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Skeletal muscles, the largest organ responsible for energy metabolism in most
mammals, play a vital role in maintaining the body’s homeostasis. Epigenetic
modification, specifically histone acetylation, serves as a crucial regulatory
mechanism influencing the physiological processes and metabolic patterns
within skeletal muscle metabolism. The intricate process of histone acetylation
modification involves coordinated control of histone acetyltransferase and
deacetylase levels, dynamically modulating histone acetylation levels, and
precisely regulating the expression of genes associated with skeletal muscle
metabolism. Consequently, this comprehensive review aims to elucidate
the epigenetic regulatory impact of histone acetylation modification on
skeletal muscle metabolism, providing invaluable insights into the intricate
molecular mechanisms governing epigenetic modifications in skeletal muscle
metabolism.
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1 Introduction

Skeletal muscle, the largest metabolic organ in mammals, accounts for 40%–60% of an
animal’s body weight. It possesses a high capacity for substrate oxidation and energy
storage, playing a crucial role in the body’s basal metabolic rate, systemic lipid
metabolism, and maintenance of blood glucose levels (Egan and Zierath, 2013).
Unfortunately, skeletal muscle metabolic disorder is a leading cause of various
abnormal function in muscle and chronic diseases (Moresi et al., 2015). Numerous
studies have indicated that histone acetylation modifications are involved in several
physiological processes related to skeletal muscle. These processes include the skeletal
muscle cell cycle, muscle fiber type conversion, muscle atrophy, insulin sensitivity,
exercise capacity, and endurance. These modifications occur through the regulation of
enzymes responsible for histone acetylation (Tian et al., 2020). To gain a better
understanding of the physiological role of skeletal muscle and the molecular
regulation of histone acetylation modifications, this review aims to outline the
molecular mechanisms by which histone acetylation modifications regulate skeletal
muscle metabolism. Additionally, it summarizes the epigenetic effects of histone
acetylation and deacetylation modifications on skeletal muscle-related phenotypes. By
exploring these epigenetic modification mechanisms associated with muscle development,
we can enhance our understanding of the intricate processes involved.
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2 Histone acetylation

Histone acetylation modification represents a significant form of
post-translational modification (PTM) that affects proteins. It
primarily occurs through reversible modifications mediated by
histone acetyltransferase (HAT) and histone deacetylase (HDAC)
enzymes, targeting various subunits of histones. This dynamic
process tightly regulates the levels of histone acetylation. Proteins
specifically designed to recognize the acetylation modification state,
known as histone acetylation recognition proteins, play a crucial role
in recruiting transcriptional regulatory complexes onto chromatin.
This recruitment process ultimately governs gene expression
(Wernersson et al., 2022). Based on their involvement in the
acetylation process, enzymes or proteins related to histone
modifications can be further classified into three main categories:
Writers (HATs), Erasers (HDACs), and Readers (Histone
Acetylation Readers). These classifications are based on the roles
these enzymes or proteins play in catalyzing, removing, or
recognizing histone acetylation, respectively (Zhao et al., 2018)
(Table 1; Figure 1).

2.1 Histone acetyltransferase

Histone acetyltransferases (HATs) play a critical role in the
process of acetylation by modifying acetyl groups onto lysine
residues of both histone and non-histone proteins, including

transcription factors. This modification facilitates the dissociation
of DNA from nucleosome octamers, leading to the loosening of the
nucleosome’s spatial structure. Consequently, this creates an open
chromatin conformation, providing a binding site for trans-acting
factors such as transcription factors to specifically interact with gene
promoter regions and activate gene transcription (Wapenaar and
Dekker, 2016).

HATs can be classified into two types, A and B, based on their
subcellular localization and substrate specificity. Type A HATs
predominantly reside in the nucleus and modify histones associated
with chromatin, as well as acetylate non-histone proteins. They
primarily contribute to gene transcription. In contrast, type B HATs
are found in both the cytoplasm and nucleus, acetylating free histones in
the cytoplasm and facilitating their translocation into the nucleus.
Studies have shown that A-type HATs play a major role in
regulating gene expression (Lee and Workman, 2007; Parthun,
2007). To date, more than 20 types of HATs have been identified,
categorized into various families based on their structural domains.
Notable families include the P300/CBP family (e.g., P300 and CBP), the
GNAT family (e.g., Gcn5 and PCAF), and theMYST family (e.g., Tip60,
MOZ, MORF, HBO1). Additionally, certain transcription factors, such
as TFIIIC (a universal transcription factor of RNA polymerase III) and
CLOCK (an epigenetic clock regulating circadian rhythm in skeletal
muscle), are also considered HATs (Howlett and McGee, 2016)
(Table1).

During histone acetylation modification, the acetyl group is
primarily derived from acetyl-CoA, which is generated through

TABLE 1 Overview of histone acetylation modifiers.

Modification Modifier Sequence
identity

Subcellular location Skeletal muscle
expression

Function

Acetylation GCN5 Family (GCN5,
PCAF)

71.27% N/N, C ?/++ Histone and non-histone lysine acetylation
Howlett and McGee (2016)

MYST Family (Tip60,
MOZ, MORF, HBO1)

36.70%–60.19% N, C/N/N/N ++/++/++/++

P300/CBP Family
(P300, CBP)

63.66% N, C/N, C +/+

Others (TFIIIC,
CLOCK)

19.05% N/N, C ?/++

Deacetylation Class I HDACs
(HDAC1, 2, 3, 8)

40.54%–85.06% N/N, C/N, C/N, C −/+++/+/++ Zn2+ dependent deacetylation of histone
and non-histone proteins Beharry et al.

