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Dental pulp stem cells (DPSCs) are a type of mesenchymal stem cells that can
differentiate into odontoblast-like cells and protect the pulp. The differentiation of
DPSCs can be influenced by biomaterials or growth factors that activate different
signaling pathways in vitro or in vivo. In this review, we summarized six major
pathways involved in the odontogenic differentiation of DPSCs, Wnt signaling
pathways, Smad signaling pathways, MAPK signaling pathways, NF-kB signaling
pathways, PI3K/AKT/mTOR signaling pathways, and Notch signaling pathways.
Various factors can influence the odontogenic differentiation of DPSCs through
one ormore signaling pathways. By understanding the interactions between these
signaling pathways, we can expand our knowledge of the mechanisms underlying
the regeneration of the pulp–dentin complex.
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1 Introduction

Dental pulp stem cells (DPSCs) are a type of mesenchymal stem cells (MSCs) that express
mesenchymal markers, including CD29, CD44, CD59, CD90, CD105, CD146, and CD166 (Liu
et al., 2015). Since their discovery and characterization by Gronthos et al. (2000), DPSCs have
attracted great interest in the field of regenerative medicine. This is due to their ability to self-
renew, their high proliferation rate, their immunomodulatory properties, and their versatile
potential to differentiate into different cell types. Furthermore, DPSCs can be easily obtained from
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extracted third molars or primary teeth. Dental tissues contain various
types of MSC sources, namely, pulp, follicle, and papilla, which can
differentiate into the desirable lineages when induced under appropriate
conditions (Gronthos et al., 2000). DPSCs are used in the treatment of
Alzheimer’s disease, diabetes, and immunological diseases and have
shown the ability to differentiate into angioblasts and neural cells
(Marchionni et al., 2009; Jahanbin et al., 2016; Nuti et al., 2016),
smooth muscle cells (Song et al., 2016; Jiang et al., 2019; Ha et al.,
2021), chondroblasts (Ba et al., 2017), or hepatocytes (Lei et al., 2021; Li
et al., 2021). Most importantly, DPSCs have the unique capability to
replace damaged odontoblasts and generate reparative dentin. When
odontoblasts are stimulated by dental caries or trauma, DPSCs migrate
to the lesion site and differentiate into odontoblast-like cells that
contribute to the formation of dentin and pulp-like structures
(Arana-Chavez and Massa, 2004; Janebodin et al., 2011; Ma et al.,
2012). Therefore, DPSCs play a crucial role in the regeneration of the
pulp–dentin complex (Xuan et al., 2018). Pulp disease is a common
cause of tooth loss in young individuals (Hull et al., 1997). Although
root canal treatment has been proven effective in the treatment of pulp
diseases (Oviir, 2005), it does have some limitations, such as tooth
discoloration or thick dentinal walls (Jeeruphan et al., 2012). To solve
this problem, it is important to focus on regenerating the pulp–dentin
complex. However, the odontogenic differentiation of DPSCs is
extremely complex and involves multiple signaling pathways.
Currently, a large number of studies have shown that activation of
associated signaling pathways can promote the odontogenic
differentiation of DPSCs. However, there is little comprehensive
literature summarizing the signaling pathways related to the
odontogenic differentiation of DPSCs (Liang et al., 2021). To
provide insight into the better utilization of DPSCs as “seed cells”
for pulp–dentin complex regeneration, this article aims to summarize
the known signaling pathways associated with the odontogenic
differentiation of DPSCs.

2 Results

2.1 Wnt signaling pathways

Wnt signaling pathways play a critical role in promoting tissue
repair and regeneration. These pathways can be divided into two
types: canonical and non-canonical pathways (Rao and Kuhl, 2010).
In canonical pathways (Figure 1), the absence of Wnts leads to the
formation of a protein complex consisting of adenomatous
polyposis coli (APC), glycogen synthase kinase-3β (GSK-3β),
Axin, and casein kinase 1 (Ck1). This complex then
phosphorylates β-catenin and leads to its degradation. This
inhibits signal transduction in the Wnt signaling pathway. When
Wnts are present, they interact with the frizzled receptor and the
low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6).
This interaction leads to the destruction of the protein complex.
This allows cytoplasmic β-catenin to accumulate and translocate
into the nucleus. Once in the nucleus, β-catenin activates target
genes and proteins that are involved in odontogenic differentiation,
such as Runx2, ALP, DSPP, and OCN. In addition to the canonical
pathways, there are also non-canonical pathways that are mediated
by Wnt5a. The protein β-catenin is not involved in these pathways.
Instead, non-canonical pathways are divided into two subtypes: the

planar cell polarity (PCP) pathways and the Wnt/Ca2+ pathways.
These non-canonical pathways play a role in tissue repair and
regeneration as well (Monroe et al., 2012; He et al., 2014).

