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Purpose: 8-Hydroxy-2′-deoxyguanosine (8-OHdG) is a byproduct of DNA
oxidation resulting from free radical attacks. Paradoxically, treatment with 8-
OHdG accelerates tissue healing. The aim of this study is to quantify the 8-OHdG
response after a single session of exercise in both trained and untrained adults.

Methods: A systematic review and meta-analysis of exercise intervention studies
measuring changes in blood 8-OHdG following resistance exercise and aerobic
exercisewere conducted. The literature search includedWeb of Science, PubMed,
BASE, and Scopus, with publications up to February 2023 included. Subgroup
analysis of training status was also conducted.

Results: Sixteen studies involving 431 participants met the eligibility criteria.
Resistance exercise showed a medium effect on increasing circulating 8-
OHdG levels (SMD = 0.66, p < 0.001), which was similar for both trained and
untrained participants. However, studies on aerobic exercise presented mixed
results. For trained participants, a small effect of aerobic exercise on increasing
circulating 8-OHdG levels was observed (SMD = 0.42; p < 0.001). In contrast, for
untrained participants, a large effect of decreasing circulating 8-OHdG levels was
observed, mostly after long-duration aerobic exercise (SMD = −1.16; p < 0.05).
Similar to resistance exercise, high-intensity aerobic exercise (5–45min, ≥75%
VO2max) significantly increased circulating 8-OHdG levels, primarily in trained
participants.

Conclusion: Pooled results from the studies confirm an increase in circulating 8-
OHdG levels after resistance exercise. However, further studies are needed to fully
confirm the circulating 8-OHdG response to aerobic exercise. Increases in 8-
OHdG after high-intensity aerobic exercise are observed only in trained
individuals, implicating its role in training adaptation.
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Introduction

An intense workout inevitably induces cellular damage and results
in a transient increase in reactive oxygen species (ROS) (Balaban et al.,
2005). However, the health benefits of exercise training are well
documented in the scientific literature. This seeming contradiction
suggests that an inherent mechanism must exist to gauge oxidative
damage and prompt tissue repair to enhance fitness. Currently, ROS
are considered essential signaling molecules for skeletal muscle
adaptations to exercise challenges (Powers et al., 2010). High ROS
levels are required for the mobilization of bone marrow stem cells,
while low ROS levels promote the proliferation of quiescent stem cells,
highlighting the physiological importance of ROS oscillation (Ludin
et al., 2014). NADPH oxidases (Ferreira and Laitano, 2016), xanthine
oxidases (Gomez-Cabrera et al., 2010), and mitochondria (Bejma and
Ji, 1999) are the sources of ROS produced during and after exercise.
Redox signaling that regulates exercise responses and adaptations
predominantly occurs through tightly controlled signaling cascades
(Radak et al., 2017; Henriquez-Olguin et al., 2020).

Transient ROS production induces a protracted elevation in 8-
hydroxy-2′-deoxyguanosine (8-OHdG) as a byproduct of DNA
oxidation (Valavanidis et al., 2009). Interestingly, treatment with
8-OHdG has been shown to speed up the healing process and
increase the resolution of inflammation in vivo (Hyun et al., 2006;
Takemura et al., 2010; Ock et al., 2011a; Ock et al., 2011b; Kim et al.,
2011; Kim et al., 2021). This suggests that 8-OHdG may serve as a
danger-associated molecular pattern (DAMP), triggering an
immune response to promote tissue regeneration (Tamai et al.,
2011; Vénéreau et al., 2015). Therefore, it is likely that 8-OHdG acts
as a mediator for training adaptation, reducing recovery time
following the next bout of exercise.

