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The phenomenon of polypharmacy is a common occurrence among older
people with multiple health conditions due to the rapid increase in population
aging and the popularization of clinical guidelines. The prevalence of metabolic
syndrome is growing quickly, representing a serious threat to both the public and
the worldwide healthcare systems. In addition, it enhances the risk of
cardiovascular disease as well as mortality and morbidity. Sterol regulatory
element binding proteins (SREBPs) are basic helix-loop-helix leucine zipper
transcription factors that transcriptionally modulate genes that regulate lipid
biosynthesis and uptake, thereby serving an essential role in biological systems
regulation. In this article, we have described the structure of SREBPs and explored
their activation and regulation of signals. We also reveal that SREBPs are intricately
involved in the modulation of metabolic diseases and thus have tremendous
potential as the novel target for single-drug therapy for multiple diseases.
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1 Introduction

Multimorbidity refers to the presence of ≥2 chronic diseases, and it is highly prevalent
among the elderly population (Salive, 2013). With the rapidly growing geriatric population,
over 70% of adults suffer from cardiovascular disease (CVD) by age 70, and over two-thirds
suffer from non-CVD complications (Forman et al., 2018). Two important factors that
contribute to the CVD pandemic are overweight and obesity, which also give rise to
metabolic syndrome (MS) (Sherling et al., 2017). Unfortunately, MS has a very high
incidence, and its rising incidence is exacerbating the current polypharmacy problem.

Modern medicine prioritizes the implementation of clinical guidelines. However, it
predominantly disregards the trade-offs associated with the long-term balance between
advantages and disadvantages, the quality of life in terms of health, the preferences of the
patient, and the attainment of goals (Boyd et al., 2005). With the popularization of clinical
guidelines, the phenomenon of polypharmacy is more prominent among older adults, who
typically exhibit multimorbidity (Masnoon et al., 2017). Approximately 20% of older people
in the community who are over the age of 65 consume 10 or more drugs (Hajjar et al., 2005).
Elderly patients are at a higher risk of experiencing negative effects from drugs due to
changes in how their bodies process and respond to drugs (Carroll and Hassanin, 2017).
According to a study, patients who were prescribed ≥8 drugs were 4 times more likely to
experience negative effects from the drug. Compared to those who were taking less than
5 drugs (Onder et al., 2010). In the context of this scenario, it is imperative to devise
innovative approaches to address multiple risk variables using a single drug. Sterol
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regulatory element binding proteins (SREBPs) are transcription
factors (TFs) that modulate the transcription of lipid synthesis-
related genes and are involved in key nodes of signaling pathways
affecting numerous physiological and pathophysiological systems
(Eberlé et al., 2004). These associations make SREBPs an excellent
target for addressing the polypharmacy dilemma.

2 SREBPs structure, activation, and
regulation

2.1 SREBPs structure

SREBPs are TFs that contain an N-terminal TF domain that
connects to a C-terminal regulatory domain via a transmembranal
hairpin so that both domains face the cytoplasm (Rawson, 2003).
They are also in the subcategory of the basic helix-loop-helix leucine
zipper (bHLH-Zip). Each nascent SREBP protein has a molecular
weight of about 125 kDa and consists of about 1150 amino acids.
The N-terminal portion of the SREBPs molecule through the bHLH-
Zip region protrudes into the cytosol. The following central portion
of SREBPs, the membrane anchoring region, is about 90 amino acids
in length. It consists of two hydrophobic, membrane-spanning
segments separated by a hydrophilic loop that extends into the
lumen of the endoplasmic reticulum (ER) (Weber et al., 2004). The
C-terminal regulatory domain contains approximately 590 amino
acids responsible for SREBPs subcellular localization and
translocation (Xue et al., 2020). Among the principal participants
involved in the SREBP pathways, two membrane-based proteins,
SREBP cleavage activating protein (SCAP) and insulin-induced gene
protein (INSIG), together monitor sterol levels in the ER membrane
(Yan et al., 2021). SCAP interacts with INSIG in the ER, and the
resulting INSIG/SCAP/SREBP complex resides in the ER (Cheng
et al., 2018) (Figure 1). SREBPs come in three forms, namely,
SREBP-1a, -1c, and 2, encoded by two genes, SREBF-1 and
SREBF-2 (Soyal et al., 2015). Among these, SREBP-1a and 1c are
transcribed from the single gene SREBF-1 using distinct promoters
and exons (Moon, 2017). The active forms of SREBP-1a and SREBP-
1c differ at their extreme N-terminal portion; SREBP-1c lacks
28 amino acids present in SREBP-1a and instead contains
4 unique amino acids of its own (Toth et al., 2004). SREBPs
serve many purposes in terms of functionality. For instance,
SREBP-1a controls the synthesis and development of lipids,
SREBP-1c modifies the synthesis of fatty acids (FASN, ACC, and
SCD1) and energy storage, and SREBP-2 regulates the synthesis of
cholesterol (HMGCR, DHCR7, and SQLE) and its levels (Shimano
and Sato, 2017).

