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In order to understand the effects of fermented Astragalus membranaceus (FAM)
on the liver and intestinal health of tiger grouper (Epinephelus fuscoguttatus), this
study was conducted. This study evaluates the effects of different levels of FAM on
liver and intestinal tissue structure, serum biochemical parameters, intestinal
digestive enzyme, and microbiota structure of tiger grouper. Fish were fed with
diets (crude protein ≥ 48.0%, crude fat ≥ 10.0%) with five levels of FAM (L1:0.25%,
L2: 0.5%, L3: 1%, L4: 2% and L5: 4%) in the experimental groups and a regular diet
was used as the control (L0: 0%) for 8 weeks. Compared with AM, the protein
content of FAM was significantly changed by 34.70%, indicating that a large
amount of bacterial protein was produced after AM fermentation, and its
nutritional value was improved. FAM had significant effects on the growth
performance of tiger grouper (p < 0.05). The high-density lipoprotein
cholesterol (HDL-C) was highest in L4 group, being significantly different from
L0 group. The area and diameter of hepatocytes were lowest in L3 and L4, and the
density of hepatocyte was highest in L4 group and relatively decreased in L5
group. The mucosal height and muscular thickness were highest in L3 group. The
intestinal microbiota structure of tiger grouper was changed under the
intervention of FAM. The lower abundance of potential pathogenic bacteria
and higher abundance of probiotics colonization in the L4 group showed that
the dose of FAM had the best effect on improving the health of intestinal
microbiota. This study indicates that the addition of FAM in the feed
contributes to liver health, improves intestinal morphology, and regulates the
intestinal microbiota of tiger grouper. The addition ratio of 1%–2% is better for
intestinal and liver health, and a high addition ratio will cause liver damage. Our
work will provide a reference for the addition and management of FAM in the
aquaculture industry.
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1 Introduction

Tiger grouper is aquaculture-targeted specie as a result of its
high commercial value and demand (Lim et al., 2016). However, the
culture of tiger grouper presents many challenges due to its high
susceptibility to infectious diseases and sensitivity to stress. The use
of antibiotics and chemotherapeutants to control diseases of grouper
as practiced by some farmers have raised several issues including
high operational cost, emergence of drug-resistant bacteria,
suppression of immunity, and food and environmental
contamination (Apines-Amar et al., 2012). Since antibiotics and
chemical drugs can promote antibiotic resistance in bacteria, they
have a negative impact on the environment and human health
(Meng et al., 2023), resulting in the quality of aquatic products
cannot be guaranteed, which seriously affects the sustainable
development of aquaculture. Although it is still widely used to
alleviate diseases, some countries have restricted or banned the
use of antibiotics and chemical drugs (Cabello, 2006; Meng et al.,
2023). Due to the limited use of antibiotics and chemical drugs,
finding alternative suitable substances to enhance the health of fish
has become the focus of this study.

In order to reduce the use of antibiotics in aquaculture,
alternatives such as antimicrobial peptides and probiotic feed
have been proposed (Rajanbabu and Chen, 2011; Bidhan et al.,
2014). In addition, Chinese herbal medicine (CHM) therapy can also
enhance fish resistance, improve growth and feed efficiency, thereby
enhancing the sustainability of aquaculture (Reverter et al., 2014).
CHM is not only a rich source of nutrients, vitamins and minerals
but also comprise several phytochemicals’ constituents which are the
bioactive components like alkaloids, steroids, flavonoids, saponins,
glycosides, carotenoids, terpenoids, phytoandrogens, phytosterols,
curcumin and so on (Faheem et al., 2020; Mulat et al., 2020). Because
of the presence of above-mentioned components, medicinal plants
naturally possess several pharmacological properties making them a
promising candidate as fish feed additive (Faheem et al., 2022).

Studies have shown that CHM may maintain the balance of
intestinal microbiota, improve the immunity of aquatic animals, and
enhance the host’s resistance to pathogen infection (Pu et al., 2017;
Meng et al., 2023; Yao et al., 2023). Active components of herbs are
believed to improve nutrient digestibility, absorption, assimilation
capacity, and digestive enzyme secretion, as well as maintain healthy
intestinal microflora in fish (Hoseinifar et al., 2020). A large number
of studies have reported the beneficial effects of Acanthopanax
senticosus, Licorice root and Astragalus membranaceus (AM) in
aquaculture (Wu, 2020; Adineh et al., 2021; Meng et al., 2023).
AM, a leguminous plant, is one of the most famous CHM that has
various therapeutic effects such as anti-cancer, anti-virus, and
immune regulation (Yao et al., 2023). Studies have shown that
dietary AM supplementation can significantly improve the
physiological and nutritional status of fish (Hoseinifar et al.,
2020), such as catla (Catla catla) (Harikrishnan et al., 2022),
Channa argus (Zhu et al., 2021), common carp (Cyprinus carpio)
(Shi et al., 2022) and grass carp (Ctenopharyngodon idellus) (Shi
et al., 2021).

Due to the complex structure of CHM, its active components
cannot be completely absorbed and utilized by aquatic animals. The
bioactivity of the active components could be seriously reduced by
the traditional extraction method (Pu et al., 2017). Biological

fermentation processing of traditional CHM is the use of
microorganisms with strong ability to decompose and transform
substances, and can produce abundant secondary metabolites. The
process reaction conditions are mild, and the traditional CHM
preparation is efficient, low toxicity and low residue. Therefore,
the application of modern biotechnology fermentation
transformation of traditional CHM has become a research
hotspot (Li et al., 2004; Ruan et al., 2009). The study of Xie
(2015) found that fermented CHM and CHM had obvious
preventive and therapeutic effects on the hemorrhagic disease of
crucian carp caused by Aeromonas hydrophila, and the effect of
fermented CHM was better than that of unfermented CHM.
Compared with liquid fermentation, solid fermentation is more
and more used in clinic because of its low production cost, simple
operation and no need for large instruments and equipment (Qiao
et al., 2018a).

Probiotics fermentation can decompose CHM into useful
components such as organic acids and polysaccharides. The
fermentation products can improve the immunity, disease
resistance and antioxidant capacity of the host. As an important
organ of aquatic organisms, the intestine is accountable for nutrient
digestion and absorption. In recent years, the intestinal microbiota
has been verified that it plays a vital role in the health of the host, as it
can control the proliferation of pathogenic bacteria present in the
intestinal tract, regulate the host metabolism and physiology,
regulate the absorption of nutrients and stimulate the immune
system (Shi et al., 2022a). Hence, the intestine is not merely a
vital organ responsible for the absorption of nutrients but also a
major site of host immunity (Ran et al., 2020). Studies have shown
that FAM can regulate the fecal microbiota of Arbor acre, improve
its antioxidant properties and promote its growth (Qiao et al.,
2018b). FAM water extract can improve the intestinal
morphology and microenvironment of Cyprinus carpio, enhance
its immune function and promote its growth (Shi et al., 2022a).

Hoseinifar et al. (2020) study found that the effects of herbal feed
supplements are species-specific and must be considered cautiously.
Adding 0.1% Astragalus compound CHM fermentation products to
the feed can significantly improve the disease resistance of grass carp
(Ctenopharyngodon idella) and significantly reduce the lethal rate of
pathogenic Aeromonas hydrophila to it (Li and Zhou, 2018). The
growth performance and survival rate of juvenile Palea steindachneri
were significantly improved by adding 0.4% FAM to the diet, and the
feed utilization rate was improved. The weight gain rate, specific
growth rate and antioxidant properties of Litopenaeus vannamei can
be significantly improved by adding 1%–4% compound probiotics
FAM to the basic feed of Litopenaeus vannamei (Qi et al., 2018). The
addition of 0.25%–2% FAM feed could significantly improve liver
antioxidant performance, significantly reduce liver
malondialdehyde (MDA) content and serum glutamic oxalic
aminotransferase (GOT) activity of tiger grouper (Xiao et al.,
2023). The addition of compound CHM fermentation
preparation powder to largemouth bass (Micropterus salmoides)
feed can improve immunity, enhance antioxidant capacity and
promote fat metabolism, and the addition amount below 0.5%
will not affect the production performance (Peng, 2019). The
addition of 5‰–10‰ FAM feed to hybrid sturgeon can
significantly improve its ability to resist streptococcal infection,
and 10‰ FAM can improve its non-specific immune function
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(Dai, 2022). According to the application of fermented CHM in
other aquatic animals and pre-experiments, we selected the
inclusion levels.