(2014)

Class IIA HDACs
(HDAC4, 5, 7, 9)

48.24%–61.60% N, C/N, C/N, C/N ++/+/?/++ Corepressor recruitment Luo et al. (2019)

Class IIB HDACs
(HDAC6, 10)

41.27% N, C, P, CS, CP/N, C −/++ Zn2+ dependent deacetylation, primarily of
non-histone proteins Kumar and Datta

(2022)

Class III HDACs
(SIRT1-7)

20.71%–47.16% N, C, M/N, C, MB, P, CP/
MM/MM/N, C, M/N, ER/

N, C

+/++/++/++/++/+++/++ NAD+ dependent deacetylation, primarily
of non-histone proteins Lee et al. (2023)

Class IV HDACs
(HDAC11)

— N ? Zn2+ dependentdeacetylation of histone
and non-histone proteins Liu et al. (2020)

Note: The Sequence Identity comes from Cluster Omega; Subcellular localization originates fromUniProt. expression of modifying enzymes or factors in skeletal muscle comes from the human

protein atlas, - no expression; + low expression; ++ medium expression; +++ high expression; ? unknown for each modifier listed. Abbreviation: C, cytoplasm; CP, cell projection; CS,

cytoskeleton; ER, endoplasmic reticulum; M, mitochondrion; MB, midbody; MM, mitochondrion matrix; N, nucleus; P, Perikaryon.
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fatty acid β-oxidation and oxidative decarboxylation of pyruvate by
the pyruvate dehydrogenase complex under aerobic conditions (Su
et al., 2016). Phosphorylation of acetyl-CoA promotes histone
acetylation, and elevated levels of acetyl-CoA enhance histone
acetylation. Conversely, low levels of acetyl-CoA reduce the
activity of HATs. Acetyl-CoA serves as a crucial intermediate
metabolite in energy metabolism and acts as a hub for glucose,
lipid, and protein metabolism (Figure 2). It plays an essential role in
maintaining organismal stability (He et al., 2023). Studies have
demonstrated that insufficient acetyl-CoA levels result in
abnormal intermediate nuclei and mitochondria in mouse
skeletal muscle fibers, reduced levels of fully assembled complex I
and ATP in the electron transport chain, increased markers of
oxidative stress, and significantly impaired exercise capacity and
endurance (Corbin et al., 2017). These findings suggest that acetyl-
CoA may regulate chromatin dynamics, participate in histone
acetylation modifications, indirectly modulate gene expression,
and subsequently impact skeletal muscle metabolism.

2.2 Histone deacetylase

Histone deacetylases (HDACs) function by catalyzing the
removal of acetyl groups from lysine residues on both histone
and non-histone proteins, thereby exerting an opposite effect to

histone acetyltransferases (Bannister and Kouzarides, 2011).
Eukaryotic HDACs can be classified into four classes based on
their homology with the three HDACs found in Saccharomyces
cerevisiae (Rpd3, Hdal, and Sir2) (Gregoretti et al., 2004). Class I
HDACs, which share structural similarities with yeast Rpd3, include
HDAC1, HDAC2, HDAC3, and HDAC8. Class II HDACs exhibit
catalytic structures akin to yeast Hdal and can be further divided
into two subclasses, A and B. Class IIA comprises transcriptional co-
repressors such as HDAC4, HDAC5, HDAC7, and HDAC9. Class
IIB includes HDAC6 and HDAC10. Class III HDACs are
homologous to Sir2 in yeast and consist of seven species
identified in human cells, known as SIRT1-7 (Seto and Yoshida,
2014). In contrast, Class IV HDACs solely consist of HDAC11,
which exhibits sequence similarity in its core catalytic region to both
Class I and Class II HDACs. Remarkably, HDAC11 has the smallest
molecular weight among known HDACs, measuring only 39 kDa
(Thangapandian et al., 2012) (Table 1; Figure 1).

2.3 Histone acetylation reader

The bromodomain (BRD) is a highly conserved protein
structural domain that specifically recognizes histone acetylation
modifications. Dysregulation of the BRD domain has been closely
associated with numerous diseases. Based on sequence similarity,

FIGURE 1
Domain of human histone acetyltransferases (HATs), histone deacetylases (HDACs) and bromodomain and extra-terminal (BET). The total number
of amino acids for each enzyme or protein is displayed on themost-right side. In this figure, only the longest isomer of each enzyme or protein is selected,
and different colors represent different functional domains.
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proteins containing the BRD domain can be classified into nine
families, with the Bromo and Extra-Terminal (BET) family being the
most extensively studied (Figure 1). Among the BET family
members, Bromodomain-containing 4 (BRD4) plays a crucial
role in transcription, DNA replication, and damage repair (Liang
et al., 2021). BRD4 has a wide range of substrates and exhibits
varying affinities for different sequences. The Bromodomain 1
(BD1) of BRD4 specifically recognizes polyacetylated
modifications of histone 4 (H4), with a significantly higher
affinity for tetraacetylation compared to monoacetylation. On the
other hand, Bromodomain 2 (BD2) can bind to di- or triacetylated
modifications and exhibits much lower affinity for tetraacetylation
of H4 when compared to BD1 (Slaughter et al., 2021). Additionally,
BRD4 can interact with non-histone proteins, such as positive
transcription elongation factor b (P-TEFb), thereby promoting
RNA polymerase II phosphorylation and facilitating transcription
elongation (Figures 1, 2). BRD4 also recognizes the acetylated
transcription factor RelA of the NF-κB family (NF-κB p65),
regulating the expression of downstream target genes involved in
the inflammatory response, including the inflammatory gene IL-6
(Liang et al., 2021; Liu et al., 2022). Moreover, BRD4 is essential for
myogenic differentiation. During the differentiation of mouse
C2C12 myoblasts, BRD4 selectively binds to the promoter region
of the myogenin gene (Myog), coinciding with elevated levels of
H3K27ac, a marker of histone acetylation. Conversely,
downregulation of BRD3 levels enhances myogenic
differentiation, and treatment with JQ1, a BET family inhibitor,

produces the opposite effect, highlighting the crucial role of BET
proteins in the regulation of skeletal myogenesis (Roberts et al.,
2017). These findings demonstrate that histone acetylation
recognition proteins can identify the acetylation state and engage
with chromatin, thereby remodeling chromatin conformation and
regulating skeletal muscle cell differentiation.