A previous systematic review and meta-analysis by Tryfidou
et al. (2020) reported the acute effect of aerobic exercise and
described the role of DNA oxidation on training adaptation.
However, the question regarding whether the aerobic exercise
response on 8-OHdG is different between trained and untrained
individuals was not addressed in the study. Furthermore, no
systematic review or meta-analysis reporting the effect of
resistance exercise on circulating 8-OHdG levels is currently
available. Resistance exercise is generally known to induce more
muscle damage yet produces more muscle hypertrophy than aerobic
exercise. Therefore, this study aims to investigate the impact of acute
bouts of both types of exercise on circulating 8-OHdG levels, with a
focus on the training status.

Methods

This study was performed in accordance with the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines (Moher et al., 2009) and was registered a
priori in the PROSPERO database (CRD42022324180).

Study selection and search strategy

We searched four databases (Web of Science, PubMed, BASE,
and Scopus) for studies on the acute effects of exercise on 8-OHdG.

All published studies were checked for the following criteria: full
reports published in peer-reviewed journals, human intervention
studies with estimated exercise intensity and duration, and articles
containing keywords referring to the following terms (used in all
possible combinations): “exercise,” “exercise training,” “acute
exercise,” “physical activity,” “8-hydroxy-2-deoxyguanosine,” “8-
oxo-2-deoxyguanosine,” “8-OHdG,” “8OHdG,” “8-OHG,” “8-
oxo-dG,” “DNA damage,” “oxidative damage,” and “oxidative
stress.” In the study, literature reporting non-specific oxidative
damage markers irrelevant to DNA oxidation, such as protein
carbonyl and F2-isoprostane, was excluded. Additionally, the
reference lists of the included studies were reviewed, and a
detailed search was carried out to identify all relevant studies,
including all available publications up to February 2023. One
investigator initially reviewed records generated from all
databases and applied the inclusion/exclusion criteria to identify
eligible studies; these were then agreed with at least three of the
authors. Studies were included according to the PICOS model
(Supplemental Table S1) (Brown et al., 2006). Acute exercise was
defined as aerobic exercise or resistance exercise performed in a
single session including short and sustained working capacity. For
quantitative analysis, only studies utilizing blood samples were
included. We excluded studies that lacked reporting on exercise
intensity and duration, omitted follow-up time post-exercise,
involved unhealthy participants (i.e., patients), or utilized animals
for measurements. Studies that measured human skeletal muscle
and those involving anaerobic exercise (including the Wingate test
and sprinting) were discussed in the systematic review.

Data extraction and quality assessment

Once the included studies were finalized, the data were categorized
by the characteristics of participants (sample size and training status)
and the exercise type (resistance and aerobic). Eligible studies were
classified as aerobic exercise (intensity indicated by % VO2max) and
resistance exercise (intensity indicated by % maximal muscle strength)
according to the muscle contraction mode. Outcome values (8-OHdG)
are expressed as % pre-exercise baseline as control. Duration >30 min is
considered prolonged aerobic exercise. Assayed biomarkers and
methods of DNA quantification were extracted. Due to variations in
the analytical approach, 8-OHdG values by high-performance liquid
chromatography (HPLC) and enzyme-linked immunosorbent assay
(ELISA) were expressed as 8-OH-dG/106 Gua or ng/mL. The records
were imported into EndNote (version 20.1, Clarivate Analytic,
Philadelphia, PA, United States) and were automated and manually
screened. The effect size of the outcome after exercise was expressed as a
standardized mean difference (SMD). If the mean values in the results
of the full-text article were only presented in a figure format, we used
WebPlotDigitizer (V.4.2. Texas, United States) to extract the data from
the studies. The research divided the training status of the participants:
those with long-term training experience (such as majored in physical
education or long-term training in the gym) were classified as trained.
Untrained participants were defined by the articles, and those who
exercise less than three times a week and who are sedentary were
undefined.

The quality of the included studies was assessed using five
domains according to the revised Cochrane Risk of Bias tool for
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randomized trials consisting of 1) the randomization process, 2)
deviations from intended interventions, 3) missing outcome data, 4)
measurement of the outcome, and 5) selection of the reported result.
The overall risk of bias was defined as “low risk” if all domains were
at low risk of bias, “some concerns” if containing at least one domain
at some concerns status, but not at high risk of bias for any domain,
and “high risk” if at least one study was judged in some concerns for
multiple domains.

