS loop spatial
alignment, QRS loop time-synchronization, and ectopic QRS loop
elimination presented here. Compared to the QRS loop alignment
techniques presented in Sörnmo (1998); Astrom et al. (2000); Vullings
et al. (2013), the proposed algorithm omits transformation techniques,
which could introduce a distortion in the averageQRS loop of a record
evaluation. Spatial and time synchronization to average the effect of
heart movement during respiration, distance electrode variations, and
muscular and random noises along with automatic detection to
eliminate ectopic rhythms are used instead. To compare the results

with those of the previous studies (Sörnmo, 1998; Astrom et al., 2000;
Vullings et al., 2013), the ratio of the morphologic variability
reduction before and after the proposed algorithm application was
assessed separately for three diagnostic groups of HC, MI, and BBB
subjects. To evaluate the signal morphologic variability, the maximum
relative deviation δ MAX(%) was assesed. This parameter provides us
the maximum spatial distance from the average QRS loop in three
signals X,Y,Z relative to the range of signals.

The proposed preprocessing algorithm was applied to VCG
records of the PTB database of 58 HC, 69 MI, and 34 BBB subjects,
where 1/3 of the records of each diagnostic group were used for the
algorithm design. The records were 2 min long, containing
approximately 120 beats for averaging. The records are sampled
at 1.000 Hz (Bousseljot et al., 1995; Goldberger et al., 2000).

2 Materials and methods

The initialization step of the data preprocessing algorithm (Figure 1)
is loading of an input database of VCG records accompanied by an
anamnesis. In case of the PTB diagnostic database, a record is stored in a
MAT/BIN file, accompanied by an anamnesis HEA file.

The VCG preprocessing algorithm is described by individual
steps described below in Section 2.1 to Section 2.6.

2.1 Data filtering

In the first step of the algorithm, as shown in Figure 1, a
baseline wander and noise motion artifacts are filtered by the FIR
high-pass (HP) filter with a passband cutoff frequency of 1 Hz
with respect to recommendations from Kligfield et al. (2007).
Other artifacts caused by electromagnetic interference (EMI) of
the 50-Hz power line are removed using a notch FIR filter. This
type of filter was designed for offline biosignal processing due to
its linear phase and minimal distortion of the filtered signal
(Marchon and Naik, 2018).

2.1.1 High-pass filter design
According to the American Heart Association (AHA), the filter

with a cutoff frequency fc� 0.05Hz (−3 dB) is suitable for
diagnostic purposes (MEDTEQ) (Reich, 2011). This analog first-
order RC filter has a non-linear phase frequency characteristic, so it
significantly distorts the VCG signal up to a frequency
approximately one order higher than fc.

The experimental measurements show that the cutoff frequency
fc� 0.05Hz is insufficient for motion artifact filtering for the selected
database file. Therefore, HP digital FIR filters with a higher cutoff
frequency are designed. According to the relative specification of the
filter, the parameters for the cutoff frequencies in the passbandfpass in
the range from 0.2Hz to 2Hz and the cutoff frequencies in the
stopband fstop � fpass

2 are selected. The requirement for the passband
ripple Apass < 0.017 dB and stopband attenuation Astop > 54 dB is
selected as well.

With respect to the requirement for Apass (Eq. 1) for the ripple
amplitude U ripple < 1 μV (such a small ripple does not affect the
diagnostic VCG information) and amplitude of the VCG
signal UVKG � 1mV,
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Apass < 20 · log UVKG + 2 · U ripple

UVKG
( ). (1)

The requirement for Astop (Eq. 2) for the band-stop amplitude
drift is set by Udrift stop < 2 μV and the drift amplitude Udrift � 1mV
(with respect to motion artifacts in the input database):

Astop > 20 · log Udrift

Udrift stop
( ). (2)

The filters are designed using the Parks–McClellan
optimalization method. To determine the effectiveness and
suitability of the equivalent FIR filter with a cutoff frequency
fc� 0.05Hz and four FIR filters with the threshold frequencies
fpass� 0.2Hz; 0.5Hz; 1Hz; 2Hz, the filters are tested in randomly
selected VCG records of healthy patients and patients with
myocardial infarction and bundle branch blocks, which may be
negatively affected by too high cutoff frequency of the filter due to a
pathologically wide QRS complex.