2.2 SREBPs activation

Through a feedback system, SREBP activation is closely
controlled in order to ensure a suitable response to fluctuations
in cholesterol levels. The bHLH-Zip region, which its N-terminal
domain comprises, is released proteolytically from the Golgi
membrane before it enters the nucleus and initiates transcription
(Engelking et al., 2018). In the presence of sterols, the SREBPs
precursor and SCAP with eight transmembrane domains form a
heterodimeric complex, and the C-terminal region of SCAP
containing the WD40 repeat domain extends into the cytoplasm
to interact with SREBPs (Gong et al., 2015). Upon sterol deprivation,
the SCAP/SREBP complex disassociates from INSIG, carried by
COPII and transferred to the Golgi apparatus, and subsequently,
INSIG undergoes ubiquitination on lysines 156 and 158, leading to
its degradation in proteasomes (Gong et al., 2006). In Golgi
apparatus, SREBPs are processed by two consecutive proteolytic

FIGURE 1
SREBPs structure and activation. Precursor SREBPs bind to ER
membrane-bound SCAP. INSIG binds to SCAP to maintain the SCAP/
SREBP complex within the ER membrane, particularly in the presence
of elevated sterol levels. Once the sterol concentration drops,
SCAP detaches from INSIG and escorts SREBPs to the Golgi apparatus.
Inside the Golgi apparatus, SREBPs undergo cleavage by S1P and S2P
proteases, and the mature N-terminal fragment is released, which, in
turn, translocates to the nucleus to initiate transcription of
target genes.
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cleavages. The S1P protease is responsible for the first cleavage,
which takes place inside the short lumen loop. The S2P protease
catalyzes a second, fast cleavage of the first transmembrane segment
that happens right after the first. As a result, the N-terminal
transactivation domain is released, activating genes involved in
lipid synthesis and absorption by binding the target gene’s sterol
regulatory element (SRE) (Osborne and Espenshade, 2009;
Engelking et al., 2018; Su et al., 2019) (Figure 1). The amino acid
sequence MELADL in the cytoplasmic loop 6 of SCAP is essential
for the interaction of COPII-encapsulated vesicles (Sun et al., 2007).
Once cholesterol content exceeds a threshold of 4%–5% of the total
lipids in the ER, SCAP interacts with cholesterol, which facilitates its
interaction with the ER-resident protein INSIG (Goldstein et al.,
2006), which, in turn, keeps COPII from identifying the MELADL
sequence in the SCAP loop 6, which ultimately blocks the
translocation of the SCAP/SREBP complex to the Golgi
apparatus, thus effectively reducing the production of cholesterol
and fatty acid (Xiao and Song, 2013).

2.3 SREBPs regulation

The INSIG/SCAP/SREBP complexes retention and transport
of SREBPs from the ER to the Golgi apparatus are regulated by a
variety of signals. Heat shock protein (HSP) 90 is a highly
conserved chaperone protein found in numerous tissues. It
interacts with over 200 protein substrates called “customers”
and regulates their stability, folding, and maturation (Taipale
et al., 2010). HSP90 is an emerging SREBP modulator that is
associated with the SCAP/SREBP complex, according to recent
studies. In vitro and in vivo, it binds to and stabilizes the SCAP/
SREBP complex and controls SREBP activity to preserve lipid
homeostasis (Kuan et al., 2017). Effective anticoagulant
dipyridamole may significantly increase statin dependence and
suppress the growth of tumor cells in models of
xenotransplantation and culture (Pandyra et al., 2014).
Dipyridamole retains the SREBP precursor in the ER, which
effectively overrides normal cellular responses to reduce sterol
concentrations and insulin signaling in vivo. This, in turn,
elevates the ER-localized INSIG-1 protein levels in cultured
cells (Esquejo et al., 2021). Phospholate cytosolic
phosphoenolpyruvate carboxykinase 1 (PCK1) is a rate-
limiting enzyme involved in hepatic and renal gluconeogenesis
(Burgess et al., 2007). In human hepatocellular carcinoma cells,
phosphorylated PCK1, in turn, phosphorylates INSIG-1 at
Ser207 and INSIG-2 at ser151 via GTP as a phosphate donor
in the ER. This phosphorylation diminishes interaction between
the sterols and INSIG-1/INSIG-2, thereby disrupting the INSIG/
SCAP complex, which, in turn, transfers the SCAP/SREBP
complex to the Golgi apparatus, thus activating SREBPs and
transcription of downstream lipogenesis-related genes (Xu et al.,
2020). Cell death-inducing DFF45-like effector B (Cideb) is
mostly found in the hepatic ER and lipid droplets (Ye et al.,
2009), and it is known to form the COPII complex by connecting
the SREBP/SCAP complex to the ER outlet. This enhances the
SREBP/SCAP complex loading into COPII vesicles for their
delivery to the Golgi apparatus under conditions of sterol
deprivation (Su et al., 2019) (Table 1).

3 SREBPs and metabolic diseases

3.1 SREBPs and metabolic
dysfunction–associated steatotic liver
disease (MASLD)

MASLD is now recognized as the most prevalent hepatic
disorder, affecting approximately 1.7 billion people worldwide. It
involves a series of liver abnormalities ranging from nonalcoholic
fatty liver to nonalcoholic steatohepatitis (Friedman et al., 2018).
MASLD represents the presence of excess fat accumulation in the
liver without consumption of excess alcohol. Most MASLD patients
suffer from metabolic comorbidity, for example, insulin resistance
(IR), type 2 diabetes mellitus (T2DM) and obesity, which greatly
increases their risk of CVD and extrahepatic cancer (Angulo et al.,
2007; Chalasani et al., 2012; Zhou et al., 2020). Its major pathological
progression follows the “triple strike” process, namely, steatosis,
lipotoxicity, and inflammation (Cobbina and Akhlaghi, 2017). The
liver serves an important part in the metabolism of lipids.
Furthermore, it also plays a crucial role in regulating lipid
balance by controlling the production of new fatty acids, their
transportation to other tissues, and their use as a source of
energy (Nguyen et al., 2008). Triglyceride (TG) overaccumulation
in the liver is a hallmark of MASLD, and it is caused by dysregulated
hepatic fatty acid metabolism due to alterations in intake, synthesis,
secretion, or degradation (Nguyen et al., 2021).