Zhao et al. (2021a) and Englezos et al. (2019)’ research showed
that it was difficult for a single strain to complete numerous
biochemical reaction processes in the fermentation process, so
mixed bacterial fermentation gradually developed, and more
studies were conducted on Chinese herbal compounds. Bacillus
subtilis can produce many enzymes such as cellulase, protease
and hemicellulase during its growth (Liu et al., 2012). In the
early stage of fermentation, Bacillus subtilis grows and multiplies
rapidly and consumes oxygen. With the reduction of oxygen,
Lactobacillus plantarum begins to grow and multiply, produce
lactic acid, and gradually reduce the pH value, and effectively
control the infection of other miscellaneous bacteria (Jung et al.,
2012; Li et al., 2021a). The growth conditions of Saccharomyces
cerevisiae are extensive and easy to cultivate. It can use the
fermentation products of Bacillus subtilis, such as hexose and
pentose (Xie, 2015), to produce protein and multiple vitamins,
and remove the product effect. Lactobacillus plantarum and
Enterococcus faecalis have a good symbiotic relationship (Qiao
et al., 2018a). The former provides the latter with essential
peptides and amino acids, such as glycine, histidine, valine,
leucine, glutamic acid, tryptophan and isoleucine (Bassaganya-
Riera et al., 2012), while the latter produces formic acid and CO2

to stimulate the proliferation of the former. Among many species of
Aspergillus fungi,Aspergillus flavus can produce toxic substances and
cannot be used in microbial transformation. Aspergillus Niger has a
variety of highly active enzyme systems, does not produce toxins,
can produce pectinase, mannanase, protease, amylase, cellulase,
hemicellulase, lipase, glucosidase and other enzymes, it is widely
used in the conversion of traditional Chinese medicine (Jin et al.,
2016). In addition to Aspergillus Niger, other Aspergillus enzymes
such asAspergillus oryzae have also been applied, but they are far less
than the application of Aspergillus Niger. So in this experiment,
Astragalus was fermented by mixed bacteria (Aspergillus Niger
spores, Bacillus subtilis, Saccharomyces cerevisiae, Lactobacillus
plantarum and Entero-coccus faecalis) solid-state fermentation
process. In aquaculture, the use of probiotics and dietary
enhancement have been recognized as alternative methods of
health management. In particular, nutritional status has been
increasingly acknowledged as a crucial factor in host defense
against pathogens. As such, use of feed supplements aiming to
improve not only the growth but also the health of aquaculture
species has gained widespread interest and acceptance. Our work
will provide reference for the addition and management of FAM in
the aquaculture industry.

2 Materials and methods

2.1 Fermented Astragalus membranaceus
(FAM) and diet preparation

2.1.1 Fermentation process
Chinese herbal medicine AM produced in Gansu and fermented

by mixed bacteria (Aspergillus Niger spores, Bacillus subtilis,
Saccharomyces cerevisiae, Lactobacillus plantarum and Entero-

coccus faecalis) solid-state fermentation process. The fermentation
method was improved according to Xie (2015)’s method and
previous studies (Liu et al., 2017; Qiao et al., 2018a; Li et al.,
2021a). AM, corn, soybean meal and wheat bran were pulverized
and passed through a 100mesh sieve, and then mixed at 75: 10: 10:
5 as the initial material. In addition, 5% molasses, 0.2% ammonium
sulfate, 0.05% potassium dihydrogen phosphate, 0.1% dipotassium
hydrogen phosphate, 0.07% sodium chloride and 0.01% magnesium
sulfate heptahydrate were added. Drying at 55°C for 24 h before
mixing. The substrate was sterilized by 121°C high temperature and
high-pressure steam (SHENAN, LDZX-30KBS, China) for 20min
and then added into the sterile fresh water of equal quality.
Aspergillus Niger spores’ powder (2 × 1010 CFU·g−1), Bacillus
subtilis powder (2 × 1011 CFU·g−1), Saccharomyces cerevisiae
powder (2 × 1010 CFU·g−1), Lactobacillus plantarum powder (1 ×
1010 CFU·g−1) and Enterococcus faecalis powder (1 × 1011 CFU·g−1)
were used for fermentation, the inoculum concentration of each
strain was 2 × 107 CFU·g-1. FAM preparation conditions were as
follows: aerobic fermentation at 35°C for 24°h, anaerobic
fermentation at 35°C for 72°h, drying at 55°C for 24°h, and
grinding to particle size < 0.15°mm.

2.1.2 Feed preparation
The basic feed is commercial grouper feed, produced in Santong

Bio-engineering (Weifang) CO., Ltd. (http://www.santonghaitong.
com/). The nutritional levels of feed were as follows: crude protein ≥
48.0%, crude fat ≥ 10.0%, crude ash ≤ 16.0%, crude fiber ≤ 3.0%,
lysine ≥ 2.5%, moisture ≤ 10.0%. Commercial complete crushed to
particle size < 0.28mm, 1.5% adhesive sodium alginate was added.
FAM or microcrystalline cellulose (the total addition was 4%) were
added to make granules, drying at 55°C for 24 h. The diet was stored
at −20°C.

The control group (L0) was fed commercial complete feed with
no added FAM. Five treatments were involved. The treatment group
(L1, L2, L3, L4 and L5) was fed commercial complete feed
supplemented with FAM (0.25%, 0.5%, 1%, 2% and 4%,
respectively). For each group, three replicates were used. During
the experimentation period, 30% water was exchanged in each tank.
The water parameters were measured daily and were maintained at
pH 7.8, dissolved oxygen > 6.0 mg/L, and water temperature
26.5°C ± 1.5°C.

2.2 Chemical characterization analysis

Astragalus dry powder and FAM were weighed three equal
samples to be tested. Protein content was determined by Kjeldahl
nitrogen determination method (GB 5009.5-2016). Polysaccharide
was extracted by water extraction and alcohol precipitation method
(Qiao, 2020), total sugar was determined by phenol-sulfuric acid
method (Zhao, 2015), and reducing sugar was determined by 3, 5-
dinitrosalicylic acid colorimetric method (Zhang et al., 2017).
Polysaccharide extraction rate (%) = (total sugar mass - reducing
sugar mass)/sample mass×100% (Chen, 2020). The relative
molecular mass of polysaccharide was determined by gel
permeation chromatography (GPC) method (Yang et al., 2023).

The content of total saponins was determined by sulfuric acid-
vanillin method and total flavones by sodium nitrite—aluminum
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nitrate-sodium hydroxide method (Zhang et al., 2021). The content
of Astragaloside A was determined by HPLC-ELSD method
according to Pharmacopoeia of the People’s Republic of China
(2020 edition). The content of effective substances in FAM
containing the same amount of AM = the content of effective
substances in FAM ÷ 70.85%.

2.3 Experimental fish and feeding
management

Juvenile tiger grouper individuals (bodyweight 44.48 ± 2.06 g)
were raised at the Tropical Fisheries Research and Development
Center, South China Sea Fisheries Research Institute, Chinese
Academy of Fishery Sciences, Sanya, China. We randomly
divided 540 fish among 18 tanks (300 L each, 30 fish per tank).
Fish were allowed to acclimate for 7 days and were only fed
commercial complete feed during this period. Upon completion
of the acclimation period, experimentation began and lasted
8 weeks. Fish were fed ad libitum twice daily at 08:30 and 16:30.