In order to eliminate the isoelectric baseline fluctuation
effectively, the filter with fpass� 1Hz is selected. The filter with
the cutoff frequency fpass� 2Hz has already caused a gross
distortion of the P and T waves, ST segment, and PQ segment of
the records of patients with the width of the QRS complex, although
the QRS complex itself has not been deformed (Figure 2).

2.1.2 Automatic notch filter design
The designed notch filter is applied automatically only in the

case of exceedance in the level of interference by the Eq. 3:

max Y f 49.5−50.5( )∣∣∣∣ ∣∣∣∣> 0.2 · max Y f 5 15( )∣∣∣∣ ∣∣∣∣, (3)

where |Y(f49.5−50.5)| represents the amplitude frequency spectrum
in the range 49.5Hz–50.5Hz and |Y(f5 15)| is the amplitude
frequency spectrum in the range 5 Hz–15 Hz.

According to the European standard EN 50160, “Voltage
characteristics of electricity supplied by public distribution
systems” is the mains frequency 50Hz with tolerance ± 0.50Hz
for 99.5% of the time defined. The harmonic voltage cannot
exceed 6% of the fundamental frequency amplitude.

For electromagnetic interference (EMI) filtering, the FIR notch
filter is designed using Parks–McClellan optimalization. The
requirement for Astop > 29 dB is selected by keeping the mains
interference amplitude U50 < 50 μV. The cutoff frequency in the
first and the second passbands fpass1� 49.5Hz and fpass2� 50.5Hz

is selected considering the feasibility of the filter and to meet the
conditions for the narrowest band in accordance with VCG
diagnostic information preservation.

The requirement for Astop is fulfilled for the designed filter with
the bandwidth 0.1Hz. In the case of larger deviation from the
fundamental frequency, the frequency of the notch filter fnotch is
adjusted automatically based on the signal frequency spectrum.
Filtering of harmonics is meaningless since the amplitude of the
interferences reached a negligible level.

FIGURE 1
VCG preprocessing algorithm.

FIGURE 2
ECG record: “s0429_re” of the diagnostic PTB database of the
patient with bundle branch block filtering detail. (A) FIR filter with the
cutoff frequency fpass � 2Hz. (B) FIR filter with the cutoff frequency
fpass � 1Hz.
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2.2 QRS and PQ detection

One of the crucial steps in ECG analysis is to accurately detect
the different waves forming the entire cardiac cycle. Most of the
studies based on wavelet transformation identify almost all
morphologies of ECG waveforms (Lingman et al., 2016).
Especially, the wavelet transformation is worth investigating in P-
and T-wave recognition (Addison, 2005; Martinez et al., 2004).

In this section, we present our previous work: a design of the
QRS peak detector (detector of the R wave) including the time
instants of the QRS onset and QRS end detection and the isoelectric
PQ segment detection. The algorithm is based on biorthogonal
wavelets since they excite various morphologies of ECGs better at
different scales (Kijonka et al., 2022).

Here, we summarize the algorithm in eight points. The
implementation with zero points and intervals detected is shown
in Figure 3.

2.2.1 Basics
The wavelet transform allows us to analyze nonstationary nature

signals with localization in time. For analysis, the continuous form of
wavelet transform (CWT) was used, described by the Eq. 4:

Wψ f( ) a, b( ) � ∫∞

−∞
a| |−1/2f t( )ψ t − b

a
( )dt, (4)

where a stands for a dilatation parameter, b is the translation parameter,
and ψ is a mother wavelet. CWT uses sampled data, but compared to
the discrete wavelet transform (DWT), it allows finer resolution. The
output is a transformed signal of the same number of samples as the
original. A compact and symmetric biorthogonal wavelet was used. It
provides time symmetry, prevents phase shifts of the transformed
signal, and complies with the shape like the detected waveforms.

2.2.2 QRS peak detection
QRS peak detection is based on the wavelet transformWi

a(b) of the
input signals i ∈ I � 1, 2, 3{ } corresponding toX,Y,Z signals, on scale a,
where the samples of the record b ∈ B � 1, . . . ,N{ }, whereN is the total
number of samples of the signal. For the detection, the scale a� 30 is used,
which corresponds with the biorthogonal wavelet of pseudo-frequency
approximately 30Hz. The appropriate scale for QRS detection is
determined experimentally based on the QRS frequency band. In the
next step, the occurrences of the creation of QRS peaks are calculated.
These sets are arranged based on exceedance of the amplitude threshold
of the transformed signal and based on the specifiedmaximumheart rate.
From each set, just one time instant according to established rules was
selected. It corresponds to the expected R peak wave.