3 Histone acetylation and skeletal
muscle metabolism

3.1 Histone acetyltransferases and skeletal
muscle metabolism

3.1.1 P300/CBP family
The P300/CBP family primarily consists of P300 and cAMP-

response element-binding protein-binding protein (CBP). P300 is a
large molecular protein with a size of approximately 300 kDa. It
plays a vital role in various cellular processes, including cell cycle
regulation, proliferation, differentiation, apoptosis, and the
modulation of autophagy and glycolipid metabolism. Alterations
in P300/CBP are closely associated with specific cancers and other
human diseases. Functional compensatory mechanisms exist
between P300 and CBP, as demonstrated by studies showing that
double knockdown of P300 and CBP leads to rapid changes in gene
expression patterns related to skeletal muscle function. This results
in loss of contractile function and ultimately leads to the death of

FIGURE 2
Metabolic regulation processes of histone acetylation. The Acetyl-CoA required for histone acetylation modification, is generated by fatty acids β-
Oxidation and Oxidative decarboxylation of Pyruvic acid, and the increase of Acetyl-CoA level will promote the increase of HATs activity. Thus, HATs
acetylate histones or non-histones, thereby increasing the transcription level of related genes. Abbreviation: Ac, Acetylation; BRD4, bromodomain
containing 4; H1, histone 1; HATs, histone acetyltransferases; HDACs, histone deacetylases; pTEFb, positive Transcription Elongation Factor b; RNA
Pol Ⅱ, RNA polymerase Ⅱ; TFs, Transcription Factors.
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experimental mice within 1 week. However, knockdown of P300 or
CBP alone does not result in lethal phenotypes. While skeletal
muscle function is partially impaired, it remains sufficient to
maintain normal physiological activity (LaBarge et al., 2016).
These findings suggest that a single allele of CBP or P300 is
capable of maintaining normal skeletal muscle function
(Svensson et al., 2020a).

Currently, three pathways have been identified in which P300 is
involved in biological processes. First, P300 acts as a histone
acetyltransferase, modifying histones through acetylation to
promote transcription. Second, it acetylates non-histone proteins,
such as transcription factors, thereby enhancing their transcriptional
activity. Third, it functions as a transcriptional co-activator,
recruiting specific transcription factors to the promoter region of
genes to activate transcription (Cheng et al., 2019). These pathways
are also implicated in P300-mediated skeletal muscle cell
differentiation. For instance, P300 mediates skeletal muscle cell
transcription and terminal differentiation by acting upstream of
the myogenic regulatory factors MyoD and Myf5 (Roth et al., 2003).
Moreover, P300 activates target genes by interacting with the basic
helix-loop-helix (bHLH) structural domain of tissue-specific
transcription factors, thereby regulating skeletal muscle cell
differentiation (Eckner et al., 1996). Additionally, the Akt/protein
kinase B (PKB) pathway acts as a positive regulator of P300. PKB
phosphorylates and activates P300, thereby mediating myoblast
differentiation (Chen et al., 2015). In human and mouse skeletal
muscle cells, P300/CBP interacts with PKB to regulate skeletal
muscle insulin sensitivity. PKB phosphorylates and activates
P300/CBP, while P300/CBP acetylates and inactivates PKB. This
interaction forms the PKB-P300/CBP axis, influencing insulin
signaling, glucose transporter 4 (GLUT4) transport, and
metabolism processes (Martins et al., 2019; Martins et al., 2022).
The mechanism by which P300 mediates skeletal muscle atrophy
varies between healthy and diseased individuals. In healthy
individuals, P300/CBP-mediated skeletal muscle atrophy is
primarily mediated through the FoxO signaling pathway.
Decreased P300/CBP activity in rat soleus muscle and mouse
C2C12 myogenic cells leads to increased FoxO reporter gene
activity, resulting in the transcriptional activation of its target
gene, atrogin-1 (Senf et al., 2011). In type 2 diabetes-induced
skeletal muscle atrophy, P300 is overactivated and acetylates PKB
and its main downstream effectors, mTOR and FoxO, effectively
blocking autophagy in skeletal muscle cells. Additionally, acetylated
insulin receptor substrate inhibits its binding with the insulin
receptor, thereby disrupting insulin signaling and causing skeletal
muscle atrophy (Fan et al., 2020). In cancer-induced skeletal muscle
atrophy, overexpression of Toll-like receptor 4 (TLR4) leads to the
phosphorylation of P300 by p38β MAPK, a central regulator of
skeletal muscle atrophy. This phosphorylation stimulates C/EBPβ
acetylation, resulting in muscle atrophy (Sin et al., 2021).
Rhabdomyosarcoma (RMS) is the most common soft tissue
sarcoma in children caused by impaired myogenic differentiation,
with two main subtypes: ‘embryonal’ RMS (ERMS) and ‘alveolar’
RMS (ARMS) (Skapek et al., 2019). Garcinol and Anacardic Acid,
natural inhibitors of histone acetyltransferases, may inhibit RMS
cells growth and proliferation via P300/CBP(Tomasiak et al., 2023).
Furthermore, glucocorticoids upregulate P300 expression in skeletal
muscle and decrease HDAC6 activity, contributing to muscle

atrophy (Alamdari et al., 2010). These findings indicate that the
P300/CBP family regulates skeletal muscle cell differentiation,
autophagy, atrophy, and insulin signaling through the acetylation
of histones and non-histones or as transcriptional co-activators
(Figure 3).