2.4 Fish performance and feed efficiency

At the end of the feeding trial, following a 24 h starvation period
and anesthetized with 150 mg/L Eugenol CAS:97-53-0, all the fish
were measured and weighed. In addition, 3 fish from each tank were
randomly collected before sampling. The calculation formulas of fish
performance and feed efficiency are as follows:

Weight gain rate WGR,%( ) � Wt −W0( ) /W0 × 100

Specific growth rate SGR,% · d−1( ) � lnWt − lnW0( )/t × 100

Survival rate SR,%( ) � Nf/Ni × 100

Feed coefficient FC( ) � F/ Wt −W0( )
In the formula, W0 was the fish body weight (g) at the beginning

of the experiment; Wt was the fish weight (g) at the end of the
experiment; t was the test days (d); Nf was the number of terminal
fish; Ni was the initial fishtail number; F was feed intake (g).

2.5 Sampling

The surface water was wiped with paper towels, and a 1-mL
sterile syringe was used to extract blood from the tail veins of tiger
grouper. After standing for 4 h, blood samples were centrifuged for
10 min at 3500×g, 4°C, and then the supernatants were collected.
The collected supernatant was stored at −80°C for further
measurement and analysis. The intestines and livers of three fish
from each tank were aseptically dissected; the intestinal contents
were collected.

2.6 Physiology and biochemistry

Serum biochemical parameters were determined according to
the instructions of the commercial kits (Nanjing Jiancheng
Biological Co., Ltd., Nanjing, China), i.e., total protein (TP)

(Item No. A045-4-2): BCA microplate method; total cholesterol
(TC) (Item No. A111-1-1): cholesterol oxidase–peroxidase
aminoantipyrine method; high density lipoprotein cholesterol
(HDL-C) (Item No. F003-1-1): liquid precipitation separation
method; and low-density lipoprotein cholesterol (LDL-C) (Item
No. A113-1-1): double reagent direct method. All serum
biochemical parameters were performed in triplicates.Intestine
samples from each parallel were weighed. Under the condition
of ice bath, 0.9% normal saline or sample homogenate medium was
added to the tissue according to the weight volume ratio of 1:9 to
make 10% homogenate. According to the requirements of the
corresponding kits (Nanjing Jiancheng Biological Co., Ltd.,
Nanjing, China), the homogenates were centrifuged and the
supernatants were extracted, and then the relevant indicators
were measured. Intestinal digestion indicators included amylase
(AMS) (Item No. C016-1-1), lipase (LPS) (Item No. A054-2-1),
trypsin (TRYP) (Item No. A080-2-2), and total protein (TP) (Item
No. A045-4-2). The starch-iodine colorimetric method, methyl
halal substrate method (microplate method), colorimetric method,
and BCA microplate method were used for determination,
respectively.

2.7 DNA extraction

The intestinal contents from the three fish were mixed,
transferred to a sterile freezing tube, snap-frozen in liquid
nitrogen, and stored at −80°C (Haier, DW-86L626, China)
for DNA extraction. Total DNA was extracted from the
intestinal contents using TIANamp Stool DNA Kits
(Tiangen), following the manufacturer’s instructions. A
ultramicro biochemical spectrophotometer (Thermo
Scientific, NanoDrop, 2000, China) and agarose gel
electrophoresis (Beijing Liuyi Instrument Factory, DYY-6C,
China) were used to determine DNA quantity and quality.

2.8 PCR amplification and 16S rRNA gene
library construction

TheV3–V4hypervariable region of the bacterial 16S rRNAgenewas
PCR-amplified using universal primers (338F: 5′-ACTCCTACGGGA
GGCAGCAG-3′, 806R: 5′-GGACTACHVGGGTWTCT
AAT-3′). Indexed adapters were added to the ends of the 16S rRNAgene
amplicons to generate indexed libraries for downstream NGS
sequencing on the Illumina MiSeq platform. Sequencing adapters
were also added to the termini of the PCR products to facilitate
MiSeq sequencing. All PCR amplifications were performed in
triplicate using TransStart FastPfu DNA Polymerase Kits (TransGen).
Each 20ul PCR mixture contained 4ul of 5×FastPfu Buffer, 2.5 ul of
dNTPs, 0.8 ul of each primer, 0.4 ul of FastPfu Polymerase, 0.2 ul of BSA,
10 ng of template DNA, and ddH2O to make 20ul. The thermal cycling
conditions were as follows: initial denaturation at 95°C for 3min; 27
cycles of denaturation at 95°C for 30 s, annealing at 55°C for 30 s,
extension at 72°C for 45 s; and a final extension at 72°C for 10 min. All of
the PCR products were visualized on agarose gels (2% in TAE buffer)
containing ethidiumbromide and purified usingDNAgel extraction kits
(Axygen).
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2.9 Bioinformatics analysis

After de-multiplexing the data and discarding certain reads,
the remaining reads were converted to FASTQ format. In this
study, 250-bp reads were truncated at any site receiving an
average quality score of < 20 over a 10bp sliding window.
Reads < 50bp were discarded. The minimum value of the
overlap was 10bp when merging the reads; sequences whose
barcodes did not match an expected barcode were also
discarded.

Chimeric sequences were determined by UCHIME (Edgar
et al., 2011). OTUs were defined with a threshold of 97%
similarity by UPARSE (Edgar, 2013). Taxonomic richness
and diversity estimators were determined for each library in
Mothur. The mean of the estimated richness was used for
comparisons among samples. The heatmap was constructed
by using the heatmap 2 function of the R g-plots package
based on the top 100 genera of the samples.

2.10 Histological analysis

The livers and intestines were collected and fixed in 4%
paraformaldehyde. The fixed tissues were embedded in paraffin
blocks and sliced into a series of transverse sections (4μm thick)
using a Leica RM 2016 rotary microtome (Shanghai Leica
Instrument Co., Ltd., China). A hematoxylin–eosin (HE)
stain was used for general histological analysis. Each slide
with tissue sections was mounted permanently using neutral
balsam. The sections were scanned using a Panoramic 250/
MIDI scanner (3D HISTECH Co., Ltd., Hungary), and Case
viewer 2.0 (3D HISTECH Co., Ltd., Hungary) was used for
image analysis and measurement. For each intestine sample,
mucosal height and muscularis thickness were quantified
by taking 10 measurements per intestinal section. For each
liver sample, area, density and diameter of hepatocyte were
quantified by taking 10 measurements per liver section.

2.11 Statistical analysis

Statistical analysis was performed using SPSS 19.0 statistical
software package (SPSS Inc.). Excel 2016 for data processing and
mapping. Microbioinformatics analysis and mapping were
performed on the Meiji Biocloud platform (https://cloud.
majorbio.com/) of Shanghai Meiji Biotechnology Co., Ltd. All
of the values are presented as means ± standard deviation
(mean ± SD). t-test was used to analyze the significant
difference of Astragalus components before and after
fermentation. One-way analyses of variance (ANOVAs) were
used to analyze the data of growth performance, morphological
index, serum biochemical index, digestive enzyme and intestinal
flora α diversity test results. Comparisons between different
groups were conducted by LSD test when there was a
significant difference. We considered p < 0.05 statistically
significant.

3 Results

3.1 Chemical characterization

3.1.1 Components
As shown in Table 1, compared with Astragalus herb, the total

saponin content, polysaccharide extraction rate, total flavonoid content,
astragaloside A and protein content of FAM were significantly different
(p < 0.05), which were differed by 87.44%, 21.77%, 200%, 34.07% and
34.70%, respectively. After mass conversion, the total saponin content,
polysaccharide extraction rate, astragaloside A content and total
flavonoid content in FAM containing the same amount of AM were
significantly different (p < 0.05), which were differed by 164.73%,
71.88%, 6.94% and 340%, respectively.