2.2.3 QRS onset and QRS end detection
The QRS onset and offset detection is based on zero crossing of

Wi
a(b). Zero points in the neighborhood of the local maxima of the

function Wi
a(b) (Figure 3) are searched individually for each signal

and each QRS detected. The zero points of the QRS onset and QRS
end are determined based on the conditions set for exceeding the
amplitude threshold of Wi

a(b) between the zero-point intervals,
interval lengths, and the sequence of suitable or unsuitable intervals
(intervals that meet defined conditions) (Kijonka et al., 2022). The
QRS onset and QRS end are then adjusted according to the Wi

a(b)
signal shape in the preceding or following interval.

2.2.4 Wide QRS onset and QRS end adjustment
In some cases, e.g., blockades, a wide QRS might occur. The

previous parameters of the defined neighborhood of TTLS and a� 30
scale would be inadequate for the QRS onset and QRS end detection.
The algorithm sets the wide QRS based on the conditions (Kijonka
et al., 2022) and adjusts the wide QRS onset or QRS end. The wide
QRS is evaluated based on the energy percentage of the wavelet
coefficient rate in the neighborhood of the original QRS onset and
QRS end in the scales a� 70 and a� 120, respectively, and the
percentage of energy in these scales on the window of width given by
the 1TTLS parameter. The QRS onset and QRS end adjustment is
based on the Wi

a(b) zero crossing on scale a� 70, while a similar
procedure as in QRS onset and QRS end detection is maintained.

2.2.5 QRS onset and QRS end adjustment by slope
The adjustment of QRS onset and QRS end using the linear

regression is based on the calculation of the slope at the temporal
search window applied to the input signal in the area before the QRS
onset or after the QRS end detected previously. The QRS onset or
QRS end is shifted to the point that meets the specified threshold for
the line slope (Kijonka et al., 2022) in the temporal search window.

2.2.6 PQ detection
The PQ segment detection using linear regression is based on

finding a minimum slope on the temporal search window of the
input signal in the neighborhood of the QRS onset. The time
window with width 10ms is selected experimentally (Kijonka
et al., 2022).

2.2.7 QRS onset and QRS end alignment between
X, Y, and Z signals of a VCG record

The QRS onset and QRS end alignment between the X,Y,Z
signals is determined based on conditions for exceeding the
distances of the detected QRS onsets or ends. The maximum
distance between the QRS onsets is set by the TTBS parameter
(Kijonka et al., 2022). In the case of an exceeding threshold, the
further point is shifted to the mean value of the remaining two

FIGURE 3
Zero points Lz

i,k
s left to the peakbi,k

and Rz
i,k
t right to the peakbi,k

detected in the peakbi,k
neighborhood given by the parameter TTLS.

The intervals between the zero points, which meet the conditions
assessed (the amplitude threshold exceeding and others), are
marked in green.
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points. This process increases the robustness of the algorithm, and it
is performed for the correct PQ segment detection and the correct
QRS loop boundary detection in the case of erroneous QRS onset or
end detection in some of the three VCG signals.

2.2.8 QRS loop boundary detection
The QRS boundaries of the record are given by the Lbound and

Rbound, where Lbound is the left bound of the QRS loop and Rbound
is the right bound of the QRS loop. The values of the boundaries (in
samples) indicate the distance between the synchronization wave
and the left or right QRS loop bound. The detected QRS in the lead
X is marked as the synchronization wave. The Lbound and Rbound
represent the constants for all the QRS loops of the record for the
dominant length of the QRS loop. The Lbound and Rbound
parameters are computed using the Eqs. 5, 6:

Lbound � med
k� 1,...,p{ } max

i∈I
r1,k −max PQi,k( )( )( ), (5)

Rbound � med
k� 1,...,p{ } max

i∈I
r1,k − si,k( )( ), (6)

where k is the sequence number of the QRS detected, i is the index of
the signal, r1,k is the synchronization wave, PQi,k is the set of points
of the PQ interval, si,k is the QRS offset, and med(.) stands for the
median value.