Data synthesis and analysis

The primary outcome was blood 8-OHdG induced by an
acute bout of exercise. A detailed analysis was conducted by
subgroup analysis to compare the differences against pre-exercise
baseline in the 1) type of exercise (resistance and aerobic), 2)
training status, 3) duration of aerobic exercise, and 4) intensity of
aerobic exercise. Due to the limited number of literature works
available, 8-OHdG in muscle samples was included only in the
systematic review (Radák et al., 1999; Fogarty et al., 2013; Yasuda
et al., 2015).

The mean, standard deviation (SD), and sample size of the
group that only received exercise intervention were pooled.
Forest plots were produced to display the effect size using
SMDs and the overall effect of Z-score. If the literature
reported the standard error (SE) only, SD was calculated using
the following formula, where n represents the number of
participants:

SD � SE x
��
n

√
.

We assumed the heterogeneity of the data among studies, and
therefore, a random-effects model was performed. We calculated
the SMD according to Hedges’ adjusted g, as follows:

SMD � Meanpost−Meanbaseline

SDpooled
1 − 3

4N − 9
( ),

where N represents the total sample size of post-intervention and
baseline. The effect size was categorized into small (SMD =
0.2—0.5), medium (SMD = 0.5—0.8), and large (SMD >0.8)
(Fritz et al., 2012; Hoaglin, 2016; Lamberink et al., 2018), and
pooled SD was calculated by

SDp �
���������������������������������������
SDbaseline( )2 + SDpost( )2 − 2 x r x SDbaseline x SDpost,

√
where r represents the correlation coefficient. The 95% confidence
interval including “0” referred to non-statistical significance
(Faraone, 2008). An increasing 8-OHdG in response to exercise
was indicated by a positive SMD. To the contrary, a negative SMD
represented a decreasing effect of exercise. The overall effect size
using the Z-score was considered significant at p < 0.05 (Lee, 2016).
Tau-squared (τ2), chi-squared Cochran’s Q (X 2) test, and I2 statistic
indicated the statistical heterogeneity. The value of τ2 >
1 demonstrated the variability between studies. The Q test
measured the variation around a weighted mean, in which
p-value <0.10 was considered to be indicative of significant
heterogeneity. I2 percentage reflected the consistency of results
across the studies. I2 was classified into no important

heterogeneity (I2 = 0–30%), moderate heterogeneity (I2 = 31–49%),
substantial heterogeneity (I2 = 50–74%), and considerable heterogeneity
(I2 = 75–100%) (Higgins et al., 2003). The analysis was performed using
Review Manager (RevMan version 5.4.1, Cochrane: United Kingdom).

Results

Selection process

The number of identified articles and the selection process from the
four databases are shown in Figure 1. We retrieved 986 duplicates from
4,980 published articles in the database search and excluded
3,800 records after title screening, leaving 194 records for abstract
screening. For quantitative analysis, we removed 162 records after
abstract screening according to the exclusion criteria, resulting in
32 full-text articles for eligibility assessment. A total of 16 studies
(431 participants) were finally included for the meta-analysis after
exclusion of three long-term training studies (Margaritis et al., 2003;
Mrakic-Sposta et al., 2015; Atli, 2021), three studies involved with
Wingate tests (Cuevas et al., 2005; Shi et al., 2007; Serkan, 2011), four
studies not reporting exercise intensity (Inoue et al., 1993; Asami et al.,
1998; Hamurcu et al., 2010; Meihua et al., 2018), and four studies not
reporting the exercise protocol (Giacomo et al., 2009; Mergener
et al., 2009; Aires et al., 2010; Neubauer et al., 2010). Studies
reporting the levels of 8-OHdG in human skeletal muscle were
used for the systematic review (Radák et al., 1999; Yasuda et al.,
2015).