3.1.2 Relative molecular mass of polysaccharides
The molecular weight of the extracted polysaccharide of Astragalus

herb and FAM was determined by GPC method. The polysaccharide
with largermolecular weight entered themicropores of the filler less and
was separated out first. The longer the retention time, the smaller the
average molecular weight of the polysaccharide (Figure 1). The peak
molecular weight (Mp), weight-average molecular weight (Mw),
number-average molecular weight (Mn) and molecular weight
(MW) distribution of polysaccharide samples on the chromatogram
were calculated by GPC software through the viscosity and peak time of
the samples (Tables 2, 3). The peak dispersion coefficient (Mw/Mn)
data before and after fermentation showed that the molecular weight
distribution ofAstragalus polysaccharides before and after fermentation
was uneven, and the distribution range was wide, including three
different molecular weight components. However, the molecular
weight distribution of Astragalus polysaccharides before and after
fermentation was significantly different (p < 0.05). The highest
molecular weight of the component represented by peak 1 after
fermentation was 117634167 larger than that before fermentation,
and the proportion of molecular weight above 1000000Da was
51.15%, which was also higher than that before fermentation,
indicating that Astragalus promoted the dissolution of large
molecular weight polysaccharides after fermentation. According to
the difference in the relative proportion of the peak area of peak
3 to the total peak area before and after fermentation, it can be seen
that the relative peak area of Astragalus polysaccharide peak 3 changed
significantly after fermentation (p < 0.05), indicating that the
fermentation of Astragalus promoted the degradation and utilization
of large molecular weight polysaccharides by probiotics, which was
converted into small molecular weight polysaccharides, resulting in an
increase in the proportion of small molecular weight polysaccharides.
The proportion of components represented by peak 3 with a molecular
weight below 10000Da after fermentation also showed the same results.

3.2 Growth performance

Feed addition of FAM had no significant effect on the survival
rate of tiger grouper. The WGR and SGR were highest in L4 group,
being significantly different from all other treatments, including
L0 group (p < 0.05). However, when the dose of FAM was the
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TABLE 1 Composition changes of Astragalus membranaceus before and after fermentation.

Items Astragalus herb FAM Effective substance content after mass conversion

Total saponin content/% 2.07 ± 0.05 3.88 ± 0.06* 5.48 ± 0.09*

Polysaccharide extraction rate/% 9.28 ± 0.06 11.30 ± 0.37* 15.95 ± 0.53*

Total flavone content/% 0.05 ± 0.00 0.15 ± 0.00* 0.22 ± 0.01*

Astragaloside A content/mg·kg−1 1726.26 ± 25.39 1138.13 ± 22.08* 1606.39 ± 31.16*

Protein content/% 13.63 ± 0.12 18.36 ± 0.67* —

Note: “*” indicates significant difference compared with Astragalus herb (p < 0.05, n = 9). FAM: fermented Astragalus.

FIGURE 1
The chromatogram of polysaccharide in Astragalus herb and fermented Astragalus. (A) Astragalus herb; (B) Fermented Astragalus.
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highest (L5 group), the WGR and SGR again decreased. The FC was
lowest in L3 and L4 group, being significantly different from all other
treatments, including L0 group (p < 0.05). However, when the
dose of FAM was the highest (L5 group), the FC again increased
(Table 4).

3.3 Serum biochemical parameters

The HDL-C was highest in L4 group, being significantly
different from all other treatments, including L0 group (p <
0.05). Feed addition of FAM had no significant effect on TP, TC
and LDL-C of tiger grouper (Table 5).

3.4 Digestive enzymes

The AMS was lowest in L0, being significantly different from
L1, L4 and L5 (p < 0.05). The TRYP was lowest in L0, being
significantly different from L5 (p < 0.05). The LPS was highest in
L2 and L3, being significantly different from all other
treatments, including L0 group (p < 0.05) (Figure 2).

3.5 Hepatic histology

The area and diameter of hepatocyte were lowest in L3 and L4,
being significantly different from L1 (p < 0.05). The density of

TABLE 2 Molecular weight determination result of polysaccharide in Astragalus herb and fermented Astragalus.

Samples Peak number Mp/Da Mw/Da Mn/Da Mw/Mn

Polysaccharide of Astragalus herb 1 214819 364948 144580 2.524194

2 54556 57901 57490 1.007149

3 3578 39672 29834 1.329758

Polysaccharide of FAM 1 1669612 1679129 662840 2.533234

2 59647 68658 52987 1.295752

3 6511 11602 9467 1.22552

Note: FAM, fermented Astragalus; Mp, peak molecular weight; Mw, weight-average molecular weight; Mn, number-average molecular weight.

TABLE 3 Molecular weight distribution of Astragalus herb and fermented Astragalus.

Peak number MW MW Percent/%

High limit MW/Da Low limit MW/Da

Astragalus herb FAM Astragalus herb FAM Astragalus herb FAM Astragalus herb FAM

1 1 96741174 117634167 1000000 1000000 7.03 51.15

1 1 1000000 1000000 500000 500000 11.36 20.54

1 1 500000 500000 300000 300000 13.74 13.86

1 1 300000 300000 200000 200000 16.55 10.81

1 1 200000 200000 100000 175512 26.14 3.63

1 100000 — 50000 — 21.12 —

1 50000 — 43241 — 4.06 —

2 2 70060 155622 50000 100000 99.47 19.97

2 2 50000 100000 49909 50000 0.53 40.63

2 — 50000 — 30000 — 28.01

2 — 30000 — 24453 — 11.39

3 3 151226 36971 100000 30000 3.54 2.08

3 3 100000 30000 50000 20000 16.84 8.92

3 3 50000 20000 30000 10000 39.27 37.35

3 3 30000 10000 20000 5431 23.83 51.65

3 20000 — 10000 — 16.47 —

3 10000 — 9971 — 0.04 —

Note: FAM, fermented Astragalus; MW, molecular weight.
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hepatocyte was highest in L4 group, being significantly different
from all other treatments, including L0 group. However, when the
dose of FAM was the highest (L5 group), the density of hepatocyte
again decreased (Table 6).

The results of HE staining of liver tissue sections of tiger
grouper was shown in Figure 3. In the L0 group, many hepatocytes
were swollen and vacuolated, some nuclei were deviated, and the
number of nuclei in the field of view was less than other groups
(from density of hepatocyte). After the addition of FAM, the
migration of hepatocyte nucleus in L1 group was reduced, but
the cell swelling and vacuolization were not improved. In the
L2 group, the number of hepatocyte nuclei increased significantly,

a small number of nuclei shifted, and cell swelling and
vacuolization were improved. Cell swelling, vacuolization and
nuclear migration in the L3 group were further improved. In
the L4 group, only a very few hepatocytes showed vacuolization
and nuclear deviation, cell swelling was significantly improved,
clear nuclei were visible in the center of the cells, and the number in
the field of vision was significantly increased. The hepatocytes were
evenly distributed and closely arranged, and the cell membrane
contour was clear. The L5 group with a high proportion of FAM
showed swelling and vacuolization, and there was a serious nuclear
deviation. The number of nuclear deviation cells was significantly
higher than that of other groups, showing a pathological feature.

TABLE 4 Effects of fermented Astragalus on growth performance of tiger grouper.

Items L0 L1 L2 L3 L4 L5

SR/% 98.89 ± 1.92 98.89 ± 1.92 98.89 ± 1.92 100 ± 0.00 100 ± 0.00 100 ± 0.00

WGR/% 75.09 ± 6.38c 84.27 ± 5.65bc 77.76 ± 8.16bc 90.18 ± 9.53b 105.00 ± 7.10a 79.42 ± 5.13bc

SGR/%·d−1 1.00 ± 0.06c 1.09 ± 0.06bc 1.03 ± 0.08bc 1.15 ± 0.10b 1.28 ± 0.06a 1.04 ± 0.05bc

FC 1.31 ± 0.17a 1.23 ± 0.18a 1.40 ± 0.18a 0.93 ± 0.03b 0.93 ± 0.07b 1.24 ± 0.04a

Note: The control group (L0) was fed commercial complete feed with no added FAM, The treatment group (L1, L2, L3, L4 and L5) was fed commercial complete feed supplemented with FAM

(0.25%, 0.5%, 1%, 2% and 4%, respectively). SR, survival rate; WGR, weight gain rate; SGR, specific growth rate; FC, feed coefficient. In the same row, values with different small letter

superscripts mean significant difference (p < 0.05, n = 9).

TABLE 5 Effects of fermented Astragalus on serum biochemical indexes of tiger grouper.