The stimulating effect of insulin on lipogenesis in the liver and
adipose tissue is well known, but its cellular mechanisms are not well
understood. The mammalian target of rapamycin (mTOR) is a
bispecific protein kinase that phosphorylates serine/threonine and
tyrosine residues (Yin et al., 2016) to regulate cell growth, survival,
metabolism and immunity (Hua et al., 2019). mTOR plays an
essential role as a core component of two functionally distinct
multi-subunit protein complexes called mTORC1 and mTORC2
(Murugan, 2019). In hepatocytes, mTOR is activated by insulin and
nutrients through the inositol phosphate 3-kinase (PI3K)/AKT
pathway, and its complex mTORC1 promotes SREBP-1 activity
and SREBP-1c overexpression in the liver by inducing SREBP-1
expression, processing, and nuclear accumulation, which, in turn,
promotes TG accumulation (Bakan and Laplante, 2012). However,
in the absence of Akt signaling, the activation of mTORC1 alone is
inadequate to stimulate liver SREBP-1c. Additional research has
revealed that liver SREBP-1c and lipogenesis also depend on AKT to
inhibit INSIG directly (Yecies et al., 2011). mTORC2-mediated AKT
Ser473 phosphorylation regulates hepatic glucose and lipid
metabolism to control whole-body metabolic homeostasis
(Hagiwara et al., 2012). The liver X receptors (LXRs), LXRα and
LXRβ belong to the nuclear hormone receptor superfamily of
ligand-activated TFs. Endogenous LXR agonists, such as
cholesterol derivatives, including oxidized forms of cholesterol,
cholesterol precursors, and plant sterols, directly bind to the LXR
ligand binding domain (Schulman, 2017). In the liver, LXRs can
directly activate the promoter of SREBP-1c to stimulate hepatic
lipogenesis, leading to a significant increase in hepatic TG content
(Schultz et al., 2000; Song et al., 2018). AMPK promotes the
phosphorylation of Ser372, inhibits the cleavage and movement
of SREBP-1c into the nucleus, and suppresses the expression of
target genes regulated by SREBP-1c in hepatocytes exposed to high
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glucose. This results in a decrease in the production of fats and the
accumulation of lipids (Li et al., 2011). The expression of SREBP-1c
in the liver also displays daily rhythmicity (Saran et al., 2020). For
example, the nuclear receptors RORα and RORγ, key components of
the molecular circadian clock, control the circadian expression of
INSIG-2, which keeps feeding-induced SREBP-1c activation under
check (Zhang et al., 2017) (Figure 2) (Table 2).

Recent findings indicate that increased levels of insulin during
IR stimulate the production of fat through the activation of SREBP-
1c. This process contributes to the development of MASLD in both
human beings and animal models (Nguyen et al., 2021). Transgenic

animal investigations have demonstrated that hyperinsulinemia in
ob/ob mice triggers hepatic SREBP-1c activation, leading to liver
steatosis (Shimomura et al., 1999). In contrast, mice with hepatic
SREBP-1c deletion exhibit reduced hepatic TG by approximately
50% (Moon et al., 2012). The in vivo role of SREBP-1c was
demonstrated in a transgenic mice model that overexpresses
SREBP-1c in the liver, which led to the development of hepatic
steatosis due to the increase in lipogenesis (Shimano et al., 1997).
When SREBP-2 was overexpressed in the liver of transgenic mice,
there was a significant increase in cholesterol synthesis (Horton
et al., 1998).

TABLE 1 Regulation of the SREBP pathway.

Items Targets Functions Lipid
metabolism

HSP90 SCAP/SREBP
complex

HSP90 inhibition led to proteasome-dependent degradation of the SCAP/SREBP complex, which resulted in
the downregulation of SREBPs target genes (Kuan et al., 2017)

↑

Dipyridamole INSIG/SCAP/
SREBP

Dipyridamole increases the stability of ER-localized INSIG and blocks SCAP/SREBP complex ER-to-Golgi
trafficking (Esquejo et al., 2021)

↓

PCK1 INSIG Phosphorylated PCK1 translocates to the ER, where it phosphorylates INSIG to reduce the binding with
sterols and disrupts the interaction between INSIG and SCAP (Xu et al., 2020)

↑

Cideb SCAP/SREBP
complex

Cideb selectively promotes the loading of the SREBP/SCAP complex into COPII vesicles (Su et al., 2019) ↑

FIGURE 2
The impact of insulin on the SREBP pathway. Insulin signaling activates SREBPs through the PI3K/AKT/mTORC1 pathway. AKT also inhibits the
involvement of INSIG in the activation of SREBPs. AKT can be phosphorylated and activated by mTORC2. LXRs can directly activate the expression of
SREBP-1c. Phosphorylated AMPK can impede SREBP-1c cleavage and nuclear translocation. ROR α/γ serves to inhibit SREBP by stimulating INSIG. ER
stress can induce the cleavage of SREBP-1c and rapid degradation of INSIG. Gp78 mediates the degradation of INSIG in the liver.
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3.2 SREBPs and diabetes mellitus (DM)

Due to significant changes in contemporary human living, the
prevalence of DM is increasing fast worldwide (Ogurtsova et al.,
2017). The prevalence of both DM and prodromal DM in the
United States exceeds 50% (Menke et al., 2015). Currently, the
precise pathophysiology of DM is still somewhat uncertain.
However, many mechanisms, including IR, β-cell dysfunction,
and apoptosis, with low circulating insulin levels, oxidative stress,
mitochondrial dysfunction, and inflammation are associated with
DM (Yaribeygi et al., 2019). IR is an important component of MS
and a risk factor for diseases such as diabetes, CVD, and Alzheimer’s
disease (Onyango, 2018).