3.1.2 GNAT family
The GCN5-Related N-acetyltransferases (GNAT) family

primarily consists of general control non-derepressible 5 (GCN5)
and P300/CREB binding protein associated factor (PCAF) (Neuwald
and Landsman, 1997). The C-terminal region of the GCN5 protein is
mainly responsible for recognizing histone acetyl groups, while the
N-terminal region recognizes nucleosomes (Figure 1). The HAT
structural domain of GCN5 is associated with the recognition of
acetyl-CoA (Salah Ud-Din et al., 2016; Albaugh and Denu, 2021).
GCN5 utilizes its histone acetyltransferase activity to regulate genes
and transcription factors involved in skeletal muscle metabolism.
For instance, GCN5 functions as a negative regulator of peroxisome
proliferator activator receptor γ-coactivator 1α (PGC-1α), inhibiting
its activity and thereby limiting mitochondrial content. However,
the homologue PCAF compensates for the absence of GCN5, which
explains why knocking down GCN5 alone does not increase skeletal
muscle mitochondrial content. GCN5 acetylates and inhibits the
transcription factor YY1, a negative regulator of muscle fibers,
disrupting the interaction between the zinc finger region of
YY1 protein and DNA. This acetylation leads to increased
expression of structurally critical proteins in muscle, thereby
maintaining the integrity of skeletal muscle cells (Addicks et al.,
2022).

Moreover, in mouse skeletal muscle, adaptation to a high-fat diet
involves the regulation of the target gene Pdk4 (pyruvate
dehydrogenase kinase 4), a key regulator of the tricarboxylic acid
cycle, through GCN5(Svensson et al., 2020b; Green et al., 2022). In
human skeletal muscle cells, PCAF has been identified as an
acetylated histone acetyltransferase (HAT) of HDAC2. The
nuclear lamina protein A/C (Lamin A/C), responsible for
maintaining structural function and transcriptional regulation in
the nucleus, recruits PCAF and HDAC2 to promote myogenic cell
differentiation. During this process, PCAF acetylates Lys75 of
HDAC2. The expression of mutant forms of Lamin A/C inhibits
the translocation of PCAF to the nuclear membrane, thereby
impairing myoblast differentiation and leading to Emery-Dreifuss
muscular dystrophy (Santi et al., 2020) (Figure 3). These findings
suggest that the GNAT family, through the acetylation and
activation of HDAC2, can promote myoblast differentiation,
highlighting the complex interplay of HATs and HDACs in
regulating skeletal muscle metabolism.

3.1.3 MYST family
The MYST family primarily consists of Tip60, MOZ, MORF,

HBO1, and MOF. All members of the MYST family share a highly
conserved MYST structural domain, which includes a histone
acetyltransferase (HAT) functional domain, a zinc finger domain,
and an acetyl-CoA binding site. The HAT functional domain is
responsible for the binding of acetyl-CoA and the substrate, and the
active site lysine is crucial for the self-acetylation activity of HATs
(Yuan et al., 2012). This self-acetylation feature distinguishes the
MYST family from other HATs (Figure 1). Additionally, some
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members possess specific structures like the chromodomain (ChD)
(Avvakumov and Cote, 2007). HIV Tat-interacting protein of
60 kDa (Tip60) acetylates core histones H2A, H3, H4, and
transcription factors, thereby participating in the regulation of
transcriptional processes. It plays important roles in
transcriptional regulation, signal transduction, DNA damage
repair, and other cellular functions (Sun et al., 2010).
Tip60 recruits myogenic determinants, such as MyoD, to the
myogenin gene promoter and enhances the transcriptional
activity of MyoD. This is achieved through physical interactions
between Tip60’s ChD and plant homeodomain-linked zinc finger
(PHD) structural domains with MyoD. Ectopic expression of
Tip60 also enhances the transcriptional activity of myogenic
regulatory genes. Conversely, knockdown of Tip60 in mouse
C2C12 cells inhibits myogenic cell differentiation (Kim et al., 2011).

Monocytic leukemia zinc finger (MOZ) serves as a binding
chaperone of CBP. MOZ and MOZ related factor (MORF)
possess two tandem PHD domains (Perez-Campo et al., 2009)
(Figure 1). These proteins acetylate histones H3 and H4,
including self-acetylation, and function as transcriptional co-
activators (Bristow and Shore, 2003; Cai et al., 2010). They also
play a key role in the selectivity of core histone H3 and its
binding to chromatin (Ali et al., 2012). MOZ and MORF are
closely associated with the maintenance of fetal embryonic stem
cells and the development of diseases such as tumors (Yang,
2015). However, their role in skeletal muscle remains unclear.

Histone acetyltransferase binding to ORC1 (HBO1) interacts
with ORC1, the initiating subunit of DNA replication, and is highly
enriched at the transcription start site (TSS) of active genes. HBO1 is

a key enzyme for H3K14 acetylation and can act as a coactivator in
the regulation of replication initiation. It plays crucial roles in DNA
replication, transcription regulation, and other cellular processes
(Xiao et al., 2021). Early in the regeneration process of mouse
C2C12 myoblasts, the expression of adipocyte differentiation
factor 24 (fad24), a positive regulator of adipocytes, and HBO1 is
upregulated in response to cardiotoxin-induced muscle damage
(Ochiai et al., 2016) (Figure 3).