FIGURE 1
PRISMA flow chart.
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Quality assessment in individual studies

Among the included eligible studies, two studies scored in the
moderate-risk bias (Saritaş et al., 2011; Sarmiento et al., 2016) and
14 studies scored in the low-risk bias (Supplementary Table S2)
(Sacheck et al., 2003; Sato et al., 2003; Bloomer et al., 2005; Bloomer
et al., 2006; Itoh et al., 2006; Bloomer et al., 2007; Shi et al., 2007;
Harms-Ringdahl et al., 2012; Fogarty et al., 2013; Pittaluga et al.,
2013; Ra et al., 2013; Çakır-Atabek et al., 2015; Arazi et al., 2019;
Mohammadjafari et al., 2019).

Study characteristics

Supplementary Table S3 summarizes participant characteristics
including sample sizes, training status, exercise types (intensity and
duration), specimens, post-exercise follow-up time, and percent
changes in 8-OHdG levels with 431 blood samples. The average
age of participants of eligible studies ranged from 21 to 71 years.
Nine studies recruited trained participants (Bloomer et al., 2005;

Bloomer et al., 2006; Bloomer et al., 2007; Shi et al., 2007; Saritaş
et al., 2011; Pittaluga et al., 2013; Sarmiento et al., 2016; Arazi et al.,
2019; Mohammadjafari et al., 2019). Five studies recruited untrained
participants (Sacheck et al., 2003; Itoh et al., 2006; Harms-Ringdahl
et al., 2012; Fogarty et al., 2013; Ra et al., 2013). Two studies included
both untrained and trained participants (Sato et al., 2003; Çakır-
Atabek et al., 2015).

Exercise type

Intensity for aerobic exercise (nine studies, 230 participants)
ranged from 50% to 100% VO2max. Intensity for resistance training
(eight studies, 201 participants) ranged from 50%–100% of 1RM
(one-repetition maximum). One study conducted both types of
exercise (Bloomer et al., 2005). Three studies measured 8-OHdG in
human skeletal muscle: one study used aerobic exercise (50%
VO2max, 5 h) (Yasuda et al., 2015), and two studies used
resistance exercise (60% 1RM and 100-repetition maximal knee
extension) as challenges (Radák et al., 1999; Fogarty et al., 2013).

FIGURE 2
Effects of resistance exercise on circulating 8-OHdG. 8-OHdG levels increased immediately after resistance exercise and diminished thereafter (A).
Medium effect of resistance exercise on 8-OHdG (B). 8-OHdG, 8-hydroxy-2′-deoxyguanosine.
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Three articles reporting the Wingate test as an exercise challenge
were excluded from aerobic exercise in the meta-analysis but
included in the systematic review (Cuevas et al., 2005; Shi et al.,
2007; Serkan, 2011).

Effect of resistance exercise on blood 8-
OHdG levels

The percent changes in circulating 8-OHdG levels from pre-
exercise baseline up to 48 h from eight studies (Bloomer et al., 2005;
Bloomer et al., 2007; Fogarty et al., 2013; Ra et al., 2013; Çakır-Atabek
et al., 2015; Sarmiento et al., 2016; Arazi et al., 2019; Mohammadjafari
et al., 2019) are shown in Figure 2. The scatter plot indicates
prominent increases in circulating 8-OHdG levels shortly
after resistance exercise and seems to reverse thereafter in

48 h (n = 201) (Figure 2A). Subgroup analysis further
indicates medium effects of resistance exercise on increasing
circulating 8-OHdG levels ≤1 h after resistance exercise
(Bloomer et al., 2007; Fogarty et al., 2013; Çakır-Atabek et al.,
2015; Sarmiento et al., 2016; Arazi et al., 2019; Mohammadjafari
et al., 2019) (SMD = 0.72; 95% CI: 0.46 to 0.98; p < 0.001)
and >1 h after resistance exercise (Bloomer et al., 2005; Ra et al.,
2013; Çakır-Atabek et al., 2015; Sarmiento et al., 2016) (SMD =
0.56; 95% CI: 0.22 to 0.90; p < 0.05) (Figure 2B).