In hepatocytes, insulin regulates glucose metabolism via the
PI3K/AKT pathway. Once insulin interacts with the cell membrane-
based tyrosine kinase insulin receptor, the insulin receptor substrate
(IRS) becomes phosphorylated, which, in turn, activates PI3K,
which then activates the AKT/protein kinase B (PKB) activity, a
kinase that controls numerous anabolic events and further activates
downstream pathways (Manning and Cantley, 2007; Sajan et al.,
2018; Patel and Goyal, 2019). From mRNA transcription to protein
degradation, AKT might influence SREBP at numerous levels.
Under conditions of IR, hepatic gluconeogenesis is no longer
suppressed, which results in enhanced hepatic glucose output,

hyperinsulinemia, and augmented SREBP-1c-dependent
lipogenesis, which leads to obesity, MS, and eventually T2DM
development (Sajan et al., 2018). ER stress can induce proteolytic
SREBP-1c cleavage and rapid degradation of INSIG to activate the
whole lipogenic program (Kammoun et al., 2009). Gp78 is a
ubiquitin ligase anchored on the ER, mediating the degradation
of INSIG in the liver. The disruption of gp78 in the liver enhances
the inhibitory effect of INSIG on SREBPs, resulting in a reduction of
the SREBP pathways, thus protecting mice from diet/age-induced
obesity and glucose intolerance (Liu et al., 2012) (Figure 2).

As a serious complication of DM, diabetic nephropathy (DN) is
one of the main causes of end-stage renal failure (Su et al., 2020).
Levi et al. found that the expression of SREBP-1 and SREBP-2
increased in renal tissues of db/dbmice, and total cholesterol and TG
were deposited in the kidney, resulting in glomerulosclerosis,
tubulointerstitial fibrosis and proteinuria (Wang et al., 2005).
Chen et al. found SREBP-1 as a major regulatory factor in
TGFβ1-mediated fibrotic kidney disease, where interaction with
Smad3 and CBP may serve as a potential novel therapeutic target
for the treatment of DN (Chen et al., 2014) (Table 2). β-Cell
lipotoxicity is closely related to the T2DM (Lytrivi et al., 2020).
The study discovered that when SREBPs were overexpressed in
pancreatic β-cells of transgenic mice, it resulted in a decrease in the
number and size of islets, as well as a drop in insulin content. This

TABLE 2 The roles and molecular mechanisms of the SREBP pathway in different metabolic diseases.

Disease type Targets Mechanisms

MASLD PI3K/AKT/mTORC1/
SREBP-1c

Insulin and nutrients activate the pathway to promote TG accumulation (Bakan and Laplante, 2012)

AKT/INSIG mTORC1 cannot stimulate lipogenesis alone and Akt involves the suppression of a liver-specific isoform of INSIG is
also required (Yecies et al., 2011)

mTORC2/AKT/SREBP-1c Hepatic mTORC2 inhibition results in decreased glucose metabolism caused by decreased Akt activity and subsequently
reduced SREBP-1c and glucokinase activities (Hagiwara et al., 2012)

LXRs/SREBP-1c LXRs directly activate the promoter of SREBP-1c to stimulate hepatic lipogenesis, leading to a significant increase in
hepatic TG content (Song et al., 2018)

AMPK/SREBPs AMPK binds to and phosphorylates SREBP-1c and SREBP-2 to prevent its autoregulation and transcription of target
lipogenic genes (Li et al., 2011)

ROR/INSIG-2/SREBP-1c Loss of hepatic RORs led to a marked induction of SREBP-1c protein, which was induced by the reduction of INSIG-2
expression (Zhang et al., 2017)

DM PI3K/AKT/PKB/SREBP-1c Under IR conditions, insulin regulates SREBP-1c-dependent lipogenesis via the PI3K/AKT/PKB pathway, leading to
obesity, MS, and T2DM (Sajan et al., 2018)

ER stress/INSIG-1/SREBP During ER stress, degradation of INSIG-1 results in the proteolytic activation of SREBP (Kammoun et al., 2009)

Gp78/INSIG/SREBP Knockout of gp78 results in elevated levels of INSIG-1/2, suppression of SREBP, reduction in lipid synthesis, and
protection of mice from the effects of diet/age-induced obesity and glucose intolerance (Liu et al., 2012)

TGFβ1/SREBP-1/Smad3 The activation of SREBP-1 by TGFβ1 in glomerular mesangial cells is an important regulator of Smad3-mediated gene
transcription (Chen et al., 2014)

SREBPs Overexpression of SREBPs in pancreatic β-cells can affect β-cell function, leading to diabetes-related diseases
(Takahashi et al., 2005; Ishikawa et al., 2008; Iwasaki et al., 2009)

Atherosclerosis FGF21/SREBP-2 FGF21 could inhibit atherosclerosis by inhibiting hepatic SREBP-2 to reduce Hypercholesterolemia (Lin et al., 2015)

SREBP-2/NLRP3 SREBP-2 activation of NLRP3 inflammasome in endothelium mediates hemodynamic-induced atherosclerosis
susceptibility (Xiao et al., 2013)

AMPK/SREBPs Inhibition of SREBPs by AMPK in the liver could produce anti-atherogenic changes (Li et al., 2011)

Hyperlipidemia SREBP-1c When SREBP-1c is activated in mice’s liver, it can lead to an increase in TG synthesis and result in hyperlipidemia
(Okazaki et al., 2010)

Frontiers in Physiology frontiersin.org05

Wang et al. 10.3389/fphys.2023.1272540

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1272540


led to reduced insulin secretion and a little decline in glucose
tolerance (Iwasaki et al., 2009). The activation of SREBP-1c
causes β-cell dysfunction, leading to impaired glucose tolerance
or mild diabetes (Takahashi et al., 2005). Activation of SREBP-2
leads to reduced β-cell mass and impaired insulin secretion due to
cholesterol accumulation, resulting in severe diabetes (Ishikawa
et al., 2008).