Items L0 L1 L2 L3 L4 L5

TP/g·L−1 11.55 ± 1.05 11.87 ± 0.73 12.25 ± 0.67 12.15 ± 0.44 12.33 ± 1.20 11.08 ± 0.75

TC/mmol·L−1 3.27 ± 0.25 3.23 ± 0.14 3.19 ± 0.13 3.18 ± 0.11 3.04 ± 0.26 3.19 ± 0.33

HDL-C/mmol·L−1 4.61 ± 0.16b 5.06 ± 0.51b 4.89 ± 0.72b 5.02 ± 0.73b 5.53 ± 0.42a 5.22 ± 0.20b

LDL-C/mmol·L−1 1.80 ± 0.24 1.72 ± 0.49 1.66 ± 0.17 1.70 ± 0.17 1.59 ± 0.15 1.62 ± 0.07

Note: The control group (L0) was fed commercial complete feed with no added FAM, The treatment group (L1, L2, L3, L4 and L5) was fed commercial complete feed supplemented with FAM

(0.25%, 0.5%, 1%, 2% and 4%, respectively). TP, total protein; TC, total cholesterol; HDL-C, high density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol. In the same row,

values with different small letter superscripts mean significant difference (p < 0.05, n = 9).

FIGURE 2
Effects of Fermented Astragalus on intestinal amylase activity, trypsin activity and lipase activity of tiger grouper. Note: The control group (L0) was fed
commercial complete feed with no added FAM. The treatment group (L1, L2, L3, L4 and L5) was fed commercial complete feed supplemented with FAM
(0.25%, 0.5%, 1%, 2% and 4%, respectively). Different superscript letters indicate significant differences among treatments (p < 0.05).
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3.6 Intestinal histology

The measurement results of tiger grouper intestinal tissue
sections in each group were shown in Table 7. The mucosal
height was highest in L3 group, being significantly different from
L0, L1, L2 and L4 groups (p < 0.05). The muscularis thickness was
highest in L3 and L5 group, being significantly different from L0,
L1 and L2 groups (p < 0.05). Feed addition of FAM had no
significant effect on the mucosal number of tiger grouper.

At the same time, FAM affected the intestinal microstructure of
tiger grouper, as shown in Figure 4. In the control group, the
intestinal mucosa was sparse and disordered, and the columnar
epithelial cells of the intestinal mucosa were dissolved and separated
from the lamina propria. The nucleus at the base was disordered,
and the intestinal mucosa microstructure was significantly damaged.
Compared with the control group, the damage to the intestinal
structure in each FAM group was alleviated, and the effect of the
L3 group was better. The intestinal tissue structure was complete and
clear. The intestinal mucosa was well developed, arranged closely
and abundantly, and straight into the cavity. The nuclei of epithelial
cells were closely and neatly arranged at the base, and the striated
edges were neatly arranged.

3.7 Intestinal microbiota structure

3.7.1 Intestinal microbial OTU division and Alpha
diversity comparison

The sequences with similarity higher than 97% were clustered into
the same classification operation unit (OTU) for bioinformatics
statistical analysis. From the OUT-classification level, draw the Venn
diagram, as shown in Figure 5. A total of 336 OTUs were obtained from
the test samples, of which the number of common OTUs was 90. The
only OTUs in the L0-L5 group were 51, 25, 36, 45, 59 and 30,
respectively. The total OTU values of each group were 141, 115, 126,
135, 149 and 120, respectively. Therefore, the ratio of the only OTU to
the total OTUwas 36.17%, 21.74%, 28.57%, 33.33%, 39.60% and 25.00%,
respectively. The above results can be concluded that the structure of
tiger grouper intestinal microbiota can be changed due to the
intervention of FAM. The richness and diversity of intestinal
microbial communities were analyzed by single sample diversity
(Alpha diversity), including a series of statistical analysis indexes to
estimate the species abundance and diversity of ecological communities.
The Alpha diversity analysis of this experiment was estimated by five

indexes. The results are shown in Table 8. At the level of 97% similarity,
the sequencing coverage of each sample was higher than 99.8%. There
was no significant difference in the Sob index, Shanno index, Simpson
index, Ace index and Chao index between groups (p > 0.05).

3.7.2 Intestinal microbial community composition
and difference analysis

As shown in Figure 6A, Proteobacteria, Firmicutes, Unclassified _ k
__ norank _ d __ Bacteria, Bacteroidota, Actinobacteria and
Fusobacteriota were the dominant phyla in tiger grouper at the
phylum level. Proteobacteria (66.78%), Firmicutes (8.87%) and
Bacteroidota (14.71%) were dominant in the L0 group. Proteobacteria
(71.56%), Firmicutes (17.36%) and Fusobacteriota (8.15%) were
dominant in the L1 group. The composition of dominant bacteria in
L2-L4 groups was similar. The proportion of Proteobacteria in each
group was 87.70%, 89.33%, 81.44% and 87.41%, respectively. The
proportion of Firmicutes in each group was 2.81%, 2.28%, 4.77% and
1.91%, respectively. The proportion of Unclassified _ k __ norank _ d __
Bacteria in each group was 6.27%, 5.60%, 6.00% and 7.30%, respectively.
In addition, the proportion of Actinobacteria in the L4 group was
significantly higher than that in other groups, reaching 4.81%. The
above shows that Proteobacteria was the first dominant phylum.

The relative abundance of tiger grouper intestine microbiota at
the genus level is shown in Figure 6B. At the genus classification
level, there were some differences in the dominant intestinal
microbiota of each treatment group. The relative abundance of
core microbiota was higher in Ralstonia, Photobacterium, Vibrio,
Unclassified _ k __ norank _ d __ Bacteria and Candidatus_
Cardinium, which constituted the dominant genus in the
intestinal microbiota of tiger grouper in this experiment. The
abundance of Ralstonia and Vibrio were lowest in L0 group,
being significantly different from all other treatments, except
L4 group.

According to Figure 6C Partial Least Squares Discriminant Analysis
(PLS-DA), the control group was significantly different from the
experimental group in terms of species abundance, while the
L4 group was more significantly different from the other groups,
indicating that FAM had a specific effect on the intestinal microbiota
of tiger grouper, and the L4 group had the most significant effect.

As shown in Figure 6D, according to the abundance information
and species annotation of the samples at the level of intestinal
bacterial genus, the genus with abundance in the top 50 was
screened. According to the abundance information in each
sample, the samples and species were clustered at two levels to

TABLE 6 Effects of fermented Astragalus on liver morphological parameters of tiger grouper.

Items L0 L1 L2 L3 L4 L5

Area of hepatocyte/um2 63.23± 79.51± 72.00± 48.16± 47.98± 68.97±

13.08ab 7.14a 1.69ab 8.74b 11.57b 31.07ab

Density of hepatocyte/(Number/mm2) 3249.39± 3582.26± 3989.97± 3849.22± 4590.92± 3653.75±

182.63d 66.01c 26.88b 209.82bc 220.97a 275.12bc

Diameter of hepatocyte/um 8.75± 9.71± 9.12± 7.95± 7.75± 8.87±

0.75ab 0.37a 0.10ab 0.54b 0.67b 1.48ab

Note: The control group (L0) was fed commercial complete feed with no added FAM, The treatment group (L1, L2, L3, L4 and L5) was fed commercial complete feed supplemented with FAM

(0.25%, 0.5%, 1%, 2% and 4%, respectively). In the same row, values with different small letter superscripts mean significant difference (p < 0.05, n = 9).
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draw a heat map. The color gradient in the heat map analysis from
blue to red indicates that the relative abundance is from low to high.
The results showed that the intestinal microbial samples of each
experimental group were first clustered into one branch, which was
far away from the L0 group. The abundance of Ralstonia in the
control group was lowest. In addition to the L4 group, the Vibrio
abundance of each experimental group was also higher than that of
the L0 group. The abundance of Photobacterium, Pseudomonas,
Wolbachia, Escherichia-Shigella and Shimwellia in each
experimental group was lower than that in the control group. The
abundance of Rhodococcus, Shinella, Lactobacillus, Achromobacter,
Brucella, Brevibacterium, Acinetobacter and Brevundimonas in the
L4 group was higher than that in other groups. Except for the

L3 group, the abundance of Bacillus in each experimental group
was relatively higher than that in the L0 group.