2.3 QRS loop spatial alignment

The isoelectric baseline detection is one of the most
important steps in VCG preprocessing for the purpose of
quantitative description by the features, especially by the
features describing the P-, QRS, and T-loop spatial location.
These loops should have the initial point in the origin of the
coordinate system; thus, the instantaneous magnitude of the
vector given by the three coordinates X,Y,Z should be 0 in the
beginning of each heart action. It should be executed in the PQ
and ST segments for the non-pathological cases. As the most
suitable interval for the zero-heart electrical activity indication,
the PQ segment appears suitable also for most of the pathological
cases. The PQ intervals detected for the three X, Y, and Z VCG
leads create the isoelectric coordinates of the QRS loop. The
detection of the PQ intervals and QRS bounds is performed in the
presented work by the methods (see Section 2.2) described in
more detail in the previous work (Kijonka et al., 2022).

The correction on the isoelectric baseline is computed for each
VCG signal and each QRS complex detected, by the Eq. 7:

ISOi,k � mean
min PQi,k( )< b< max PQi,k( ) f i b( )( ) (7)

where k is the sequence number of QRS, i is index of the signal,
fi(b) is the input signal, b is the sample of the signal, PQi,k is the set
of the points of the PQ interval, and mean() represents the mean
value.

Each detected QRS complex of the record with the sequence
number k � 1, . . . , p{ } of the signal i � 1, 2, 3{ } bordered by the

Lbound and Rbound is shifted by the voltage level ISOi,k so that the
corresponding QRS loops are shifted in all three coordinates.

In the cases where the ISOi,k is not correctly detected for all the
QRS, the other correction method by the Eq. 8:

ISO Bi,k � f i r1,k − Lbound( ) (8)
is used. Based on this relation, the isoelectric baseline ISO Bi,k is
computed only from one point of the left QRS bound. This method
is used in few number of cases, especially for the MI patients (see
Figure 5).

2.4 QRS loop time synchronization

An objective of the QRS loop time synchronization is to move
individual heartbeats of a record to a common time-synchronization
mark. As the time-synchronization mark, the QRS peak detected in
the signal X was selected. For the optimal alignment of the individual
heartbeats, a method of root mean square error minimization by
individual heartbeat (three signals X, Y, and Z) time shifting, where
the individual heart beats are shifted relative to the median
heartbeat, is proposed.

All the detected QRS loops adjusted by the isoelectric coordinates
(three detected isoelectric levels) are temporally aligned by themethod
of minimalization of the mean quadratic error from the median for
the moving parameter τ. The QRS loop alignment is performable in
the timescale by the overlapping method (Figure 4).

The minimalization process and the τk parameter finding for the
each QRS loop k by the Eqs. 9–12:

∀i find median:

QRSimed � med
k∈1,...,p

ISOf
i,k( ), (9)

and the range of the median QRS:

rangeimed � max QRSimed( ) −max QRSimed( ), (10)
where ISOf

i,k is the QRS detected corrected by the ISOi,k

∀τ we define matrix τM of the mean square deviations of the
function ISOf

i,k from QRSimed, where each element τmi,k of the
matrix τM is given by the Eq. 11:

τmi,k �
mean ISOf i,k b + τ( ) −QRSimed( )2

rangeimed

, (11)

where τ is the moving parameter.
Finally, the τ for each k is calculated for the mean quadratic error

minimalization by the Eq. 12:

τk � min
τ�−8,...,8

max
k�1,...,p

τmi,k( )( ), (12)

where the moving parameter τ is chosen in the range −8–8 samples.
These limits were chosen experimentally based onmaximumvariations
in QRS peak detection in pathological cases. Theoretically, higher limits
of τk could be selected for extremely variable signals, which will cause
an increase in the algorithm evaluation time. The most probable value
of τk calculated to the mean quadratic error minimalization was in the
range of −2 to 2 samples (−2 to 2 milliseconds).

The process according to Eqs. 9–12 repeats for the aligned QRS
loops by the selected number of iterations. The greater the number
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of iterations is, the more precise the calculation of the median and of
the mean quadratic deviations from the median can be achieved. A
number of three iterations was chosen as an optimal value, where
further increasing of iterations had a negligible effect on the mean
quadratic deviation reduction.