Numerous studies have been conducted to investigate how Wnt
signaling pathways affect the odontogenic differentiation of DPSCs.
However, differences in results are noted. Some researchers have
found that β-catenin can activate Runt-related transcription factor 2,
(Runx2) and the accumulation of β-catenin can enhance the
odontogenic differentiation of DPSCs (Kim et al., 2013; Han
et al., 2014; Yoshida et al., 2016; Rahman et al., 2018). In another
study, Xin et al. transfected wild-type and mutant special AT-rich
sequence-binding protein 2 (SATB2) into DPSCs to induce
odontogenic differentiation. The results showed that DPSCs
transfected with wild-type SATB2 increased the expression of
Runx2, osteopontin (OPN), and alkaline phosphatase (ALP) and
also improved calcium nodule formation ability compared to those
transfected with mutant SATB2. Dickkopf-1 (DKK1) is considered
to be an inhibitor of the Wnt/β-catenin signaling pathways.
Compared with wild-type ones, DPSCs that were transfected with
mutant SATB2 increased the expression of DKK1 and decreased the
expression of active β-catenin. Treated with XAV939 (inhibitor of
Wnt signaling pathways), the expression of ALP and Runx2 was
decreased both in wild-type and mutant SATB2 transfection groups.
This indicates that wild-type SATB2 enhanced the odontogenesis of
DPSCs through the Wnt/β-catenin signaling pathways (Xin et al.,
2021). Chen et al. revealed that overexpression of differentiation
antagonizing non-protein coding RNA (DANCR) suppressed the
formation of mineralized nodules and the expression of dentin
sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP-
1) in DPSCs after 14 days of odontogenic induction. Meanwhile, the
expression of β-catenin and the phosphorylation level of GSK-3β
were significantly decreased. Therefore, DANCR inhibits the
differentiation of DPSCs into odontoblast-like cells by blocking
the canonical Wnt/β-catenin signaling pathways (Chen et al.,
2016). Han et al. found that during the odontoblastic
differentiation of DPSCs, the expression of β-catenin was
upregulated. Knocking down β-catenin accumulation in DPSCs
using lentivirus resulted in a significant reduction in matrix
mineralization and calcium nodule formation and the expression
of DSPP, DMP-1, and ALP. Conversely, stimulating β-catenin
accumulation in DPSCs using LiCl led to a significant
enhancement in calcium nodule formation and matrix
mineralization and the expression of DSPP, DMP-1, ALP, and
osteocalcin (OCN) (Han et al., 2014).

These findings suggested that when a special factor promotes the
odontogenic differentiation of DPSCs, it can enhance the activity of
proteins related to the Wnt signaling pathways. Therefore, these
results supported the idea that Wnt signaling pathways can promote
the differentiation of DPSCs (Yamashiro et al., 2007; Yokose and
Naka, 2010; Lim et al., 2014; Rahman et al., 2018; Lu et al., 2019).
Activation of the Wnt/β-catenin signaling pathways in DPSC
cultures leads to a significant increase in the expression of
important core pluripotency factors, such as SOX2, SSEA1,
LIN28, NANOG, and REX1. As a result, the ability of DPSCs to
proliferate, self-renew, and generate mature cell types becomes more
efficient (Uribe-Etxebarria et al., 2017). The analysis of the metabolic
and epigenetic changes revealed that activation of Wnt signaling
pathways upregulated cellular consumption of glucose and
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glutamate/glutamine by DPSCs along with a higher mitochondrial
activity (Uribe-Etxebarria et al., 2019). In addition, this transient
“hyper-energetic” state appears to be crucial for maintaining the
stemness of the cells.

On the contrary, some studies have shown that the Wnt/β-
catenin signaling pathway could inhibit the odontogenic
differentiation of DPSCs. They have found that a specific protein
associated with the Wnt signaling pathway can suppress the
odontogenic differentiation of DPSCs (Amri et al., 2016).
ScheHer et al. demonstrated that Wnt-1 and β-catenin inhibited
the odontogenic differentiation of DPSCs. They observed that
DPSCs overexpressing Wnt1 and β-catenin showed reduced ALP
activity after undergoing odontoblastic differentiation compared to
control cells (Scheller et al., 2008). Zhang et al. found that

overexpression of Wnt10A promotes the proliferation of DPSCs
but hinders their odontoblastic differentiation. After 6-day
odontogenic differentiation, Wnt10A-overexpressing DPSCs
downregulated the expression of DSPP, DMP-1, ALP, and
collagen-type I-alpha1 (COL1A1) (Zhang et al., 2014).