4 Discussion

Modern pharmacological studies have shown that AM has anti-
cancer, analgesic, anti-inflammatory, antibacterial, antioxidant and
other pharmacological effects, and contains a variety of active
ingredients such as saponins, flavonoids, polysaccharides, amino
acids and trace elements. AM is one of the most widely used
traditional herbs. The main functions of Astragalus
polysaccharides and flavonoids are anti-oxidation and immunity

FIGURE 3
Effects of fermentedAstragalus on hepatic tissue structure of tiger grouper. Note: The control group (L0) was fed commercial complete feedwith no
added FAM. The treatment group (L1, L2, L3, L4 and L5) was fed commercial complete feed supplemented with FAM (0.25%, 0.5%, 1%, 2% and 4%,
respectively). The black arrow marks the liver nucleus, the black ellipse marks the shift of the liver nucleus, and the red arrow marks the hepatocyte
swelling and vacuolation.
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enhancement. Saponins have the functions of anti-tumor, immune
regulation, and protection of the cardiovascular system.
Astragaloside A is the main active ingredient of Astragalus
saponins, which is a qualitative and quantitative index stipulated
in the pharmacopoeia. In this experiment, AM was fermented by
mixed bacteria solid-state fermentation process. After fermentation,
it had a special fermented koji aroma. Compared with the crude
drug AM, the protein content of FAM was significantly changed by
34.70%, indicating that a large amount of bacterial protein was
produced after AM fermentation, and its nutritional value was
improved. The total saponin content, polysaccharide extraction
rate and total flavonoid content in FAM containing the same
amount of AM were significantly changed by 164.73%, 71.88%
and 340%, but the content of astragaloside A was significantly
changed by 6.94%. Similar probiotic fermentation experiments of
AM showed that the use of Aspergillus Niger, Lactobacillus
plantarum, and Saccharomyces cerevisiae for mixed solid-state

fermentation of AM, the polysaccharide extraction rate and total
flavonoid content of AM increased by 11.93% and 43%, respectively
(Zhou, 2018). The liquid fermentation of AM roots was carried out
by non-lactose streptococcus, and the increase rates of
polysaccharides, total saponins and total flavonoids were
177.46%, 68.50% and 55.67%, respectively (Su, 2017). Wang
(2020) used liquid fermentation of AM by Bacillus natto. After
fermentation, the polysaccharide content decreased by 28.49%
compared with that before fermentation, the total saponin
increased by about 9.21%, and the total flavonoid content
increased by about 36.43% (Wang, 2020); Zhao (2015) used lactic
acid bacteria to ferment AM by solid-state fermentation. The
content of polysaccharide and astragaloside A were the highest
on the 12th and 18th days, respectively, and the increase rates
were 95.5% and 17.46% higher than those before fermentation, but
lower than the control group in the later stage of fermentation
(Zhao, 2015); Qin (2012) used the selected lactic acid bacteria to

TABLE 7 Effects of fermented Astragalus on intestinal morphological parameters of tiger grouper.

Items L0 L1 L2 L3 L4 L5

Mucosal height 355.60 ±
135.23b

346.64 ± 170.09b 314.85 ± 144.72b 447.79 ± 252.91a 363.55 ± 149.26b 402.38 ± 157.20ab

Muscularis thickness 131.24 ±
27.12ab

113.93 ± 22.89b 115.20 ± 34.51b 154.85 ± 63.44a 134.05 ± 43.47ab 143.79 ± 29.01a

Mucosal number 32.33 ± 3.06 30.33 ± 1.53 30.00 ± 2.65 34.00 ± 6.08 33.33 ± 8.50 31.33 ± 0.58

Note: The control group (L0) was fed commercial complete feed with no added FAM, The treatment group (L1, L2, L3, L4 and L5) was fed commercial complete feed supplemented with FAM

(0.25%, 0.5%, 1%, 2% and 4%, respectively). Different superscript letters indicate significant differences among treatments (p < 0.05, n = 9).

FIGURE 4
Effects of fermented Astragalus on intestinal morphology of tiger grouper. Note: The control group (L0) was fed commercial complete feed with no
added FAM. The treatment group (L1, L2, L3, L4 and L5) was fed commercial complete feed supplemented with FAM (0.25%, 0.5%, 1%, 2% and 4%,
respectively). h, mucosal height; t, muscularis thickness; black circle indicates the mucosa; red circle indicates the dissolution and shedding of columnar
epithelial cells.
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ferment AM in liquid state, and the yield of polysaccharide increased
by 59.34%, but the extraction rate of total saponins decreased by
17.20% after fermentation, and the content of astragaloside A
decreased by 27.6% (Qin, 2012). The above results showed that
different fermentation methods had different effects on the yield of
effective components of AM. Under the action of powerful enzymes
of microorganisms, dense structural components such as cellulose,
hemicellulose and pectin in plant cell wall are decomposed and
transformed, resulting in loose structure of plant cell wall, increased
intercellular space and easy release of active components, so the
content of active components is increased (Song et al., 2021).
However, some chemical components may also be bio
transformed by probiotics, thus changing the chemical
composition of traditional Chinese medicine (Ai et al., 2019). In

this study, the content of astragaloside A in FAM decreased,
indicating that the fermented strain may have been bio
transformed with this precursor. The specific transformation
pathway and the new compounds generated need to be further
studied. As one of the extremely important active ingredients of
Astragalus, Astragalus polysaccharides have pharmacological effects
such as anti-virus, regulating blood sugar, anti-oxidation and
enhancing immunity (Wang et al., 2022b). The use of gel
chromatography to detect the molecular weight changes of
Astragalus polysaccharides before and after fermentation helps to
evaluate its efficacy changes. In this experiment, the yield of
polysaccharides increased after fermentation, and the proportion
of polysaccharides in the low molecular weight section changed
significantly after fermentation, indicating that the high molecular
weight polysaccharides were degraded after fermentation, which was
consistent with the results of Liang Zijing FAM polysaccharides
(Liang, 2019). High molecular weight polysaccharides have poor
water solubility, complex structure and conformation, and are
difficult to cross the tissue barrier into the cell or attach to the
receptor to play a role (Zhang, 2020). On the contrary, low
molecular weight polysaccharides have higher solubility and
lower viscosity than high molecular weight polysaccharides in
water, so they are more easily absorbed by the body when they
act in the body, have higher bioavailability, and have higher affinity
with phagocytes, which contributes to immune activation (Li et al.,
2020); In addition, polysaccharides with lower molecular weight also
have higher antioxidant activity (Sun et al., 2009). The proportion of
low molecular weight polysaccharides was significantly increased
after fermentation of AM. The results provide a reference for the
functional characteristics of FAM, such as immune regulation and
intestinal microecology improvement.Enzymes produced in the
process of microbial fermentation can effectively decompose
plant cell wall, so that the effective components can be released
from the cell to improve the medicinal effect of traditional Chinese
herbal medicine (Hussain et al., 2016). A large number of studies
had shown that fermented Chinese medicine can improve the
growth performance of aquatic animals, such as common carp
(Cyprinus carpio) (Zhao et al., 2017; Shi et al., 2022a), Cyprinus
carpio haematopterus (Xie et al., 2015) and Ctenopharyngodon
idella (Tang et al., 2021). During the experiment, the WGR and
SGRwere highest in L4 group, the FC was lowest in L3 and L4 group,
being significantly different from all other treatments, including
L0 group. The comprehensive performance of the L3 and L4 group

FIGURE 5
Venn diagram of intestinal microbiota of tiger grouper. Note: The
control group (L0) was fed commercial complete feed with no added
FAM. The treatment group (L1, L2, L3, L4 and L5) was fed commercial
complete feed supplemented with FAM (0.25%, 0.5%, 1%, 2% and
4%, respectively).