3.1.4 Others
Transcription factor IIIC (TFIIIC) is a general transcription

factor of RNA polymerase III that possesses histone
acetyltransferase (HAT) activity. It plays a crucial role in forming
a transcription initiation complex by binding to DNA in the
promoter region and recruiting the TATA-binding protein (TBP)
in the core promoter region, as well as the general transcription
factor TFIIIB and RNA polymerase III (Figure 2). TFIIIC exhibits
histone acetyltransferase activity and acetylates histones H2A, H3,
H4, and nucleosomes (Dumay-Odelot et al., 2007). However, the
specific mechanism by which TFIIIC functions in skeletal muscle
has yet to be identified.

Skeletal muscle exhibits a highly autonomous circadian rhythm,
primarily regulated by a transcription-translation negative feedback
loop involving core CLOCK genes. Disruptions in circadian
rhythms can negatively impact glucose, lipid, and amino acid
metabolism, increasing the risk of metabolic diseases such as
obesity and diabetes (Li and Chen, 2020). The CLOCK gene and
its associated transcription factors, including brain and muscle
ARNT-like protein 1 (Bmal1), form dimers that enhance the

FIGURE 3
Themolecular role of histone acetyltransferases (HATs) involved in biological processes related to skeletal muscle metabolism. Among them, green
triangle is acetylation, yellow triangle is deacetylation, + P is phosphorylation, red arrows is activation, black prohibitory symbol is inhibition, black
bidirectional arrow is interactions, and black folded arrow is transcription start sites.
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HAT activity of CLOCK and the expression of genes related to
skeletal muscle metabolism. Knocking down Bmal1 disrupts the
circadian rhythm of skeletal muscle metabolism gene expression,
leading to reduced insulin sensitivity and glucose uptake (Dyar et al.,
2014) (Figure 3).

3.2 Histone deacetylases and skeletal
muscle metabolism

3.2.1 Class I HDACs
HDACs play a crucial role in the regulation of crosstalk between

skeletal muscle and other organs, impacting tissues such as the liver
and adipose tissue. They exert their influence by controlling the
production of myokines, which are involved in the development of
cancer, obesity, diabetes, and cardiovascular diseases, making them
essential for overall body metabolism (Renzini et al., 2022).

Among Class I HDACs (including HDAC1, 2, 3, 8), HDAC1,
similar to P300, can mediate skeletal muscle atrophy through the
FoxO signaling pathway. Studies have demonstrated that
HDAC1 regulates the expression of the muscle atrophy gene
atrogin-1 and activates the FoxO signaling pathway, leading to
muscle fiber atrophy. Treatment with MS-275, a Class I HDAC
inhibitor, significantly alleviates muscle fiber atrophy and contractile
dysfunction, highlighting the significant role of HDAC1 in skeletal
muscle atrophy (Beharry et al., 2014). During the development of
mouse C2C12 myoblasts, the actin monomer-binding protein
Profilin 2a (PFN2a) inhibits the nuclear localization and activity
of HDAC1. This inhibition enhances the activity of the tumor
suppressor protein p53, resulting in the inhibition of
C2C12 myoblast proliferation and differentiation and promoting
apoptosis (Li et al., 2019). Additionally, the small ubiquitin-like
modifier (SUMO) modification of HDAC1 plays a dual role in
MyoD signaling. Single SUMO modification promotes the
deacetylation of MyoD in undifferentiated cells, while multiple
SUMO modifications promote a shift of its binding partner from
MyoD to the tumor suppressor protein Rb, thus inducing myoblast
differentiation (Joung et al., 2018). HDAC2 ameliorates skeletal
muscle dysfunction caused by chronic obstructive pulmonary
disease (COPD) primarily through the activation of the NF-κB
signaling pathway. Maintaining adequate levels of HDAC2 may
serve as a therapeutic target for improving COPD-induced
myasthenia. Theophylline, a clinical therapeutic agent for
obstructive pulmonary disease, enhances skeletal muscle function
by upregulating HDAC2 and reducing the levels of p65 (RelA) in the
nuclear transcription factor NF-κB family. It also inhibits the activity
of interleukin-8 (IL-8) and tumor necrosis factor TNF-α, further
improving muscle function (To et al., 2017; Bin et al., 2019; Li et al.,
2021). In addition, the mechanism of action of resveratrol in
improving skeletal muscle atrophy and aging is similar to that of
theophylline (Sun et al., 2017; Li et al., 2022; Parrella et al., 2022)
(Figure 4).

Hyperactivation of HDAC3 in mice fed a high-fat or high-sugar
diet inhibits the activity of the transcriptional coactivator PGC-1α
and mitochondrial transcription factor A (TFAM), reducing the
expression of peroxisome proliferator-activated receptor alpha
(PPARα) and key mitochondrial metabolic enzymes. This leads
to impaired mitochondrial oxidation, increased production of

mitochondrial reactive oxygen species (ROS), and intracellular
accumulation of triglycerides (TG). Treatment with MS-275, a
class I HDAC inhibitor, reverses these effects, underscoring the
critical role of HDAC3 in regulating insulin sensitivity, lipotoxicity,
and stress signaling in skeletal muscle cells (Lee et al., 2020). It has
been shown that HDAC3 may also serve as a therapeutic target for
rhabdomyosarcoma. MS-275 may also be an epigenetic therapeutic
drug for RMS. MS-275 reduced the activity of HDAC3 and
downregulated the expression of the chromatin remodeling
enzyme SMARCA4, which in turn reduced the activity of miR-
27a, leading to decreased expression of PAX3:FoxO1, and
destabilization of mRNA in ARMS cells (Bharathy et al., 2018).
HDAC3 also activates the myotonic dystrophy gene EMD and
reduces H4K5ac, a histone acetylation marker, thereby regulating
myoblast differentiation (Bossone et al., 2020). Additionally,
HDAC3 directly inhibits the catabolism of branched-chain amino
acids (BCAAs) and the transcription of purine nucleotide cycle
(PNC) genes, thus impacting amino acid metabolism in skeletal
muscle (Gong et al., 2018) (Figure 4).