It seems that different molecules that control Wnt signaling
pathways can have varying effects. ScheHer et al. enhanced the
expression of β-catenin by retrovirus infection, while others activated
β-catenin by exogenous application. This suggests that transient
activation of β-catenin can induce odontogenic differentiation of
DPSCs. Differences in the level of Wnt activity, experimental
conditions, timing, or duration of activation could contribute to
these variations (Vijaykumar et al., 2021). Vijaykumar et al. also
discovered that activating Wnt/β-catenin signaling could enhance

FIGURE 1
In canonical pathways, the presence of Wnt triggers a series of events. This begins with the binding of the frizzled receptor and the low-density
lipoprotein receptor-related proteins 5 and6 (LRP5/6). This binding transmits signals that lead to the degradation of the complex consisting of
adenomatous polyposis coli (APC), glycogen synthase kinase-3β (GSK-3β), Axin, and casein kinase 1 (Ck1). This causes β-catenin to be released from this
complex, resulting in an increase in its level. The increased β-catenin then moves into the nucleus, displaces co-repressors from transcription
factors (TCFs), and activates target genes and proteins involved in odontogenic differentiation, such as Runx2, ALP, DSPP, and OCN. When Wnts are
absent, β-catenin remains associated with a protein complex that includes APC, GSK3β, Axin, and Ck1. Within this complex, GSK-3β phosphorylates β-
catenin to degrade it. This degradation prevents the occurrence of signal transduction in the Wnt signaling pathway.
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the number of BSP-GFP+ osteoblasts in dental pulp cultures, which
aligns with other research findings (Kim et al., 2013; Teufel and
Hartmann, 2019). Despite the variations in results, it still indicates
that the Wnt/β-catenin signaling pathways are involved in regulating
the differentiation of DPSCs, and the molecular mechanisms still need
to be further studied in in vivo testing.

2.2 BMP/Smad signaling pathways

The transforming growth factor-β (TGF-β) superfamily transduces
intracellular signals via Smad proteins (Figure 2). The bone
morphogenetic protein (BMP), which belongs to the TGF-β
superfamily, is most closely related to the Smad proteins (Figure 3)
(Wu et al., 2016). BMP activates the Smad proteins, allowing signals to
be transported to the nucleus for regulation of gene expression (Wu
et al., 2016). BMP plays an important role in the process of tooth
development, and inhibiting its function can lead to tooth development
disorders (Fraser et al., 2004; Salazar et al., 2016; Lowery and Rosen,
2018). Previous studies have shown that BMP/Smad signaling pathways
regulate DSPP both in vitro and in vivo (Chen et al., 2008; Chen et al.,
2009; Cho et al., 2010). BMP2 can induce DPSCs to differentiate into
odontoblasts, thereby achieving dentin regeneration (Woo et al., 2016;
Hu et al., 2019; Ho et al., 2021).

Zhu et al. discovered that BMP-7 induced odontogenic
differentiation of DPSCs. After 7-day and 14-day odontogenic
differentiation, DPSCs that were treated with BMP-7 showed an
increase in the expression of DSPP, DMP-1, ALP, and OCN.
Meanwhile, Western blot results revealed that BMP-7 induction
increased the expression of Smad5 and p-Smad5 proteins (Zhu
et al., 2018). Qin et al. concluded that BMP2-induced odontoblastic
differentiation of DPSCs was mediated by the activated Smad1/
5 signaling pathways. DPSCs exposed to BMP-2 showed an
enhancement in the phosphorylation of Smad1/5 and an increase in
the expression of DSPP and DMP-1. However, these increased
expressions were suppressed by noggin, which was an inhibitor of
BMP/Smad signaling pathways. The results also revealed that the
phosphorylation and nuclear translocation of Smad1/5 were partially
inhibited by noggin (Qin et al., 2012b).

These studies have shown that BMP can stimulate the
differentiation of DPSCs into odontoblasts. The protein associated
with the Smad signaling pathways is also enhanced, which is
consistent with the finding of other research studies (Nakashima
and Reddi, 2003; Lin et al., 2007; Moioli et al., 2007; Yang et al.,
2012). When the BMP/Smad signaling pathways are inhibited, it can
negatively affect tooth development (Yamamoto et al., 2004). It has been
reported that rhBMP-2 is involved in odontoblast differentiation
in vitro (Saito et al., 2004; Casagrande et al., 2010). Therefore, it is
clear that the BMP/Smad signaling pathways play a crucial role in the
regeneration of the pulp–dentin complex.

2.3 Mitogen-activated protein kinase
signaling pathways

The MAPK signaling pathways present in the cytoplasm play an
important role in cell proliferation, differentiation, and apoptosis
(English and Cobb, 2002). A typical MAPK cascade is mainly

composed of three kinases, a MAPK (MPK), a MAPK kinase
(MAPKK or MEK), and a MAPK kinase kinase (MAPKKK or
MEKK). When a stimulus is detected, MAPKKKs phosphorylate
and activate downstream MAPKKs, which then phosphorylate and
activate the MAPKs. In turn, the activated MAPKs can
phosphorylate numerous downstream substrates and activate
cellular responses (Chen et al., 2021; Zhang and Zhang, 2022).
The MAPK family is composed of three main subfamilies:
extracellular signal-regulated kinase (ERK), P38MAPK, and c-Jun
N-terminal kinase (JNKMAPK) (Pearson et al., 2001).