Based on the data mentioned above, the development of drugs
that concentrate on SREBP offers immense promise for diabetes
patients with IR.

3.3 SREBPs and atherosclerosis

CVD is a prevalent health issue in contemporary society.
Atherosclerosis is the primary etiology of CVD and has been
associated with a high rate of mortality (Torres et al., 2015).
Atherosclerosis refers to the accumulation of fat and/or fibrotic
substances in the intima of arteries. It is characterized by the
formation of lipid and (immune) cellular plaques in the intima
of large and medium-sized arteries (Libby et al., 2013).
Atherosclerotic CVD was previously considered to be present
mostly in industrialized countries, but now it has spread all over
the world (Libby, 2021). The resulting ischemic heart disease is a
major contributor to the global disease burden, with devastating
consequences for human life and health (Virani et al., 2020).

In the early stage of atherosclerotic lesions, low-density
lipoprotein (LDL) accumulation in the intima is oxidized or
otherwise modified (Ference et al., 2017). Monocytes then
accumulate within the intima then differentiate into
macrophages, which engulf the modified lipoproteins to form
foam cells (markers of early fatty streak lesions) (Tabas et al.,
2015), which, in turn, induce inflammation (Libby et al., 2019).
Activated endothelial cell-mediated release of numerous
chemokines and growth factors, as well as the macrophage-
mediated induction of extracellular matrix component
proliferation and synthesis within the intimal chamber, results in
muscle fiber plaque formation (Gimbrone and García-
Cardeña, 2016).

Recent research shows that SREBPs may have a role in the
development of atherosclerosis through various pathways.
Fibroblast growth factor 21 (FGF21) is a peptide hormone
produced by different organs, and it modulates energy
homeostasis (Fisher and Maratos-Flier, 2016). Lin et al. found
that FGF21 could prevent atherosclerosis by suppressing hepatic
SREBP-2 and induction of adiponectin in mice (Lin et al., 2015).
Atherosclerosis can preferentially develop within the branches and
bends of the arterial tree. At the cellular and molecular level, the
turbulence mode with low shear stress markedly increases
inflammation- and oxidative stress-related gene expression (Chiu
and Chien, 2011). Xiao et al. demonstrated that the atheroprone flow
induces NLRP3 inflammatory body in the endothelium via SREBP-2
activation. This, in turn, increases the endothelial innate immunity,
which works in synergy with hyperlipidemia, to promote
susceptibility to atherosclerosis (Xiao et al., 2013). In animal
experimentations, multiple drugs were found to improve mice
atherosclerosis by inhibiting the SREBP-related pathways. For
instance, synthetic polyphenol s17834 activates AMPK, binds to

SREBP-1c and SREBP-2, and phosphorylates SREBP-1c and
SREBP-2 to attenuate mice atherosclerosis (Li et al., 2011).
Likewise, the small molecule betulin induces an association
between the SCAP and INSIG to effectively inhibit SREBP
maturation, thereby reducing atherosclerotic plaque size while
improving plaque stability (Tang et al., 2011). Several case-
controlled studies reported more interesting experimental results.
Li and others reported that the SREBP-1 and SREBP-2 expressions
were upregulated in the peripheral plasma of patients with coronary
artery disease (Li et al., 2020). On the other hand, Peng et al.
discovered that the levels of SREBP-1 transcripts in the peripheral
blood leukocytes of patients with coronary artery disease were
significantly lower compared to individuals without coronary
artery disease. Furthermore, patients with high-risk, complicated
coronary artery disease had a significant decrease in SREBP-1 levels
(Peng et al., 2019) (Table 2).

Several studies have confirmed the intricate and direct
correlation between SREBPs and atherosclerosis. Furthermore,
the regulation of atherosclerosis may involve processes that are
different from those that regulate serum lipids.

3.4 SREBPs and hyperlipidemia

Hyperlipidemia refers to the unusually high concentrations of
serum lipids or lipoproteins owing to dysregulated fat metabolism or
activity. This is typically brought on by eating disorders, obesity,
genetic diseases (ex. familial hypercholesterolemia), or other
diseases like diabetes (Sudhakaran et al., 2018), as well as
dysregulated LDL and high density lipoprotein (HDL),
hypertriglyceridemia and mixed hyperlipidemia (Karr, 2017).
Hyperlipidemia is a common metabolic disease that contributes
greatly to CVD, T2DM, atherosclerosis, hypertension, and MASLD
occurrences (An et al., 2020).

SREBPs are core players that modulate lipid biosynthesis.
Currently, many studies have found that regulation of the SREBP
pathways can affect hyperlipidemia. Li et al. discovered that in high-
fat, high-sucrose diet-fed obese LDLR−/−mice, there was a significant
increase in both SREBP-1 and SREBP-2 in the liver (Li et al., 2011).
Similarly, the activation of SREBP-1c in the liver of mice resulted in
an elevated production of TG, which could potentially cause
hyperlipidemia (Okazaki et al., 2010). Currently, there has been
extensive study on the involvement of SREBP-related pathways in
the regulation of hyperlipidemia. Developing new drugs that target
these pathways could be a promising strategy for treating
hyperlipidemia (Table 2).

4 SREBPs and inhibitors

Inhibition of the SREBP pathways will lower the risk of
metabolic diseases. Currently, research on inhibitors targeting
SREBPs and their related pathways is ongoing, including various
extracts, small molecule compounds, etc. The complicated
regulation of SREBPs indicates that different strategies can be
developed. These methods include stimulating the interaction
between SCAP and INSIG, increasing INSIGs, depleting SCAP,
inhibiting the S1P or S2P, micro-RNAs (miRNAs), and
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accelerating the degradation of nuclear (n)-SREBP (Tang et al.,
2011). The discovery and research of SREBP inhibitors make it
possible to develop drugs targeting related targets, and inhibition of
this pathway provides a prospect for the treatment of CVD and its
related metabolic diseases.