HDAC8 differs from other Class I HDACs in terms of its
regulation mode. Phosphorylation at the Ser39 site located on the
surface of HDAC8 disrupts its surface structure and inhibits its
activity. Conversely, mutation of the Ser39 site to alanine enhances
HDAC8 activity (Somoza et al., 2004). HDAC8 acts as a potential
feedback factor for PKD phosphorylation, regulating myogenic gene
expression and inhibiting PKD phosphorylation in response to
stress signals in mouse C2C12 myoblasts (Habibian et al., 2023).
HDAC8 also physically interacts with the polycomb protein
EZH2 to activate the Wnt signaling pathway, thereby regulating
skeletal muscle cell differentiation (Ferrari et al., 2019). Clinical
studies have shown that HDAC8 is overactivated in skeletal muscle
of patients with Duchenne Muscular Dystrophy (DMD). Treatment
of human primary myoblasts with PCI-34051 (an
HDAC8 inhibitor) and Givinostat (a broad-spectrum HDAC
inhibitor) slows skeletal muscle degeneration and maintains
skeletal muscle integrity, highlighting HDAC8 as a potential
therapeutic target for DMD (Spreafico et al., 2021). Similar to the
action of PCI-34051, sulforaphane (SFN) decreases HDAC8 activity,
phosphorylates CREB, acetylates p53 and upregulates their
expression, thereby upregulating PGC-1α expression and
promoting mitochondrial biogenesis (Yang et al., 2023). These
findings demonstrate that Class I HDACs regulate skeletal
muscle metabolism through various signaling pathways such as
FoxO, NF-κB, and Wnt, emphasizing the complexity of their
mechanisms of action (Figure 4).

3.2.2 Class ⅡA HDACs
Class IIAHDACs, including HDAC4, 5, 7, and 9, play important

roles in skeletal muscle regulation. HDAC4 is involved in the
developmental process of chicken skeletal muscle satellite cells
(Zhao et al., 2020). It acts on myosin heavy chain, PGC-1α, and
heat shock homolog Hsc70 to maintain skeletal muscle homeostasis
(Luo et al., 2019). Similar to P300 and CBP, HDAC4 and
HDAC5 exhibit functional compensation. These HDACs are
closely associated with exercise-induced alterations in skeletal
muscle metabolic patterns. Aerobic exercise activates calcium/
calmodulin-dependent protein kinase (CaMK) and adenylate-
activated protein kinase α2 (AMPKα2), which phosphorylate and
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activate HDAC4/5. This leads to their translocation into the
cytoplasm, reduced activity in the nucleus, inhibition of MyoD-
dependent gene transcription, and impeded differentiation of
skeletal myoblasts into myotubes (Yuan et al., 2014; Renzini
et al., 2018). Additionally, exercise promotes the dissociation of
HDAC4/5 from the GLUT4 promoter and myocyte enhancer factor
2 (MEF2), resulting in increased transcription levels of GLUT4 and
interleukin-6 (IL-6), enhanced glucose uptake, and oxidation (Niu
et al., 2017; Klymenko et al., 2020). Further studies have shown that
the elevation of HDAC5 activity during exercise is not solely
dependent on AMPK but also involves the upregulation of
muscle-specific ring-finger protein 1 (MuRF1), an E3 ligase
targeting HDAC5. MuRF1-mediated ubiquitination leads to
HDAC5 degradation by the ubiquitin-proteasome system and its
dissociation from MuRF1 and the 20S proteasome (Huang et al.,
2022). Elevated levels of PAX3/7-FoxO1 expression in ERMS cells
induced expression of the oxidative stress response factor HO-1 and
a reduction in reactive oxygen species, leading to inhibition of
nuclear localization of HDAC4 and its target miR-206, and thus
inhibition of myogenic differentiation (Ciesla et al., 2016). In ARMS
cells, PAX3-FOXO1 inhibits IL-24 activity in a HDAC5 dependent
manner, thereby promoting cell proliferation, survival, and
migration (Lacey et al., 2018). In addition, studies have shown
that HDAC4 mediates neural skeletal muscle interactions, and its
expression in skeletal muscle is associated with disease severity,
which has been proposed as a target for Amyotrophic Lateral
Sclerosis (ALS). Patients with amyotrophic lateral sclerosis have
high expression of HDAC4 in their skeletal muscles. The absence of
HDAC4 can lead to early onset of ALS, weight loss, skeletal muscle

atrophy, and lipid metabolism disorders. HDAC4 may act on
UCP1 and Runx2 to alleviate the phenotypic symptoms of ALS
(Vega et al., 2004; Pigna et al., 2019; Burg et al., 2021) (Figure 4).

HDAC9 is closely associated with skeletalmuscle cell differentiation
and atrophy. It regulates skeletal muscle cell differentiation through a
negative feedback loop, where myocyte enhancer factor 2C (MEF2C)
activates HDAC9 gene expression. However, HDAC9 can bind to
MEF2 protein and repress its transcriptional activity, thereby inhibiting
HDAC9 transcription (Haberland et al., 2007). HDAC9 also plays a role
in skeletal muscle atrophy induced by hypoxic conditions. Hypoxia
increases HDAC9 levels, and HDAC9 directly binds to the promoter
regions of autophagy-related proteins ATG7, Beclin1, and LC3 to
inhibit autophagy. This leads to sequential dephosphorylation of
glycogen synthase kinase 3β (GSK-3β) and inactivation of the
classical Wnt signaling pathway. Consequently, myogenic cell
differentiation and multinucleated myotube formation are hindered
(Zhang et al., 2019). In summary, the regulatory role of Class IIA
HDACs in skeletal muscle metabolism is directly influenced by their
nucleocytoplasmic localization. They participate in exercise-induced
metabolic adaptations, differentiation processes, and regulation of
skeletal muscle homeostasis (Figure 4).