Effect of aerobic exercise on blood 8-OHdG
levels

The effect of aerobic exercise on circulating 8-OHdG levels is
shown in Figure 3. We observed an opposing response to aerobic

FIGURE 3
Effects of aerobic exercise on circulating 8-OHdG. Post-exercise changes in 8-OHdG are divergent for trained and untrained participants (A).
Subgroup analysis for trained and untrained participants further showed opposing response in 8-OHdG, resulting in no overall effect of aerobic exercise
(B). 8-OHdG, 8-hydroxy-2′-deoxyguanosine.

Frontiers in Physiology frontiersin.org05

Ye et al. 10.3389/fphys.2023.1275867

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1275867


exercise on circulating 8-OHdG levels for trained and untrained
participants (230 samples). Subgroup analysis indicated a large
effect of aerobic exercise on decreasing 8-OHdG levels in
untrained participants (Sacheck et al., 2003; Sato et al., 2003; Itoh
et al., 2006; Harms-Ringdahl et al., 2012) (SMD = −1.16; 95% CI:
−1.88 to −0.43; p < 0.01). On the contrary, a small effect of aerobic
exercise on increasing 8-OHdG levels for studies using trained
participants was observed (Sato et al., 2003; Bloomer et al., 2005;
Bloomer et al., 2006; Shi et al., 2007; Saritaş et al., 2011; Pittaluga et al.,
2013) (SMD = 0.42; 95% CI: 0.18 to 0.66; p < 0.01).

Duration and intensity effect of aerobic
exercise

There was a significant inverse relationship (r = −0.74, p < 0.01)
between exercise duration and changes in circulating 8-OHdG levels
from pre-exercise baseline (Figure 4). Subgroup analysis indicates a

moderate effect of aerobic exercise on increasing circulating 8-OHdG
levels when the exercise duration was <30 min (Shi et al., 2007; Saritaş
et al., 2011; Harms-Ringdahl et al., 2012; Pittaluga et al., 2013) (SMD=
0.51; 95% CI: 0.23 to 0.80; p < 0.01). However, a moderate effect of
aerobic exercise on decreasing circulating 8-OHdG levels was found
when the exercise duration was >30 min (SMD = −0.68; 95% CI:
−1.24 to −0.12; p < 0.05) (Sacheck et al., 2003; Sato et al., 2003;
Bloomer et al., 2005; Bloomer et al., 2006; Itoh et al., 2006).

A small overall effect of high-intensity exercise (≥75%VO2max) on
increasing 8-OHdG levels was observed (SMD = 0.37; 95% CI: 0.08 to
0.67; p = 0.01) (Sacheck et al., 2003; Bloomer et al., 2006; Saritaş et al.,
2011; Pittaluga et al., 2013) (Figure 5A). This effect is contributed
mostly from studies using trained participants (SMD = 0.43; 95% CI:
0.10 to 0.75; p = 0.01) (Bloomer et al., 2006; Saritaş et al., 2011;
Pittaluga et al., 2013). Only one study involving high-intensity aerobic
exercise used untrained participants (Sacheck et al., 2003). However,
we observed a significant large effect of low-intensity aerobic exercise
(<75% VO2max) on decreasing 8-OHdG levels from studies using

FIGURE 4
Linear relationship between exercise duration and circulating 8-OHdG. An inverse relationship between 8-OHdG and exercise duration was observed
without considering exercise intensity and training status (r = −0.74, p < 0.001) (A). Forest plots show significant increases in 8-OHdG after short-duration
exercise (<30 min) and decreases in 8-OHdG after long-duration exercise (>30 min) (B). 8-OHdG, 8-hydroxy-2′-deoxyguanosine; U, untrained.
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untrained participants (SMD = −1.51; 95% CI: −2.34 to −0.67; p <
0.001) (Figure 5B) (Sato et al., 2003; Itoh et al., 2006; Harms-Ringdahl
et al., 2012), whereas a small effect on increasing 8-OHdG levels was
observed from the low-intensity studies using trained participants
(SMD= 0.42; 95%CI: 0.05 to 0.78; p < 0.05) (Sato et al., 2003; Bloomer
et al., 2005; Shi et al., 2007).