Ngo et al. concluded that leptin can stimulate the differentiation
of DPSCs into odontoblasts by activating the MAPK signaling
pathways. When DPSCs were treated with leptin, there was an
increase in alkaline phosphatase (ALP) expression and
mineralization, as well as the phosphorylation levels of ERK,
P38MAPK, and JNK. However, leptin-induced DSPP protein
expression levels and mineralization in DPSCs were blocked by
ERK, JNK, or P38 inhibitors (Ngo et al., 2018). Cui et al. discovered
that epiregulin enhanced the odontoblastic differentiation of DPSCs
by MAPK signaling pathways. Treatment with recombinant human
EREG led to an increase in the expression levels of odontogenic
differentiation markers in DPSCs, as well as upregulation of
phosphorylated P38MAPK and ERK. However, when EREG was
knocked down using lentiviral EREG short hairpin RNAs or when
P38MAPK or ERK was inhibited with specific inhibitors, the
expression of DSPP, OCN, and Runx2 in DPSCs was reduced
(Cui et al., 2019).

According to the aforementioned studies, when certain factors
promote the odontogenic differentiation of DPSCs, the related
protein of MAPK signaling pathways could be enhanced. MAPK
signaling pathways are one of the crucial mechanisms that regulate
cell proliferation and odontogenic differentiation (Liu et al., 2014;
He et al., 2015; Sun et al., 2015; Lv et al., 2016; Rodriguez-Carballo
et al., 2016;Wu et al., 2019; Cui et al., 2019). It has been reported that
BMP-2, biodentine, and MTA can promote the odontogenic
differentiation of DPSCs through activating MAPK signaling
pathways (Qin et al., 2012a; Zhao et al., 2012; Luo et al., 2014;
Sanz et al., 2021). The ERK signaling pathway, which is one of the
characteristic MAPK signaling pathways, is involved in the
regulation of cytodifferentiation. The P38MAPK signaling
pathways are responsible for regulating cytokine expression and
are activated by inflammatory cytokine signals (Su et al., 2019).
JNKMAPK signaling pathways are stress-activated kinases
associated with anti-proliferative and apoptotic functions
(Johnson and Lapadat, 2002). However, further research is
necessary to figure out the detailed mechanisms of the ERK
P38 and JNK signaling pathways as well as their relationships.

2.4 Nuclear factor-kappa B signaling
pathways

The NF-κB signaling pathways are involved in various biological
processes, such as cell proliferation and apoptosis, inflammation,
and immune response. The NF-κB proteins usually exist as inactive
cytoplasmic complexes associated with inhibitors of the κB (IκB)
family. NF-κB signaling pathways are divided into canonical and
non-canonical signaling pathways (Figure 4). In canonical pathways,
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signals from numerous immune receptors can activate the TGFβ-
activated kinase 1 (TAK1). TAK1 then phosphorylates IκB kinase-β
(IKKβ), which in turn activates a complex called IκB kinase (IKK).
The IKK complex is made up of two catalytic subunits (IKKα and
IKKβ) and one regulatory subunit (IKKγ). Then, IκB family
members, particularly IκBα, are phosphorylated by the IKK
complex and eventually undergo ubiquitylation and proteasomal
degradation. Consequently, various NF-κB complexes,
predominantly the p50/RelA dimers, translocate to the nucleus.

The non-canonical pathway responds primarily to the members of
the tumor necrosis factor receptor (TNFR), which can activate the
kinase NF-κB-inducing kinase (NIK). IKKα is phosphorylated and
activated by NIK, which then phosphorylates and degenerates p100
and generates p52. P52 and RELB translocate to the nucleus to activate
target genes and proteins related to odontogenic differentiation,
including Runx2, ALP, DSPP, and OCN (Sun, 2011; Sun, 2017).

Wang et al. discovered that estrogen deficiency decreased the
odonto/osteogenic capacity of DPSCs via the NF-κB signaling
pathways (Wang et al., 2013). They established an estrogen-
deficient rat model by bilateral ovariectomy (OVX). The results
revealed that compared to DPSCs from the sham-operated group
(sham DPSCs), the odonto/osteogenic differentiation capacity of

OVX-DPSCs was significantly decreased both in vitro and in vivo.
Meanwhile, suppression of NF-κB signaling pathways could
enhance the reduced odonto/osteogenic potential in
ovariectomized mice. Li et al. (2023) confirmed that baicalin can
promote odonto/osteogenic differentiation of dental pulp
inflammatory stem cells by inhibiting NF-κB signaling pathways.