4.1 Betulin

Betulin is a natural pentacyclic lupine-structured triterpenoid.
Its extraction in 1788 was the first of its kind from a plant source,
and it was shown to have numerous pharmacological properties
(Fulda, 2008). Betulinic acid is an essential natural derivative
produced by betulin oxidation (Tuli et al., 2021). The betulin and
betulinic acid structures possess poor water solubility. At present,
there are many reports on the methods of preparing new dosage
forms and derivatives of betulin and betulinic acid so as to improve
their therapeutic effects on cellular and animal models by enhancing
their poor water solubility and targeting the required cell lines
(Amiri et al., 2020).

Fortunately, extensive research has been conducted on the
effects of betulin and its derivatives on SREBPs. In metabolic
diseases, betulin was reported to have excellent potential as a
single drug for treating multiple diseases. Studies revealed that
suppression of the nuclear form of SREBPs by long-term
treatment with betulin enhances the expression of ATP-binding
cassette protein A1 (ABCA1) and G1 (ABCG1) in macrophages and
promotes cholesterol efflux to suppress atherosclerosis in vitro and
in vivo (Gui et al., 2016). Moreover, Bai and others demonstrated
that betulin attenuates alcoholic liver injury by blocking SREBP-1
regulation of fatty acid synthesis and activation of the SIRT1/LKB1/
AMPK axis (Bai et al., 2016).

Betulin is a specific inhibitor of the SREBP pathways. Tang et al.
discovered that administering betulin to C57BL/6J mice in doses of
15 or 30 mg/kg/day for 6 weeks or 30 mg/kg/day for 14 weeks in
LDLR−/−mice that were fed a western-type diet resulted in decreased
cholesterol and TG levels and improved insulin sensitivity,
ultimately preventing atherosclerosis in vivo. Betulin bound to

SCAP, which increased the interaction between SCAP and
INSIG, thereby inhibiting the maturation of SREBP (Tang et al.,
2011) (Table 3). Currently, clinical trials involving betulin and its
derivatives primarily center around skin, tumor, or anti-anxiety
experiments (Gielecińska et al., 2023). It is desirable that in the
future, greater emphasis will be placed on utilizing betulin for the
treatment of metabolic diseases.

4.2 Fatostatin

Fatostatin is a diarylthiazole compound that was originally
identified from a synthetic small molecule library as a chemical
inhibitor blocking insulin-induced adipogenesis (Choi et al., 2003).
A study demonstrated that fatostatin blocked SREBP cleavage and
target gene expression. In addition, fatostatin prevented Golgi
apparatus modification of SCAP N-linked glycans, suggesting
that fatostatin blocked SREBP activation by inhibiting the ER-to-
Golgi transport of SCAP (Shao et al., 2016).

Kamisuki et al. found ob/ob mice fed standard laboratory chow
and daily injected with fatostatin at a dose of 30 mg/kg for 28 days
demonstrated decreased body weight and blood glucose levels. The
inhibition of SREBP by fatostatin downregulated lipogenic enzymes,
enhanced fatty acid oxidation, reduced weight, and increased insulin
sensitivity, which caused a lower level of glucose (Kamisuki et al.,
2009) (Table 3). Fatostatin or its analogs, therefore, may serve as a
chemical tool that provides insights into the regulation of the
SREBP pathways.

4.3 Vitamin D

Vitamin D is critical for the modulation of metabolism, calcium,
and phosphorus absorption for bone health. Interestingly, it is also
reported to regulate mechanisms other than mineral homeostasis
and bone health maintenance (DeLuca, 2004). There are two
different forms of vitamin D: vitamins D2 and D3. Vitamin D
(D2 and D3) acquired from the skin and diet undergo two

TABLE 3 The mechanism and effects of SREBP inhibitors.

Items Targets Mechanism Dosage Effect References

Betulin INSIG/SCAP Combines with SCAP to enhance the
interaction between SCAP and INSIG,
thereby inhibiting the maturation of SREBP.

Western-type diet C57BL/6J mice were
treated with betulin 15 or 30 mg/kg/day for
6 weeks

Reduced cholesterol and TG
levels and increased insulin
sensitivity

Tang et al. (2011)

Betulin 30 mg/kg/day treated for 14 weeks
for LDLR−/− western type die mice

Prevention of
atherosclerosis

Fatostatin SCAP/SREBP
complex

Directly bind to SCAP, retain the SCAP/
SREBP complex in ER, and block its
transport to the Golgi apparatus

Fatostatin 30 mg/kg/day was
intraperitoneally injected into standard
laboratory chow ob/ob mice for 28 days

Reduced weight, blood
sugar, and liver fat
accumulation

Kamisuki et al.
(2009)

KK-052 SCAP/SREBP Reduce the levels of endogenous SREBP and
SCAP.

KK-052, 10 mg/kg treated ob/ob mice,
5 times a week for 4 weeks

Reduced liver steatosis,
serum TG, and glucose

Kawagoe et al.
(2021)

25HC3S LXR/
SREBP-1c

Reduce lipogenesis by inhibiting the LXR/
SREBP-1c signaling pathway

C57BL/6J mice fed a high-fat diet were
injected twice with 25HC3S (25 mg/kg)
intraperitoneally and fasted for 14 h for acute
treatment

Significantly reduced serum
TG and cholesterol levels

Xu et al. (2013)

Once every 3 days for 6 weeks and fasted for
5 h for long-term treatments

Reduced lipid levels in liver
tissue of MASLD mice
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sequential hydroxylations: first in the liver (25[OH]D) and then in
the kidney, leading to its biologically active form 1,25-
dihydroxyvitamin D (1,25[OH]2D) (Alshahrani and Aljohani,
2013). Based on current reports, vitamin D3 metabolites
modulate mammalian gene expression using two distinct
networks: the vitamin D receptor (VDR) and the SREBP pathway
(Nagata et al., 2019).