Discussion

This is the first meta-analysis quantitatively assessing post-exercise
DNA oxidation (based on 8-OHdG outcomes) comprising studies of
both resistance exercise and aerobic exercise. The main findings of the
study are as follows: 1) resistance exercise increases circulating 8-
OHdG levels and diminishes in 48 h during recovery; 2) circulating 8-
OHdG response to aerobic exercise varies depending on the training
status of the participants. Despite significant increases in circulating 8-
OHdG, resistance exercise and high-intensity aerobic exercise are
generally known to provide greater muscle adaptation and survival
benefits than low-intensity exercise (Byberg et al., 2009; Powers et al.,

2020). Taken together with the observed anti-inflammatory action of 8-
OHdG (Choi et al., 2007), the results of this study implicate the
involvement of 8-OHdG molecules in training adaptation.

The levels of ROS response against exercise are apparently
correlated with exercise volume and intensity. Circulating 8-OHdG
level is determined by the dynamical balance between DNA damage
and the repair mechanism. In human skeletal muscle, resistance
exercise is able to elevate 8-OHdG levels up to 91% immediately
after completion (Fogarty et al., 2013). It is generally known that
resistance exercise induces significant muscle injury leading to
neutrophil infiltration to initiate phagocytosis for debris clearance.
Phagocytosis is the main source of ROS required for the lysis of
damaged cells (Al-Shehri, 2021). Therefore, increases in circulating 8-
OHdG levels could reflect the short burst of phagocytosis (high ROS)
before entering the cell regenerative phase (low ROS) of the
inflammation process. However, 8-OHdG inhibits inflammation. 8-
OHdG is a competitive inhibitor that can bind to the GTP-binding site
of Rac1 protein due to its structure similarity to GTP. Exogenous 8-
OHdG treatment decreases Rac1-GTP and, therefore, inhibits
Rac1 and lowers ROS (Ock et al., 2011a). During inflammation,

FIGURE 5
Intensity effect on circulating 8-OHdG after aerobic exercise. A small effect of increasing 8-OHdGwas observed for trained participants performing
high-intensity exercise (≥75% VO2max) regardless of the training status (A). A large effect of decreasing 8-OHdG was observed for untrained participants
performing low-intensity exercise (<75% VO2max) (B). 8-OHdG, 8-hydroxy-2′-deoxyguanosine.
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Rac1 is an activator of NADPH oxidase for phagocytosis (Hordijk,
2006) and the STAT3/NF-κB signaling pathway (Myant et al., 2013).
Therefore, dynamical changes in 8-OHdG may involve with time
required to resolve inflammation.

An intriguing finding of the study is the opposing response in
post-exercise 8-OHdG between trained (Sato et al., 2003; Bloomer
et al., 2006; Shi et al., 2007; Saritaş et al., 2011; Pittaluga et al., 2013)
and untrained individuals (Sacheck et al., 2003; Sato et al., 2003; Itoh
et al., 2006; Harms-Ringdahl et al., 2012) following aerobic exercise.
The underlying mechanism to explain this discrepancy may involve
their differences inmusclemitochondria density.Mitochondrial DNA
content and NADH oxidase are significantly greater in aerobically
trained muscles than those in untrained muscles (Menshikova et al.,
2006; Granata et al., 2018). Mitochondrial DNA is a contributor of 8-
OHdG production associated with ROS (from NADH oxidase)
during exercise (Radák et al., 1999). During exercise, mitophagy
(lysosomal degradation of defective mitochondria) increases 8-
OHdG production (MacDougall et al., 1979; Ruple et al., 2021;
Schofield and Schafer, 2021). With higher mitochondria content in
muscle, trained individuals are anticipated to exhibit a more
pronounced rate of mitochondrial DNA turnover than untrained
individuals. Furthermore, training adaptation can lower the demand
for recruiting bonemarrow stem cells into circulation against an acute
bout of aerobic exercise (Ryan et al., 2018). Bone marrow stem cells
lower the levels of ROS, evidenced by a decreased 8-OHdG in cells
treated with exosomal molecules released from bone marrow stem
cells (Damania et al., 2018). Bone marrow stem cells mobilize into
circulation based on the magnitude of tissue damage (Ribeiro et al.,
2017; Schmid et al., 2021) and inflammation (Agha et al., 2018).
Therefore, the large effect of decreasing 8-OHdG levels after an acute
bout of aerobic exercise among untrained individuals may be partly
associated with greater levels of bone marrow cell mobilization
compared to trained individuals.