According to the aforementioned studies, when a certain factor
promotes the odontogenic differentiation of DPSCs, the related
protein of NF-κB signaling pathways could be enhanced
(Hozhabri et al., 2015; Pei et al., 2016; Wu et al., 2019). It has
also been found that activation of NF-κB can inhibit the odontoblast
differentiation in an inflammatory microenvironment (Pei et al.,
2016). Therefore, NF-κB signaling pathways do play an important
role in the odontogenic differentiation of DPSCs.

2.5 Phosphoinositide-3-kinase/protein
kinase B/mammalian target of rapamycin
signaling pathways

The PI3K/AKT/mTOR signaling pathways (Figure 5) are essential
for cellular processes, including cell growth, survival, and metabolism.

FIGURE 2
TGF-β combines with the TGF-β type II receptors (RIIs), which leads to the recruitment of TGF-β type I receptors (RIs). Then, two RIIs and two RIs
form a heterotetrameric complex. The RI then recruits and phosphorylates SMAD2 and SMAD3, which can form heteromeric complexes with SMAD4.
Eventually, these complexes translocate into the nucleus where they activate specific genes and proteins that are involved in odontogenic differentiation,
including Runx2, ALP, DSPP, and OCN.
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These pathways involve key components including PI3Ks, AKT, and
mTOR.When growth factor stimulus combines with a receptor tyrosine
kinase (RTK), activated PI3K can convert phosphatidylinositol 4,5-
bisphosphate (PIP2) into phosphatidylinositol 3,4,5-triphosphate
(PIP3). This conversion can be reversed by the phosphatase and
tensin homolog (PTEN). PIP3 then activates PI3K-dependent kinase
1 (PDK1). Subsequently, PDK1 and mTORC2 will, respectively,
phosphorylate amino acid residues T308 and S473, leading to the
activation of AKT to phosphorylate target proteins (Keppler-Noreuil
et al., 2016; Yu and Cui, 2016).

Lin et al. discovered that low concentrations of graphene oxide
quantum dots (GOQDs) could enhance the odontoblastic
differentiation of DPSCs. After 14-day odontoblastic
differentiation, the expression level of phosphorylated AMPK
increased, while the expression level of phosphorylated mTOR
decreased. This indicated that GOQDs would activate the AMPK
signaling pathways but inhibit the mTOR signaling pathways in
DPSCs (Lin et al., 2023). Xu et al. (2021) found that NaF promoted
osteo/odontogenic differentiation of DPSCs by suppressing the
PI3K/AKT/mTOR signaling pathways. KEGG analysis and the
results of PCR and Western blotting revealed that there was a
differential expression in the PI3K/AKT/mTOR signaling
pathways between NaF-treated DPSCs and the control
group. The p-AKT/AKT ratio was lower in NaF-treated DPSCs.

After inhibiting the PI3K/AKT/mTOR signaling pathways, NaF-
treated DPSCs upregulated the expression of DSPP and DMP-1 and
mineralization.

The aforementioned studies indicated that when a certain factor
promotes the odontogenic differentiation of DPSCs, the related
proteins of the PI3K/AKT/mTOR signaling pathways decreased.
They concluded that the PI3K/AKT/mTOR signaling pathways
negatively regulated the odontogenic differentiation of DPSCs.
Osteogenic/dentinogenic differentiation of stem cells from apical
papilla (SCAP) could be promoted by inhibiting PI3K/AKT/mTOR
signaling pathways (Bhaskar and Hay, 2007). Consistently,
odontogenic differentiation of DPSCs could be blocked by PI3K/
AKT/mTOR signaling pathways (Kajiura et al., 2021; Park et al.,
2022). However, PI3K/AKT/mTOR signaling pathways could
promote the osteogenic differentiation of periodontal ligament
stem cells (Huang et al., 2021). Considering this difference, we
need further studies to figure out the mechanisms.

2.6 Notch signaling pathways

Notch signaling pathways (Figure 6) are highly conserved pathways
that enable communication between neighboring cells that influence
proliferation, differentiation, and apoptotic events during development

FIGURE 3
BMP combines with the BMP type I receptors (RIs) and TGF-β type II receptors (RIIs). Smad1, Smad5, and Smad8 are activated by BMP receptors,
which can form heteromeric complexes with SMAD4. Eventually, these complexes translocate into the nucleus to activate target genes and proteins
related to odontogenic differentiation, including Runx2, ALP, DSPP, and OCN.
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(Artavanis-Tsakonas et al., 1999). The Notch signaling pathways
include four transmembrane Notch receptors (Notch-1, Notch-2,
Notch-3, and Notch-4) and two families of ligands (Delta and
Jagged). When a receptor binds to a ligand from a neighboring cell,
Notch receptors will undergo proteolytic cleavages and release the
Notch intracellular domain (NICD). The NICD then moves into the
nucleus and combines with members of the CSL (CBF-1, Suppressor of
Hairless, and Lag-1) transcription factor family to activate Notch target
genes (Lai, 2004; Espinoza et al., 2013; Nandagopal et al., 2018).