2.5 Ectopic QRS loop elimination

The ectopic QRS loops can be presented in the record, e.g.,
due to the presence of ventricular extrasystoles, arrhythmias, or
artifacts. To evaluate the representative QRS loop of the record,

these ectopic QRS loops cannot be considered for the calculation.
The ectopic QRS loops were identified by the extreme
observation (outlier) method such that ∀i, k, the maximum
square deviation, is computed (Eq. 13). Similar statistical
methods for the outlier detection in biosignals were also used
in Cipra et al. (1990).

devi,k �
max ISOf i,k −QRSimean( )2

rangeimean

, (13)

where QRSimean and rangeimean stand for the mean values calculated
analogously by Eqs. 9, 10.

FIGURE 4
Representative QRS loop given by the three X,Y ,Z signals marked as QRSimean and all the QRS of each signal corrected by ISOi,k marked as ISOf

i,k
,

where k ∈ 1, . . . ,p{ } and p is the number of QRS detected in the signal of index i. The range of QRSimean is marked as rangeimean.

TABLE 1 Summarization of δ MAX for the HC, MI and BBB diagnoses.

δMAX –1 (%) δMAX –2 (%) reduction factor (−) δMAX –3 (%) reduction factor (−) Extreme observations (%)

HC 19.2 14.6 12.2 2.9

0.24 0.36

MI 31.1 22.2 19.3 2.9

0.29 0.38

BBB 29.1 20.1 17.2 4.2

0.31 0.41

δMAX 1—without ttime-synchronization, extreme observations not excluded.

δMAX 2—without time-synchronization, extreme observations excluded.

δMAX 3—time-synchronized, extreme observations excluded.
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Extreme observations with the interquartile range (IQR) ∀i can
be calculated by the Eq. 14:

devi,k < x0.25 − 3 IQR ∪ devi,k > x0.75 + 3IQR. (14)
Then, devi,k is the extreme observation.

All the k QRS loops, for which at least one signal imeets Eq. 14,
are excluded within the representative QRS loop of the record
calculation.

2.6 Representative QRS loop evaluation

The output of the algorithm for VCG signal preprocessing is the
representative QRS loop of a record calculated as the average of the
QRS loops of the three X,Y,Z signals, moved on the voltage axes to
the isoelectric coordinates, aligned in the time axes and treated out of
the outliers.

To assess the signal morphologic variability before and after
performing the presented methods of spatial alignment, time
synchronization, and ectopic QRS elimination, the maximum
relative error δ MAX parameter was computed by the Eq. 15:

δ MAX � max
ISOf i,k − QRSimean

∣∣∣∣∣ ∣∣∣∣∣ · 100
rangeimean

, (15)

where δ MAX computes the maximum spatial distance from the
average QRS loop in the three signals X,Y,Z relative to the range
of signals. The maximum spatial distances of individual QRS loops
from the average QRS loop are clearly visible in Figure 4, where all
the QRS loops of a record are shown by the overlapping display
method (brighter color) and calculated mean QRS
loop—representative QRS loop of the record is shown in a
darker color. A signal with the largest deviation from the mean
indicates the maximum error.

The results of δ MAX for the records of healthy controls (HC), MI
patients, and BBB patients are shown in Table 1. Low values of δ MAX

indicate low intra-individual variability and, therefore, a more
accurate calculation of the representative QRS loop of the record.

The δ MAX parameter also plays an important role in determining
the patient’s condition in long-term patient monitoring, where the
significant changes in intra-individual variability [changes in δ MAX

greater than 10% (Laufberger, 1980)] point to the deterioration or
improvement of the patient’s state.

3 Results

The maximum relative error δ MAX is evaluated for individual
diagnostic groups of 58 HC, 69 MI, and 34 BBB subjects (Figure 6).
A significant reduction of the δ MAX is achieved by the ectopic QRS
elimination described in Section 2.5. Further reduction is achieved
by the time synchronization technique presented in the Section 2.4
in combination with the ectopic QRS elimination, while the
percentage of the detected ectopic QRS is preserved or reduced.