TABLE 8 Alpha-diversity indexes of gut microbiota of tiger grouper.

Groups Sob index Shanno index Simpson index Ace index Chao index

L0 148.33 ± 69.30 2.11 ± 0.76 0.28 ± 0.11 165.25 ± 65.31 175.61 ± 66.65

L1 133.00 ± 13.53 2.25 ± 0.31 0.23 ± 0.14 146.10 ± 8.74 147.57 ± 12.22

L2 139.33 ± 13.58 1.98 ± 0.26 0.30 ± 0.07 143.18 ± 12.98 144.21 ± 11.87

L3 136.00 ± 10.15 1.76 ± 0.64 0.43 ± 0.18 141.60 ± 6.64 146.89 ± 6.60

L4 170.33 ± 3.21 2.53 ± 0.37 0.29 ± 0.09 176.37 ± 3.35 179.44 ± 7.85

L5 141.33 ± 28.57 1.87 ± 0.56 0.36 ± 0.13 146.18 ± 28.42 147.46 ± 30.23

Note: The control group (L0) was fed commercial complete feed with no added FAM, The treatment group (L1, L2, L3, L4 and L5) was fed commercial complete feed supplemented with FAM

(0.25%, 0.5%, 1%, 2% and 4%, respectively).
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FIGURE 6
Intestinal microbiota of tiger grouper. (A) Community composition at phylum level; (B) Community composition at genus level; (C) PLS-DA (D) The
clustering heatmap analysis at the genus level. Note: The control group (L0) was fed commercial complete feedwith no added FAM. The treatment group
(L1, L2, L3, L4 and L5) was fed commercial complete feed supplemented with FAM (0.25%, 0.5%, 1%, 2% and 4%, respectively).
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was better, indicating that FAM can promote the digestion and
absorption of nutrients in fish and promote the growth of tiger
grouper, which was similar to the results of Palea steindachneri
(Nong and Li, 2019) and common carp (Cyprinus carpio) (Shi et al.,

2022a). The polysaccharide yield of Astragalus was improved after
probiotic fermentation (Xiao et al., 2023). As one of the effective
active ingredients of Astragalus, Astragalus polysaccharide can
promote the growth of fish has been reported (Xiang et al., 2011;

FIGURE 6
Continued.
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Wang et al., 2018). In addition, the probiotics added during the
fermentation process can secrete a variety of digestive enzymes after
activation, growth and reproduction, thereby improving intestinal
health and improving the digestion and absorption capacity of
animals (Xiao et al., 2023). The nutritional factors such as
bacterial protein, vitamins, and small peptides produced during
the metabolic process may also have a positive effect on the growth
of the test fish. Studies had shown that adding 1.5% Astragalus
directly to Pseudosciaena crocea R. feed causes more than half of the
mortality rate (Wei, 2014). In this experiment, the addition of FAM
had no significant effect on the survival rate of tiger grouper, and the
highest dose of the L5 group (4% FAM) also had no death, indicating
that the fermentation treatment of AM may reduce the toxic and
side effects of high-dose traditional Chinese medicine on fish. The
reason is that the microbial population in fermentation decomposes
and transforms the anti-nutritional components of traditional
Chinese medicine or modifies the structure of toxic substances,
thus improving the pharmacological characteristics of Chinese
herbal medicine (Li et al., 2021b), which was also one of the
advantages of fermented traditional Chinese medicine. In general,
the addition of FAM at 1%–2% had a better effect on promoting
growth and reducing feed ratio.

The metabolism and physiological and pathological conditions
of fish can be reflected by serum biochemical indicators (Zhou et al.,
2001). Liver is the main place for protein synthesis, and serum TP
concentration can reflect the ability of liver protein synthesis and
metabolism (He et al., 2017). Serum TC is mainly synthesized in the
liver, reflecting the liver’s metabolism of fat (Tan et al., 2018).
Cholesterol transport depends on high-density lipoprotein and
low-density lipoprotein. High-density lipoprotein helps transport
cholesterol from peripheral tissues and plasma to the liver, degrades
and removes excess cholesterol to maintain cholesterol homeostasis
in the body (Meng et al., 2021). Low-density lipoproteins transport
endogenous cholesterol synthesized in the liver to peripheral tissues
for their use (Wang et al., 2021a). Feed addition of FAM had no
significant effect on TP, TC and LDL-C of tiger grouper. The HDL-C
was highest in L4 group, being significantly different from all other
treatments, including L0 group. The above results indicate that FAM
can promote the lipid transport in the liver of tiger grouper.

The liver is the main metabolic organ of fish and plays an
important role in regulating physiological functions, such as
digestion, nutrient storage, synthesis of new substances,
detoxification of harmful chemicals and metabolic homeostasis
(He, 2019; Zhong et al., 2021). In order to pursue the benefits of
aquaculture, high-energy long-term feeding can lead to liver
dysfunction in fish, which in turn induces fatty liver and
metabolic disorders, eventually leading to slow growth of fish
(Tan et al., 2019) Previous studies have shown that plants or
plant extracts can increase liver lipid metabolism and improve
liver morphology in fish (Tan, 2020; Sun et al., 2022). Compared
with the control diet, Pangasianodon hypophthalmus juveniles fed
with AM extract significantly reduced liver injury index enzymes
and improved liver health (Abdel-Latif et al., 2022). Similar results
were obtained in juvenile crucian carp (Carassius auratus) fed with
AM polysaccharide (Wu, 2020). The protective effect of Astragalus
polysaccharides on common carp (Cyprinus carpio) liver cells was
verified in the model of liver injury induced by carbon tetrachloride
(CCl4) (Jia et al., 2012). And the FAM polysaccharides also had

antagonistic effects on liver injury and liver fibrosis in rats (Qin,
2012). In the present research, studies have shown that Astragalus
active substances can prevent the negative effects of internal or
external factors on the liver, and then play its liver protection role. In
this study, histological examination showed that hepatocytes in
group L0 fed only artificial basal diet showed swelling
vacuolization and nuclear shift, indicating that the liver integrity
of tiger grouper was sensitive to artificial basal diet. Studies have
shown that compared with feeding ice fresh feed, feeding artificial
basic feed can induce liver lipid accumulation, and liver histological
analysis shows more vacuolization, which in turn causes liver
inflammation and oxidative stress, and ultimately leads to liver
injury (Ma et al., 2020), which is consistent with our research
results. In the gradient addition ratio of FAM set in this
experiment, the liver histology was gradually improved with the
increase of dose, and the liver integrity of the L4 group was the best
(cell swelling was significantly improved, and the number of cells in
the nucleus was significantly increased). In the L5 group with the
highest addition ratio, cell swelling and vacuolization occurred, and
severe nuclear deviation occurred. The pathological characteristics
showed that liver cell damage occurred in the L5 dose group. The
above research results showed that adding appropriate proportion of
FAM to the feed can effectively regulate the homeostasis of fat
metabolism and is beneficial to liver health. However, high-dose
additionmay have toxic effects on the liver, destroy the structure and
function of the liver, and make the liver lipid metabolism function
abnormal, resulting in a certain degree of disorder in the fat
transport system, but cell swelling and vacuolization. The
possible reasons why FAM is beneficial to liver health are as
follows. Astragalus has effective antioxidant components, such as
astragaloside, flavonoids and polysaccharides, which can effectively
prevent tissue damage through its antioxidant mechanism
(Muhammad et al., 2016). In addition, probiotics in FAM may
also be beneficial to fish liver health. The application of multiple
varieties of probiotics changed the shape of liver nuclei from
irregular to regular and reduced the space between liver tissues.
Adding Bacillus subtilis solid-state fermentation products to
zebrafish feed can improve liver lipid metabolism and alleviate
lipid deposition (Wang et al., 2022a). The possible mechanism of
probiotics improving liver health is to regulate glucose and lipid
metabolism, reduce fat accumulation in the liver, regulate intestinal
microbiota homeostasis, repair intestinal barrier and relieve
inflammation (Yao et al., 2021).