Notch signaling has been found to promote osteo/odontogenic
differentiation in human bone marrow MSCs, human periodontal
ligament stem cells, human adipose stem cells, and stem cells
isolated from human exfoliated deciduous teeth (Lough et al., 2016;
Liao et al., 2017; Tian et al., 2017; Bagheri et al., 2018). However, the
impact of Notch signaling on osteogenic differentiation remains
unclear. Zhang et al. (2008) demonstrated that the activation of
Notch signaling pathways by Jagged-1 inhibited the odontogenic
differentiation of DPSCs in vitro and in vivo. Meanwhile,
overexpression of the constitutively activated Notch-ICD could also

inhibit the differentiation of DPSCs. When DPSCs were engineered to
express Jagged-1 (DPSC/Jag) using retroviruses, they showed decreased
levels of ALP activity and the formation of calcified nodules and dentin
sialoprotein (DSP). Two months after transplanting cells into nude
mice, the results revealed that control cells formed mineralized tissues,
but DPSC/Jag cells did not generate any mineralized tissues in vivo.
According to their results, since Notch signaling inhibited DSPP
expression in DPSCs, it increases the possibility that Notch signaling
could inhibit Runx2 transcriptional activities. In contrast,
Manokawinchoke et al. discovered that after maintaining the DPSCs
on indirect immobilized Jagged1 surfaces in an osteogenic medium, the
odonto/osteogenic differentiation of DPSCs was enhanced
(Manokawinchoke et al., 2017). Furthermore, the effects of Notch
signaling on the differentiation of DPSCs may vary depending on
the specific Notch ligands. He et al. discovered that the activation of
Notch signaling pathways by Delta1 enhanced the proliferation and
odontogenic differentiation of DPSCs. The cells transduced withDelta1
formed more calcified nodules in less time and with enhanced DSPP
expression (He et al., 2009). Wang et al. revealed that inhibition of

FIGURE 4
The canonical nuclear factor-κB (NF-κB) signaling pathways are activated by signals from various immune receptors. These signals activate the
kinase TGFβ-activated kinase 1 (TAK1). TAK1 phosphorylates IκB kinase-β (IKKβ) to activate the trimeric IκB kinase (IKK) complexes, which are composed of
two catalytic subunits (IKKα and IKKβ) and one regulatory subunit (IKKγ). IκB family members, particularly IκBα, are phosphorylated by IKK complexes and
then undergo ubiquitylation and proteasomal degradation. Eventually, various NF-κB complexes, predominantly the p50/RELA dimers, translocate
to the nucleus. Non-canonical NF-κB signaling pathways depend on phosphorylation-induced p100 processing, which is activated by signals from a
subset of tumor necrosis factor receptor (TNFR) members. TNFR activates kinase NFκB-inducing kinase (NIK). NIK phosphorylates and triggers IKKα,
which can phosphorylate the carboxy-terminal serine residues of p100, resulting in the degradation of the C-terminal IκB-like structure of p100. P52 and
RELB translocate to the nucleus to activate target genes and proteins related to odontogenic differentiation, including Runx2, ALP, DSPP, and OCN.
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Delta1 could promote odontogenic differentiation of DPSCs in vitro.
Lentivirus-mediated Delta1-RNAi stably knocked down the expression
of Delta1 and Notch signaling. Furthermore, the differentiating
capability of DPSCs/Delta1-RNAi into odontoblasts is much higher
than that of control groups (Wang et al., 2011).

Notch receptors and ligands were expressed in the dental
mesenchyme and kept DPSCs in an undifferentiated state to
protect the dental pulp from injury (Mitsiadis et al., 1997;
Mitsiadis et al., 1998; Harada et al., 1999). According to the
aforementioned studies, different ligands had varying effects on
the odontogenic differentiation of DPSCs, which may result from
different experimental conditions or stimuli. The exact mechanisms
of Notch signaling pathways remain unclear; thus, we need more
research to figure out.

2.7 Multipath parallel signaling pathways

The process of odontogenic differentiation of DPSCs is
considerably complex, involving the activation of multiple

signaling pathways simultaneously. However, most studies failed
to explore the underlying mechanisms between activated signaling
pathways. It is crucial to figure out synergistic effects between
different signaling pathways. In this section, we introduce several
interactions between different signaling pathways. According to our
search, most signaling pathways interact with MAPK signaling
pathways. It appears that MAPK signaling pathways play an
important role in promoting the odontogenic differentiation of
DPSCs. In addition, we need further studies to figure out the
detailed mechanisms.