A summary of the results of δ MAX is presented in Table 1, where
the δ MAX is evaluated for individual diagnostic groups of HC, MI,
and BBB subjects. The lower value of δ MAX and, thus, probably, the
lower intra-individual variability are evaluated in healthy subjects. A
relatively high average reduction factor of 0.38 for all observed

diagnostic groups is achieved, without accompanying
transformations methods used in previous studies (Sörnmo, 1998;
Vullings et al., 2013).

For most of the records, only the HP filter is used. The
automatically selected 50-Hz notch filter according to the Eq. 3 is
especially used in the MI case (45%), subsequently in HC (26%), and
least in BBB (18%) (Figure 5). For majority of the records, the
isoelectric baseline detection is used by Eq. 7. The isoelectric baseline
detection according to Eq. 8 is only used in the case of artifacts
presented in the processed signal, which made it impossible to detect
the PQ segments identically for all the QRS. The indicator of this
state is also observable by a higher level of δ MAX (Figure 6).

FIGURE 5
Summarization of the usage of the HP filter or HP filter in
combination with the notch filter for each group for the HC, MI, and
BBB diagnoses (A). Isoelectric baseline by ISOi,k (PR) or by ISO Bi,k

(Lbound) usage for each diagnostic group (B).
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4 Discussion

The automatic classification of a VCG record requires data
preprocessing of three X, Y, and Z orthogonal leads involving
algorithms for the onset and end of individual P-QRS-T loop
detection. A slow baseline wander requires that the origin of a
VCG loop is translated to its isoelectric coordinates before further
data processing (Kijonka et al., 2022). Loop translation is
considered a part of the data preprocessing used for VCG loop
alignment (Sörnmo, 1998; Vullings et al., 2013). Application of
these methods allows for comparison of the translated VCG loops
of a single record or a comparison between different records
and is substantial for intra-individual variability of a record
assessment (Penhaker, 2014) for further VCG processing and
VCG feature extraction considering the topological arrangement
of a VCG loop (Laufberger, 1980; Le et al., 2013). To compare
multiple spatially aligned QRS loops with QRS onset, QRS peak

and QRS end are detected, and the QRS loops should be first time-
synchronized. The best alternative for time synchronization is
using the most accurately detected time instant, that is
represented by the QRS peak (e.g., in the X lead). However,
due to morphologic variability caused in particular by
respiration-induced movements of the heart and variability in
physiological origin, the QRS loops synchronized by the QRS
peak still have falsely high intra-individual variability. By
applying the multipass time-synchronization method presented
in this study, the QRS loops are synchronized by small time shifts
(±8 ms) relative to the original synchronization of the QRS peak
to minimize the maximum relative error. A relatively high
reduction factor of the morphologic variability is achieved. The
beat-to-beat amplitude changes caused by respiration cycles and
white noise are averaged in the resulting representative QRS loop
of a record, where the impact of additional geometric
transformation methods (Sörnmo, 1998; Astrom et al., 2000;

FIGURE 6
Probability distributions of δ MAX (%) and extreme observations (%) for the not time-synchronizedQRSwith the extreme observation not excluded (a),
or for the not time-synchronized QRS with the extreme observation excluded (b), or for time-synchronized QRS with the extreme observation excluded
(c). The calculations are evaluated for the group of HC (top), MI (middle) and BBB (bottom) subjects diagnoses.
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Vullings et al., 2013) would have a negligible effect on the
resulting average curve.

5 Conclusion

The methods of VCG signal preprocessing to compute a
representative QRS loop of a VCG record evaluation were
presented and applied in the analysis of VCG records from the
diagnostic PTB database of 58 healthy subjects, pathological cases
of 69 MI subjects, and 34 BBB subjects. Relatively small intra-
individual variability was measured after spatial alignment, and
time synchronization implemented by algorithms was presented in
this study. The maximum relative deviation of 12.2% for HC,
19.3% for MI, and 17.2% for BBB diagnostic groups was evaluated.
The variability was reduced by a factor of 0.36 for HC, 0.38 for MI,
and 0.41 for BBB after QRS time synchronization and ectopic QRS
elimination were performed. The presented methods of the
template QRS loop of a VCG record evaluation can better
differentiate between morphologies of healthy and pathological
subjects of individual diagnostic groups and different degrees of
disability. Application of the proposed algorithm on the other
databases of VCG records is expected based on the usage of the
validated method of the fiducial point of the P-QRS-T wave
detection.
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