In fact, the vitamin D3 metabolite 25[OH]D3 reduces SREBP
levels independent of VDR. It is directly associated with SCAP and
inhibits the SREBP response gene expression by inducing SCAP
protein hydrolysis and ubiquitin-mediated degradation (Asano
et al., 2017). However, the therapeutic effectiveness of 25[OH]D3

is diminished because of its VDR-mediated calcification impact. In
light of this circumstance, scientists have created KK-052, the initial
SREBP inhibitor based on vitamin D. KK-052 maintained the ability
of 25[OH]D3 to induce the degradation of SREBP but lacked in the
VDR-mediated activity. Administering 10 mg/kg of KK-052 to ob/
ob mice five times weekly for 4 weeks noticeably decreased their
body weight and improved liver steatosis (Kawagoe et al.,
2021) (Table 3).

Currently, vitamin D2 and vitamin D3 are widely used in the
treatment of different diseases. However, research has shown that
higher vitamin D intake was associated with a lower risk of CVD in
men (Sun et al., 2011). However, some studies indicate that
supplementing high doses of vitamin D every month may not
prevent CVD (Scragg et al., 2017). Therefore, new compounds
with distinctive chemical structures and pharmacological
properties, such as KK-052, offer the potential to fulfill our
particular requirements in treating metabolic diseases.

4.4 25-Hydroxycholesterol (25-HC) and 25-
hydroxycholesterol 3-sulfate (25HC3S)

Cholesterol 25 hydroxylase can convert cholesterol to a
secondary side chain oxysterol called 25-HC (Wang et al.,
2019a). 25-HC is involved in numerous processes, including
inflammation, immune responses, and cancer development
(Wang et al., 2019b). In the last few decades, the roles of 25-HC
in cholesterol and bile acid metabolism, antiviral process,
inflammatory and immune response, and survival pathways have
been extensively elucidated (Cao et al., 2020). One study reported
that 25-HC is more effective than cholesterol in inhibiting SREBP-2.
Although SCAP can sense cholesterol, 25-HC strongly associates
with INSIG, which, in turn, enhances the interaction between SCAP
and SREBP-2 (Goldstein et al., 2006), therefore minimizing the
production of cholesterol. It is important to mention that 25-HC is a
well-known agonist of LXRs, and when LXRs are activated, it can
trigger the synthesis of ABCA1, ABCG1, and SREBP-1c. This, in
turn, leads to a decrease in atherosclerosis and an increase in lipid
buildup in the liver (Liu et al., 2018).

A novel sulfated oxysterol, 5-cholesterin-3β, 25-diol 3-sulfate
(sulfated 25-hydroxycholesterol, 25HC3S) has been identified in
hepatocytes overexpressing the mitochondrial cholesterol delivery
protein, StarD1 (Ren et al., 2006). 25HC3S is also known as LXR
antagonist. Bai et al. found that 25HC3S significantly reduced serum
and hepatic lipid levels by inhibiting the LXR/SREBP-1c signaling
pathway (Bai et al., 2012). Xu et al. found that C57BL/6J mice fed a

high-fat diet were intraperitoneally injected with 25HC3S
(25 mg/kg) twice and fasted overnight (14 h) for acute treatment,
significantly reducing serum TG and cholesterol levels or once every
3 days for 6 weeks and fasted 5 h for long-term treatments reduced
lipid levels in the liver tissue of the MASLD mouse model (Xu et al.,
2013) (Table 3). DUR-928 is an endogenous form of 25HC3S. It has
been found to inhibit lipid biosynthesis by suppressing the LXR/
SREBP-1c pathway, suppressing inflammation by reducing
inflammatory mediators, and enhancing cell survival by
inhibiting apoptosis (Hassanein et al., 2023). Currently, DUR-928
is undergoing clinical trials and has shown great potential for the
treatment of alcohol-associated hepatitis (Wang et al., 2020).

4.5 Other inhibitors

The alkaloid lycorine, isolated from the plant Narcissus in 1877
(Roy et al., 2018), binds to SCAP and inhibits the SREBP pathway to
ameliorate high-fat diet-induced hyperlipidemia, hepatic steatosis
and IR in mice (Zheng et al., 2021). Zexie Tang (ZXT) is a classical
Chinese medicine prescription from Synopsis of the Golden
Chamber. Xie et al. found that ZXT has excellent lipid-lowering
effects by inhibiting SREBPs (Xie et al., 2022).

5 SREBPs and miRNAs

In addition to transcriptional regulation, miRNAs can also
modulate lipid metabolism via post-transcriptional regulation
(Moore et al., 2010). miRNAs belong to a large family of small non-
coding RNAs, and they are expressed in animals, plants, and some
viruses. miRNAs negatively regulate mRNA stability (Saliminejad et al.,
2019).WhenmiRNAs bind with specific locations in the 3′untranslated
region of mRNAs that complement them, they inhibit translation by
causing the degradation of the associated mRNA (Bartel, 2009).
Functional studies have demonstrated that miRNAs play several
crucial roles in physiological processes such as developmental
timing, cell differentiation, embryogenesis, metabolism,
organogenesis, and apoptosis (Ha and Kim, 2014). Current studies
revealed that many miRNAs are involved in the regulatory process
related to the SREBP pathways.