2.7.1 MAPK signaling pathways and Wnt signaling
pathways

It has been reported that MAPK signaling pathways and Wnt
signaling pathways can interact with each other (Li et al., 2014).
Li revealed that Wnt6 can activate the JNK signaling pathways in
DPSCs and promote odontogenic differentiation. Wnt6 could
upregulate the phosphorylation of JNK. While treated with the
JNK pathway inhibitor (SP600125), the activation of JNK activity
and the expression of c-Jun mRNA were decreased. This indicates

FIGURE 5
When growth factor stimulus combines with receptor tyrosine kinase (RTK), it activates a protein called PI3K. This activated PI3K can then
phosphorylate phosphatidylinositol (4,5)-bisphosphate (PIP2) to phosphatidylinositol (3,4,5)-triphosphate (PIP3). PIP3 can be further dephosphorylated
by tensin homolog (PTEN) and activate PI3K-dependent kinase 1 (PDK1). PDK1, along with another protein called mTORC2, can phosphorylate specific
amino acid residues, T308 and S473, respectively, to activate AKT. Eventually, activated AKT can phosphorylate target proteins to promote cell
growth and survival andmetabolism. Activated AKT inhibits inactive tuberous sclerosis complexes 1 and 2 (TSCs 1 and 2), which are unable to bind the RAS
homolog enriched in the brain (RHEB). Then,mTORC1 is activated and exerts its effects on downstream target genes and proteins related to odontogenic
differentiation, including Runx2, ALP, DSPP, and OCN.
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that Wnt6 activated JNK signaling in DPSCs. Meanwhile, they
discovered that Wnt6 enhanced the level of DSPP, Runx2, and
DMP-1 mRNA as well as upregulated the activity of ALP and the
formation of calcium deposits. However, when DPSCs were
treated with SP600125, these effects of Wnt6 on DPSCs were
blocked.

2.7.2 MAPK signaling pathways and Smad signaling
pathways

MAPK signaling pathways can interact with the Smad signaling
pathway through the phosphorylation process in DPSCs. Kong et al.
demonstrated that high extracellular Mg2+ could enhance the
odontogenic differentiation of DPSCs by activating the ERK/BMP2/
Smad signaling pathways. KEGG pathway analysis revealed that after
odontogenic differentiation with high extracellular Mg2+, genes related to
the MAPK and TGF-β signaling pathways in DPSCs were differentially
expressed. Compared to DPSCs treated with 0 mMMg2+, those treated
with high extracellular Mg2+ showed increased levels of Runx2, DMP-1,
DSPP, phosphorylatedERK,BMP2,BMPR1, and phosphorylated Smad1/
5/9. Meanwhile, these effects could be reduced by 2-APB (inhibiting

Mg2+entry) or U0126 (inhibiting ERK signaling)(Kong et al., 2019). Li
et al. confirmed that extracellular Ca2+ triggered the BMP2-mediated
Smad1/5/8 and Erk1/2 signaling pathways of DPSCs, and these pathways
converged on the Runx2 gene to control the odontogenic differentiation
of DPSCs (Li et al., 2015). In addition, P38MAPK has been found to
mediate the phosphorylation of Smad3 in rat myofibroblasts (Furukawa
et al., 2003). Furthermore, Wang et al. (2006); Li et al. (2022) discovered
that P38MAPK differentially affected the phosphorylation of Smad2 and
Smad3 during TGF-β signaling and affected the odontogenic
differentiation of DPSCs, and ERK1/2 may be involved in the process.

2.7.3 MAPK signaling pathways and Wnt signaling
pathways and Smad signaling pathways

Yang et al. suggested that P38MAPK signaling pathways can
mediate BMP2 to enhance the levels of β-catenin in DPSCs. By
treating DPSCs with rhBMP2, they observed an increase in the
expression of β-catenin in both the cytoplasm and nucleus, as well as
overall protein expression. Stimulation with BMP2 would increase
the obtained TOPflash values, indicating that BMP2 could activate
canonical Wnt signaling. They found that BMP2 could activate

FIGURE 6
Notch receptors are activated by combination with a ligand from a neighboring cell and undergo three proteolytic cleavages. First, Notch precursor
proteins are cleaved (S1) by a furin-like convertase in the trans-Golgi apparatus to generate themature Notch receptor. Composed of Notch extracellular
(NEC) and Notch transmembrane (N™) and an intracellular portion of Notch (NIC) subunits, the mature Notch receptor is delivered to the plasma
membrane. When the receptors bind to a ligand from a neighboring cell, a second cleavage (S2) by ADAM metalloproteases dissociates the NEC
from N™ and NIC. Lastly, N™ and NIC undergo another cleavage by the γ-secretase complex (S3), leading to the release of NIC. NIC then translocates
into the nucleus where it combines with the CBF-1-Suppressor of Hairless/Lag1 (CSL) to activate target genes and proteins related to odontogenic
differentiation, including Runx2, ALP, DSPP, and OCN.
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P38MAPK signaling, and when canonical BMP signaling pathways
were blocked with LDN193189, the levels of p-P38MAPK were
decreased. When they blocked P38MAPK signaling with
SB203580, the levels of β-catenin were not changed after BMP2
stimulation, indicating that blockade of the P38MAPK pathway
could prevent BMP2-induced activation of Wnt signaling pathways
and differentiation of DPSCs (Yang et al., 2015). Based on these
findings, we infer that MAPK signaling pathways, Wnt signaling
pathways, and Smad signaling pathways might have a relationship in
the differentiation of DPSCs.