3.2.3 Class IIB HDACs
Class IIB HDACs, including HDAC6 and HDAC10, have

distinct characteristics and functions (Figure 1). HDAC6 plays a
role in regulating glucose metabolism and muscle atrophy in skeletal
muscle through its interaction with the lncRNA H19. The H19-
HDAC6-IRS1 axis is important for glucose homeostasis and
metabolism (Kumar and Datta, 2022). HDAC6 is also involved

FIGURE 4
Themolecular regulation of histone deacetylases (HDACs) involved in skeletal muscle metabolism. Among them, green triangle is deacetylation, +P
is phosphorylation, -P is dephosphorylation, SUMO is ubiquitination-like, red arrow is activation, black prohibitory symbol is inhibition, and black bi-
directional arrow is interaction.
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in muscle atrophy caused by Metformin, acting through the AMPK-
FoxO3a-HDAC6 axis (Ratti et al., 2015; Kang et al., 2022). Inhibition
of HDAC6 using TubA improves skeletal muscle disorders in
Duchenne Muscular Dystrophy (DMD) by modulating TGF-β
signaling (Osseni et al., 2022). In RMS cells, HDAC6 regulates
cytoskeletal dynamics through the Rho family GTPase Rac1 to
promote tumor cell migration and invasion, and targeting the
HDAC6-Rac1 axis may be a therapeutic target for RMS(Pham
et al., 2021). HDAC inhibitors may become therapeutic drugs for
RMS, such as the novel dual BET/HDAC inhibitor TW09, which
mediates cell death through mitochondrial apoptosis in RMS cells
(Haydn et al., 2017; Laszig et al., 2020). On the other hand,
HDAC10 is implicated in DNA damage repair and immune cell
expression. Exercise increases HDAC10 gene expression in human
skeletal muscle, impacting skeletal muscle plasticity by regulating
metabolic enzymes and chromatin modifying enzymes or
transcriptional regulators (Islam et al., 2017; Mina-Paz et al.,
2022) (Figure 4). Overall, Class IIB HDACs contribute to the
regulation of skeletal muscle fibers through modulation of
chromatin spatial conformation, these HDACs impact skeletal
muscle plasticity and chromatin structure.

3.2.4 Class Ⅲ HDACs
Class Ⅲ HDACs primarily encompass the SIRT protein family,

consisting of SIRT1-7. These proteins interact with various
regulatory factors, including p53, FoxO/PGC-1α, NF-κB, and
Ku70, to modulate genomic stability, cellular stress response,
metabolism, senescence, and apoptosis. SIRT1 plays a significant
role in skeletal muscle function, often associated with GCN5, SIRT3,
and SIRT4. GCN5 activates PGC-1α, leading to increased expression
of crucial genes involved in glycolipid metabolism by augmenting
SIRT1 activity. However, overexpression of SIRT1 or knockdown of
GCN5 fails to promote exercise-induced metabolic remodeling in
mouse skeletal muscle (Svensson et al., 2020b). In the context of
diabetic skeletal muscle, Lespedeza bicolor, an agent with
antidiabetic properties, has been shown to activate SIRT1, SIRT3,
SIRT4, and PGC1α, leading to enhanced mitochondrial biogenesis,
inhibition of apoptosis, and improvement in skeletal muscle atrophy
(Surinlert et al., 2021; Lee et al., 2023). SIRT3 has also been
implicated in mediating insulin sensitivity in rat skeletal muscle
through the regulation of GLUT4 (Zhang P. et al., 2022). SIRT1 and
SIRT3 are highly expressed in slow twitch muscle fibers, and their
activation by intermittent fasting prevents type I myofiber atrophy
by inhibiting the transcriptional activity of FoxO1 and FoxO3. This
inhibition suppresses the expression of the type I myosin heavy
chain gene and prevents atrophy in type I myofibers. Moreover,
SIRT1 may synergistically interact with p53, thereby enhancing
muscle fatigue resistance during muscle injury repair. Notably,
SIRT1 overexpression significantly alleviates muscle pathology
associated with Duchenne Muscular Dystrophy (DMD) (Myers
et al., 2019). The SIRT3 gene is unique, as it generates three
distinct protein isoforms with varying mitochondrial localization
efficiency and stability. Overexpression of the SIRT3M3 isoform
activates AMPK and PPARδ, promoting a higher proportion of slow
twitch muscle fibers. However, this upregulation also increases the
levels of the FoxO1 transcription factor and its downstream muscle
atrophy gene, MuRF-1, resulting in a 30% reduction in muscle mass
(Lin et al., 2014). Additionally, SIRT3 upregulation affects tafazzin

gene expression, leading to a decrease in the core phospholipid
content of mitochondrial metabolism and alterations in
phospholipid and fatty acid composition (Chabi et al., 2018)
(Figure 4).