The biological process of fermentation leads to changes in the
nutritional composition of the fermentation substrate (Zhang et al.,
2012). Among them, the added probiotics have many beneficial
effects, such as killing or inhibiting pathogens, affecting the
intestinal microflora, and promoting nutrient utilization (Gao
et al., 2022), thus affecting the digestion ability of animals. The
results of this experiment showed that FAM had different degrees of
improvement on the activity of digestive enzymes in tiger grouper.
The principle of Chinese herbal medicine as a natural growth
promoter may be to induce the secretion of digestive enzymes
and stimulate appetite (Zhang et al., 2015), and to cooperate with
the probiotics added by fermentation to improve the intestinal
microenvironment. The addition of FAM in this experiment
increased the activity of digestive enzymes in tiger grouper and
reduced the feed coefficient, indicating that the reason why the
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addition of FAM in the feed accelerated the growth rate of tiger
grouper was not by increasing its food intake, but by enhancing its
digestion and absorption capacity.The intestinal morphology of fish
is closely related to dietary components (Wang et al., 2017; Fu et al.,
2021; Yang et al., 2022). The complete intestinal structure is crucial
for the body to prevent pathogens and toxins from entering the
systemic circulation, absorb and utilize nutrients, and resist
environmental pressure (Yang et al., 2022). It is an important
guarantee for the growth rate and health status of aquatic
animals. The intestinal mucosa formed by the epithelial cells of
the intestinal mucosa is the basic structure of the intestinal tract. The
height, quantity, morphological structure and sparse degree of the
intestinal mucosa and the development degree of the striated edge
on the surface have a great influence on the homeostasis of the
intestinal environment and the digestion and absorption of nutrients
(Khosravi et al., 2015). Intestinal epithelial cells, tight junction
proteins and mucus layer constitute the intestinal barrier
function (Yan and Ajuwon, 2017). In this experiment, compared
with the control group, the addition of FAM reduced the dissolution
and shedding of columnar epithelial cells of intestinal mucosa,
improved the morphology of intestinal tissue, significantly
increased the height and number of intestinal mucosa and the
thickness of muscular layer, the addition ratio of 1% was the
best. The reason may be that short-chain fatty acids (Qiao, 2020)
or other prebiotics are produced during the fermentation process of
AM, which promotes the growth of beneficial bacteria, inhibits
harmful bacteria, improves the homeostasis of intestinal
environment, and thus facilitates the development of intestinal
mucosa (Cheng et al., 2021). The improvement of intestinal
morphology enhances the intestinal barrier function, improves
the immune and pathogenic microbial defense ability, and may
reduce intestinal cell apoptosis (Wu et al., 2022a), and ultimately has
a positive impact on the body’s nutrient utilization and growth
(Yang et al., 2022).

The intestinal microbiota of fish is essential for maintaining the
health of aquatic animals (Wang et al., 2021b). Intestinal microbiota
is a key factor affecting various functions of the host, including
development, digestion, growth, disease resistance and immunity
(Burr et al., 2005). Therefore, it is very important to explore how to
change the intestinal microbiota when feeding tiger grouper FAM.
The results of this experiment showed that the microbial
composition of the intestinal tract of tiger grouper changed
significantly with the 8-week breeding experiment. Except that
the diversity and richness of the L4 group showed an upward
trend compared with the other groups, FAM had no significant
effect on the Alpha diversity index of intestinal microbiota, but each
group in this experiment had a considerable proportion of unique
OUT, indicating that FAM changed the composition of intestinal
microbial community. At the phylum level, Proteobacteria was the
absolute dominant phylum in each group, the relative abundance in
the control group was 66.78%, and the relative abundance in each
treatment group increased by more than 70%. Bacteroidota was
significantly enriched in the L0 group, Fusobacteriota was
significantly enriched in the L1 group, and the Firmicutes
enrichment abundance in the L2-L4 group was lower than that
in the L0 and L1 groups. Proteobacteria, Bacteroidota,
Fusobacteriota and Firmicutes represent more than 80% of
intestinal microbes in various marine and freshwater species (He

et al., 2018; Li et al., 2022). The similarity of this bacterial taxa
indicates that intestinal microbes are involved in important host
intestinal functions such as digestion of nutrients and immunity (Xu
et al., 2023). The increase of Proteobacteria abundance may be
beneficial to the absorption and utilization of feed nutrients by fish
under the catabolism of feed components by bacteria (Roeselers
et al., 2011; Wu et al., 2022b). Ralstonia (Bai et al., 2019) and Vibrio
(Clements et al., 2014) are the main intestinal microbiota of marine
fish, but Vibrio is also a potential pathogen of marine fish. Ralstonia
is a potential pathogen for humans and animals (Monica et al.,
2019), and no pathogenic cases have been reported in aquatic
animals. Some strains of Photobacterium, Pseudomonas,
Acinetobacter, and Escherichia-Shigella are often considered as
potential pathogens (Behera et al., 2018; Shao et al., 2020; Li
et al., 2022), and a certain number of these microbiotas exist in
fish for a long time, which may cause disease when fish immunity
decreases and microbiota imbalance occurs. Bacillus can secrete
digestive enzymes and has a good inhibitory effect on pathogenic
bacteria (Lu, 2021). Lactobacillus can metabolize to produce lactic
acid and antibacterial bacteriocins, and also has an inhibitory effect
on pathogens (Kaktcham et al., 2017). In addition, Lactobacillus can
also induce the proliferation of short-chain fatty acid-producing
strains in intestinal microbiota, increase the content of short-chain
fatty acids in intestinal tract, and benefit intestinal health (Liu, 2019).
The change trend of Ralstonia abundance was consistent with the
growth performance. The increase of Ralstonia abundance may
promote the growth and feed utilization of fish. The possible
reason is that the synthesis of short-chain fatty acids in intestinal
microbiota is enhanced after intake of FAM, and its activation
enhances the energy supply of the genus bacteria. The abundance
of Photobacterium, Pseudomonas and Escherichia-Shigella in
L0 group was highest. The abundance of Vibrio in L4 group was
lowest while the abundance of Acinetobacter and Lactobacillus in
L4 group was the highest. The abundance of Bacillus in L3 group was
lowest. The above changes in the abundance of potential pathogenic
bacteria and intestinal colonization probiotics indicated that FAM
regulated the complexity of intestinal microbiota structure, which
may be related to its dose effect. The L4 group had relatively lower
abundance of potential pathogenic bacteria and higher abundance of
colonization probiotics, indicating that this dose had the best effect
on improving intestinal microbiota. Healthy intestinal microbiota
can improve the body‘s immunity and promote the barrier function
of the intestine. It can not only secrete digestive enzymes to promote
the conversion and absorption of feed nutrients, but also secrete
vitamins to make up for the deficiency of feed nutrients (Wang et al.,
2012), which is consistent with the results of FAM improving
intestinal morphology and growth performance. Xiao et al.
(2023) studies have shown that FAM has a degradation effect on
Astragalus polysaccharides. Low molecular weight polysaccharides
have high solubility and higher bioavailability, while potential
probiotics can ferment polysaccharides or oligosaccharides to
produce short-chain fatty acids (Georgina, 2014), thereby
promoting fish health. Flavonoids in FAM may inhibit
pathogenic bacteria and promote the growth of probiotics in the
intestine, thereby regulating the structure of intestinal microbiota
(Zhao et al., 2021b). In addition, the probiotics and their metabolites
in FAM also affect the composition and structure of fish intestinal
microorganisms, and cooperate with the physiologically active
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substances in Astragalus to maintain the stability and balance of
intestinal microbiota.

5 Conclusion

The fermented Astragalus could promote the growth of tiger
grouper and improve the feed conversion rate. FAM also could
improve intestinal and liver morphology and regulate intestinal
microbiota. This study shows that FAM can promote the growth
performance and liver and intestinal health of tiger grouper.
However, the high addition ratio of FAM may will adversely impact
the fish body. Therefore, it is recommended that the addition ratio of
FAM in the tiger grouper feed be 1%–2% of the diet weight.
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