2.7.4 MAPK signaling pathways and PI3K/AKT/
mTOR signaling pathways

Li J. et al. (2022) indicated that the ERK and JNK pathways and
the PI3K/AKT/mTOR pathways were involved in the AREG-
induced differentiation of DPSCs. Treatment with AREG could
increase the protein expression levels of p-ERK, p-JNK, and p-
AKT in DPSCs. These effects were inhibited by the PI3K, ERK, JNK,
and P38 pathway inhibitors as well as reduced the expression of the
mineralization markers and mineralized nodule formation in
DPSCs. This research indicated that MAPK signaling pathways
and PI3K/AKT/mTOR signaling pathways are interconnected in
the odontogenic differentiation of DPSCs.

2.7.5MAPK signaling pathways andNF-κB signaling
pathways

He et al. (2017) demonstrated that low concentrations of the
inflammatory cytokine (IFN-γ) inhibited the odonto/osteogenic
differentiation of DPSCs through the activation of the NF-κB and
MAPK signaling pathways. However, when the NF-κB inhibitor or
MAPK inhibitors were applied, it was observed that the odonto/
osteogenic differentiation of DPSCs was enhanced, both in vivo and
in vitro, in comparison to the group treated with IFN-γ alone. This study
indicated that a certain factor could promote the odontogenic
differentiation of DPSCs through NF-κB andMAPK signaling pathways.

2.7.6 Notch signaling pathways and Wnt signaling
pathways

Previous studies have reported on the interplay between the
Notch and Wnt signaling pathways (Ross and Kadesch, 2001; Foltz
et al., 2002; Brack et al., 2008). Kornsuthisopon et al. proved that
Wnt5A is involved in the Jagged1-induced mineralization in DPSCs
(Kornsuthisopon et al., 2022). This indicated that there may be
interactions between the Notch and Wnt signaling pathways during
the process of odontogenic differentiation in DPSCs.
Kornsuthisopon et al. revealed that Jagged1-mediated Notch
activation enhanced the expression of Wnt-related genes,
including Wnt2B and Wnt5A. Treatment with Wnt5A enhances
mineralization, indicating its potential involvement in the Notch-
induced osteo/odontogenic differentiation of DPSCs.

3 Conclusion

At present, numerous types of stem cells have shown their
clinical therapeutic potential (Kuehnle and Goodell, 2002).
DPSCs can be easily isolated with versatile differentiation
potential, leading to them being the focus in bone and dental

tissue engineering. However, DPSCs rapidly lose their ability to
proliferate and multipotent differentiation in in vitro culture,
emphasizing the need for improvement (Horibe et al., 2014).

Many researchers have conducted mineralization experiments
in vitro using cell culture and have found that certain factors can
increase the expression of odontogenic differentiation markers in
DPSCs, as well as the phosphorylation or expression of key
molecules in related signaling pathways. It indicated that these
factors could be used to activate related signaling pathways to
mediate the odontogenic differentiation of DPSCs.

In this review, we introduced six signaling pathways with different
effects on the odontogenic differentiation of DPSCs. Wnt and Notch
signaling pathways have opposite influences on the odontogenic
differentiation of DPSCs by distinct stimuli, and the detailed
mechanisms need to be figured out. However, due to the complex
mechanisms of the signaling pathways, most studies have only assessed
the basic mechanisms in vitro. We need to explore the odontoblast
differentiation and repair capability of DPSCs through in vivo studies to
understand the further mechanisms. Meanwhile, through
mineralization experiments and gene expression analysis, most
studies have only verified that a certain factor triggered or inhibited
a certain signaling pathway to influence the odontogenic differentiation
of DPSCs. As is known to all, each signaling pathway does not exist in
isolation but rather has certain interactions between them.Nevertheless,
a few literature works summarize all the signaling pathways related to
the odontogenic differentiation of DPSCs.

In brief, gaining a comprehensive understanding of the signaling
pathways in the odontogenic differentiation of DPSCs will help
researchers discover the most effective materials in promoting the
regeneration of the pulp–dentin complex. We need further studies
to figure out the detailed mechanisms of signaling pathways through in
vivo and in vitro studies. Similarly, researchers should pay attention to
the relationships between parallel multipath signaling pathways, when
assessing the influence of different factors on the odontogenic
differentiation of DPSCs.
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