The present quantitative analysis demonstrates an inverse
correlation between exercise duration and average circulating 8-
OHdG levels collected from 230 participants in 23 time points
(r = −0.74). However, we need to be aware that intensity and
duration are interrelated, as long-duration exercise cannot be
sustained at high intensity. We found that post-exercise 8-OHdG
levels increase above baseline in studies employing short-duration
exercise (<30 min) but tend to decrease below the baseline level
among studies employing long-duration exercise (>30 min). The
linear relationship between exercise duration and circulating 8-
OHdG levels is contributed by a mixed influence of the training
status and exercise intensity. Studies on short-duration exercise
mostly involved trained participants, whereas studies on long-
duration exercise (>30 min) involved untrained participants. Similar
to resistance exercise, high-intensity aerobic exercise (≥75% VO2max,
duration from 5–45 min, four studies) consistently increases circulating
8-OHdG levels regardless of duration and training status (Sacheck et al.,
2003; Bloomer et al., 2006; Harms-Ringdahl et al., 2012; Pittaluga et al.,
2013).

The significant 8-OHdG lowering effect comes from only two
studies (involving untrained participants) using moderate-intensity
long-duration aerobic exercise (Sato et al., 2003; Itoh et al., 2006). It is
likely that the DNA repair mechanism is upregulated gradually during
prolonged exercise to lower circulating 8-OHdG levels originating
from contracting muscle. This possibility is suggested by the evidence

of increased excision of 32P-labeled damaged oligonucleotide in
exercising muscle (Radák et al., 2002). Furthermore, exercise also
increases DNA damage repair enzyme 8-oxoguanine-DNA
glycosylase (OGG1) in skeletal muscle (Radak et al., 2009).

One limitation of this meta-analysis is the lack of percent
contribution of bias of the 16 included studies. To obtain certainty of
the evidence in greater detail, CINeMA software may be a future option
for this type of meta-analysis. Furthermore, the studies included in this
meta-analysis come from blood sample assessment. Only three studies
reporting 8-OHdG levels in human skeletalmuscle are currently available
(Radák et al., 1999; Fogarty et al., 2013; Yasuda et al., 2015). Two studies
have shown an increased 8-OHdG in human skeletal muscle after
resistance exercise (Radák et al., 1999; Fogarty et al., 2013).
However, aerobic cycling exercise for up to 5 h showed minimal
changes in muscle 8-OHdG (Yasuda et al., 2015). The effects of
exercise on 8-OHdG in human skeletal muscle and the role of 8-
OHdG in muscle inflammation following a single bout of exercise
require more investigation.

Conclusion

8-OHdGhas emerged as amolecular signal that gauges the levels of
exercise-induced damage and stimulates a corresponding regeneration
mechanism during inflammation. In this quantitative analysis, the
results from pooled studies confirmed increased levels of circulating
8-OHdG after resistance exercise and high-intensity aerobic exercise.
For aerobic exercise, this acute response varied depending on an
individual’s training status. The fact that 8-OHdG treatment can
accelerate the resolution of inflammation suggests that this molecule
underlies training adaptation.
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