SIRT2 plays a role in skeletal muscle processes such as repair
after injury, muscle atrophy, and insulin sensitivity. It positively
regulates skeletal muscle cell regeneration by upregulating myogenic
regulators (Myf5, MyoD, Myogenin), cell cycle regulators (cyclin
D1, CDK2), and downregulating the myasthenic gene atrogin1,
thereby promoting anabolic signaling and inhibiting catabolic
signaling to improve muscle atrophy following injury (Han et al.,
2021; Lee et al., 2022). Conversely, knockdown of SIRT2 improves
insulin sensitivity in insulin-resistant skeletal muscle cells (Lantier
et al., 2018). SIRT5’s role in skeletal muscle remains unidentified,
although it has been implicated in processes related to glioblastoma,
melanoma, and acute myeloid leukemia (Bringman-Rodenbarger
et al., 2018). The activity of SIRT6 in skeletal muscle metabolism has
a dual nature. Increased SIRT6 activity activates AMPK, leading to
improved glucose uptake and utilization, thereby maintaining
insulin sensitivity (Cui et al., 2017). Furthermore, SIRT6 activates
the SIRT6-CREB-Sox6 axis, which promotes the production of slow
twitch muscle fibers. SIRT6 upregulates the expression of the slow
myofiber activator PGC-1α downstream of CREB, inhibits the
activity of the slow twitch muscle inhibitor Sox6, and enhances
slow myofiber recruitment. This process increases mitochondrial
content and oxidative capacity, resulting in improved exercise
endurance (Song et al., 2022). On the other hand, reduced
SIRT6 activity significantly upregulates IGF2 expression,
overactivates the PI3K/AKT signaling pathway, leading to FoxO
inactivation and transcriptional activation of the mTOR signaling
pathway. Consequently, protein synthesis is increased, preventing
muscle atrophy (Mishra et al., 2022) (Figure 4). SIRT7 maintains
genomic and telomere stability, regulates protein homeostasis,
mitochondrial function, glucose homeostasis, stem cell activity,
and participates in intercellular communication and aging
(Lagunas-Rangel, 2022). Elevated SIRT7 activity inhibits
apoptosis of myoblasts in hyperglycemic mice (Surinlert et al.,
2021). All these indicate that Class III HDACs, along with the
GNAT family, contribute to the regulation of myofibers and the
remodeling of skeletal muscle metabolic patterns, the specific
regulatory mechanisms need time to be revealed and elucidated.

3.2.5 Class Ⅳ HDACs
HDAC11, a latecomer in the field of epigenetics, has emerged as

a crucial player in various biological processes, including tumor
development, immune dysfunction, barrier function, ischemic
damage, lipid metabolism, genomic stability, and cell cycle
progression (Liu et al., 2020). During the differentiation of
C2C12 myoblasts in mice, HDAC11 exhibits significant activity,
and its ectopic expression completely inhibits myoblast
differentiation. Similar to HDAC4 and HDAC5,
HDAC11 downregulates the transcription of MyoD, thereby
impeding myoblast differentiation (Byun et al., 2017).
HDAC11 also promotes bovine skeletal muscle satellite cell
proliferation through the activation of the Notch signaling
pathway (Zhang R. et al., 2022). Interestingly, contrary to SIRT6,
inhibiting HDAC11 activity upregulates the expression of IL-10, a
factor that enhances myogenic differentiation, facilitating the
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differentiation of skeletal muscle satellite cells and accelerating
muscle regeneration (Nunez-Alvarez et al., 2021). Furthermore,
HDAC11 contributes to the production of oxidative myofibrils,
increases mitochondrial content, activates the AMP-activated
protein kinase-acetyl CoA carboxylase pathway, promotes
mitochondrial fatty acid β-oxidation, reduces acylcarnitine levels,
and enhances fatigue resistance and muscle strength (Hurtado et al.,
2021) (Figure 4). It is important to note that HDAC11 exhibits not
only deacetylation activity but also a defatty-acylation activity that
surpasses its deacetylation activity by more than 10,000 times (Cao
et al., 2019).

4 Epigenetic heritability of skeletal
muscle metabolism

Epigenetics encompasses heritable phenotypes that are not
dependent on changes in DNA sequences but rather result from
chromosomal alterations. The transmission of epigenetic
modifications through mitosis, meiosis, and transgenerational
inheritance maintains homeostasis in multicellular organisms
(Trerotola et al., 2015). While DNA methylation is a stable form
of modification inherited by offspring (Margueron and Reinberg,
2010), histone acetylation modifications appear to be heritable based
on studies demonstrating their persistence and activity in yeast cells
over generations (Ekwall et al., 1997). However, the heritability of
histone acetylation modifications in skeletal muscle has not been
established. Genetic information related to skeletal muscle
metabolism is transmitted through germ cells, and imprinted
genes undergo epigenetic modifications during the transfer from
parents to offspring, potentially influencing the next-generation’s
gene expression patterns (Tucci et al., 2019). Notably, the maternally
expressed imprinted gene H19, which encodes the lncRNA H19,
plays a role in skeletal muscle satellite cell differentiation and insulin
sensitivity mediated by SIRT1 and HDAC6 (Kumar and Datta,
2022). Maternal exercise before and during pregnancy has also been
shown to mitigate insulin resistance in the skeletal muscle of female
offspring from obese fathers (Falcao-Tebas et al., 2020). These
findings suggest the possibility of transmitting information about
histone acetylation modifications in skeletal muscle metabolism to
future generations.

5 Summary and prospect

This review presents potential mechanisms underlying histone
acetylation modifications in regulating skeletal muscle metabolism.
It highlights the crucial roles of histone acetyltransferases (HATs)
and histone deacetylases (HDACs) in maintaining skeletal muscle
integrity, development, and insulin sensitivity. Furthermore, it

suggests that enzymes involved in histone acetylation
modifications could serve as potential therapeutic targets for
certain muscle diseases. However, given the complexity of the
organism, it is important to explore additional mechanisms by
which histone acetylation modifications mediate skeletal muscle
metabolism. The advancements in epigenomic sequencing
technologies, such as ChIP-seq, CUT&Tag, ATAC-seq, Single-cell
sequencing, and Spatial Transcriptomics, have provided powerful
tools to investigate histone modifications and their impact on gene
regulation in multiple dimensions. These technologies enable the
study of cellular heterogeneity, intercellular communication,
chromatin plasticity, and the precise regulation of histone
acetylation modifications on phenotype. They also offer valuable
insights for animal production and human health research.
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