5.1 miR-33

Humans have two forms of miR-33 genes: miR-33a and miR-
33b. miR-33a is encoded in intron 16 of the SREBP-2 gene on
chromosome 22, andmiR-33b is encoded in intron 17 of the SREBP-
1 gene on chromosome 17 (Dávalos et al., 2011). Similar to other
intron miRNAs, miR-33 is often co-transcribed with its host gene
SREBPs, and it targets genes related to the cholesterol output,
ABCA1 and ABCG1 (Rayner et al., 2010). ABCA1 facilitates the
transfer of cholesterol and phosphatidylcholine to lipid-free
apolipoprotein A-I, leading to the formation of nascent HDL. On
the other hand, ABCG1 is responsible for the transfer of cholesterol,
phosphatidylcholine, and sphingomyelin to nascent HDL and HDL
(Rosenson et al., 2016). Under conditions of sterol depletion, when
SREBP-2 is activated to increase cholesterol biosynthesis and uptake,
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miR-33 inhibits the efflux of cholesterol from the cell by targeting
ABCA1 and ABCG1. Conversely, when cellular cholesterol levels are
high, SREBP-2 processing is inhibited, leading to reduced miR-33
expression. In this state, LXRs are active, leading to the activation of
ABCA1 and ABCG1 by binding to LXR response elements in the
gene promoter. This activation affects HDL levels and the removal of
cholesterol (Price et al., 2021; Matsuo, 2022). In addition, LXR can
hinder the LDLR pathway by transcriptionally stimulating the
expression of Idol, which promotes the degradation of LDLR and
hence reduces the uptake of LDL (Zelcer et al., 2009). miR-33a and
-b also target key enzymes involved in the regulation of fatty acid
oxidation, including carnitine O-octanoyltransferase (CROT),
carnitine palmitoyltransferase 1A (CPT1a), hydroxyacyl-CoA-
dehydrogenase (HADHB), Sirtuin 6 (SIRT6), and AMPKα.
Additionally, miR-33a and -b also target the IRS-2, which is an
important component of the hepatic insulin signaling pathway
(Dávalos et al., 2011) (Figure 3).

Marquart et al. discovered that when C57BL/6J mice were
injected with a miR-33 adenovirus vector (2 × 10̂9 pfu), the levels
of liver ABCA1 and serumHDL decreased. However, when the mice
received a continuous tail vein injection of anti-miR-33 antisense
oligonucleotide (ASO) (5 mg/kg/day) for 3 days, there was a
significant increase in liver ABCA1 expression and serum HDL
levels after 5 or 12 days of ASO infusion (Marquart et al., 2010). The
results above suggest that miR-33 may control the balance of
cholesterol and the metabolism of lipoproteins by suppressing
the expression of ABCA1.

5.2 miR-122

miR-122 is ubiquitously expressed in the liver of vertebrates. It is
estimated that miR-122 accounts for approximately 70% of all liver
miRNAs and plays a variety of functions in liver physiology and
pathology (Moore et al., 2011; Bandiera et al., 2015). miR-122 was
the first identified miRNA involved in the regulation of total serum
cholesterol and liver metabolism, and it is the most studied hepatic
miRNA to date (Moore et al., 2011).

Pharmacological and genetic suppression of miR-122 is known
to impair systemic and hepatic lipid metabolism, iron homeostasis,
and hepatocyte differentiation (Thakral and Ghoshal, 2015). Esau
et al. conducted an experiment where they fed C57BL/6J mice a diet
heavy in fat for 19 weeks. Afterward, the mice were injected with
12.5 mg/kg of miR-122 ASO into their peritoneal cavity twice a week
for five and a half weeks. After 2 weeks, this led to a substantial
reduction in blood lipids and liver steatosis (Esau et al., 2006).
Research has demonstrated that miR-122 controls the expression of
luteinizing hormone receptors in rat ovaries via activating SREBP
(Menon et al., 2015).

Additionally, miR-122 inhibition caused a significant decrease in
the downstream pathways regulated by SREBP, such as HMGCS1,
HMGCR, DHCR7, and SQLE (Rotllan and Fernández-Hernando,
2012). In mice with germline deletion of miR-122a, the downstream
target genes FASN and SCD-1 of SREBP-1 were significantly
reduced (Tsai et al., 2012). Although the regulation of lipid
metabolism by miR-122 is complex, this microRNA does inhibit

FIGURE 3
The interplay between miR-33, SREBPs, and LXRs influences the regulation of cholesterol, fatty acid oxidation, and insulin signaling pathways. miR-
33a and -b target ABCA1 and ABCG1 to inhibit cholesterol efflux, as well as CROT, CPT1a, HADHB, SIRT6, and AMPKα to suppress fatty acid oxidation.
They also target IRS-2, leading to reduced insulin signaling pathways. Activation of LXRs stimulates ABCA1 and ABCG1, induces SREBP-1c expression, and
inhibits LDLR through Idol.
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the downstream pathway of SREBP regulation. Further research is
needed to determine the specific mechanism.

6 Discussion

With the rapid aging of the global population and the further
implementation of clinical guidelines, polypharmacy is becoming
more and more common, and a series of problems like adverse drug
reactions and drug damage have become more apparent. At present,
there is no effective method to solve polypharmacy dilemma in
clinical practice. SREBPs and related pathways are critical for MS-
related diseases. In summary, we have outlined the mechanism of
SREBPs and their associated pathways, specifically in the context of
prevalent metabolic disorders. Additionally, we have discussed the
inhibitors commonly used to target these pathways and the
regulatory miRNAs involved. The findings indicate that SREBPs
and their associated pathways offer substantial potential as targets
for the development of a single drug to treat a variety of diseases
effectively. This provides a novel idea for solving the clinical
polypharmacy dilemma. Although several studies have
demonstrated the possibility of drug development targeting
SREBP-related pathways in different ways in vivo and in vitro,
further work is required.
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