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Objectives: To develop and validate an MRI radiomics-based decision support
tool for the automated grading of cervical disc degeneration.

Methods: The retrospective study included 2,610 cervical disc samples of
435 patients from two hospitals. The cervical magnetic resonance imaging
(MRI) analysis of patients confirmed cervical disc degeneration grades using
the Pfirrmann grading system. A training set (1,830 samples of 305 patients)
and an independent test set (780 samples of 130 patients) were divided for the
construction and validation of the machine learning model, respectively. We
provided a fine-tuned MedSAM model for automated cervical disc
segmentation. Then, we extracted 924 radiomic features from each
segmented disc in T1 and T2 MRI modalities. All features were processed and
selected using minimum redundancy maximum relevance (mRMR) and multiple
machine learning algorithms. Meanwhile, the radiomics models of various
machine learning algorithms and MRI images were constructed and compared.
Finally, the combined radiomics model was constructed in the training set and
validated in the test set. Radiomic feature mapping was provided for auxiliary
diagnosis.

Results: Of the 2,610 cervical disc samples, 794 (30.4%) were classified as low
grade and 1,816 (69.6%) were classified as high grade. The fine-tuned MedSAM
model achieved good segmentation performance, with themean Dice coefficient
of 0.93. Higher-order texture features contributed to the dominant force in the
diagnostic task (80%). Among various machine learning models, random forest
performed better than the other algorithms (p < 0.01), and the T2 MRI radiomics
model showed better results than T1 MRI in the diagnostic performance (p < 0.05).
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The final combined radiomics model had an area under the receiver operating
characteristic curve (AUC) of 0.95, an accuracy of 89.51%, a precision of 87.07%, a
recall of 98.83%, and an F1 score of 0.93 in the test set, which were all better than
those of other models (p < 0.05).

Conclusion: The radiomics-based decision support tool using T1 and T2 MRI
modalities can be used for cervical disc degeneration grading, facilitating
individualized management.

KEYWORDS

cervical disc degeneration, magnetic resonance imaging, radiomics, machine learning,
quantitative image analysis

1 Introduction

Neck pain is a highly prevalent musculoskeletal condition and
the fourth leading cause of disability that has become a serious
public health issue worldwide, imposing an enormous burden on
patients, healthcare system, and the economic structure of countries
(Cohen, 2015; Cohen and Hooten, 2017). According to the Global
Burden of Disease 2017 study, the number of prevalent cases of neck
pain was 288.7 million, and there has been a substantial increment in
the past 3 decades (Safiri et al., 2020). A recent study reported that
the annual cost for the treatment of neck pain and low back pain was
estimated to be $134.5 billion in the US, ranking first in terms of
healthcare spending (Dieleman et al., 2020). Despite its high
prevalence and the huge burden imposed on society, it receives
relatively less research attention compared to low back pain (Cohen,
2015).

Similar to low back pain, a widely recognized contributor to neck
pain is the degeneration of the cervical intervertebral disc (Fujimoto
et al., 2012; Risbud and Shapiro, 2014; Theodore, 2020). The
intervertebral disc comprises the peripherally located annulus
fibrosus (AF), interior gel-like nucleus pulposus (NP), and
cartilaginous endplates (CEPs), interposing between the two
adjacent vertebral bodies and acting as the shock absorber of the
spine. The most physiologically important degenerative changes in
the intervertebral disc commence in NP and are usually
characterized as decreased water content and loss of disc height,
accompanied with the decreased yield strength of AF (Antoniou
et al., 1996; Ferrara, 2012). These degenerative changes may alter
biomechanical transfer and sensitize the nociceptive nerve fibers in
the annulus and nucleus pulposus, which leads to disc herniation,
nerve compression, and discogenic pain (Binch et al., 2015; Khan
et al., 2017; Theodore, 2020). T2-weighted magnetic resonance
imaging (MRI) is the most used imaging modality in the
diagnosis of cervical degenerative disc disease (CDDD) due to its
superiority in detecting the shape of the intervertebral disc and the
water content of NP (Farshad-Amacker et al., 2015). Currently, the
most widely used MRI classification system for intervertebral disc
degeneration is based on the structure and signal intensity of the disc
and the distinction of the nucleus and annulus as proposed by
Pfirrmann et al. (2001). While each grade of disc degeneration is
clearly defined in this system, it is still a laborious and time-
consuming task and highly dependent on the expertise of
radiologists and surgeons in clinical practice. The accurate and
rapid automated classification of cervical disc degeneration on
MRI remains a challenge.

Radiomics and deep learning (DL) approaches have proven to be
effective methods for medical image analysis and obtained
significant advances in the field of musculoskeletal system disease
in recent years (Leung et al., 2020; von Schacky et al., 2020; Huang
et al., 2020; Won et al., 2020; Gao et al., 2021; Goedmakers et al.,
2021; Bayramoglu et al., 2021; Wang et al., 2022; Hallinan et al.,
2021; Niemeyer et al., 2021; Zheng et al., 2022; Abdullah and
Rajasekaran, 2022; Gebre et al., 2022). Swiecicki et al. (2021)
proposed an automated DL model to evaluate the severity of
knee osteoarthritis using knee radiographs according to the
Kellgren–Lawrence grading system. Gebre et al. (2022) developed
and compared DL models to detect hip osteoarthritis on clinical
computer tomography (CT). Hallinan et al. (2021) developed a DL
model for the automated detection and classification of central
canal, lateral recess, and neural foraminal stenosis in the lumbar
spine using sagittal and axial MRI. Several studies reported the
feasibility of automated grading of lumbar disc degeneration based
on MRI (Gao et al., 2021; Niemeyer et al., 2021; Zheng et al., 2022).
Gao et al. (2021) proposed a push–pull regularization strategy to
improve the convolutional neural network representation capability
for intervertebral disc grading and demonstrated its superior
performance. Niemeyer et al. (2021) presented a novel DL-based
system for automatically evaluating lumbar disc degeneration
according to Pfirrmann grading based on T2-weighted MRI
slices, which achieved overall superior reproducibility compared
with human interrater. Zheng et al. (2022) developed a segmentation
network and a quantitation method to evaluate lumbar
intervertebral disc degeneration and calculate the signal intensity
and geometric features of disc degeneration. However, there is still a
paucity of studies reporting the automated classification of cervical
disc degeneration on MRI. The much smaller size of the cervical
intervertebral disc compared to the lumbar disc and various
anatomical morphologies and MRI signal intensities may increase
the difficulty of automatic classification of cervical disc
degeneration. The Segment Anything Model (SAM), as a vision
foundation model, has shown significant advantages in zero-shot
and few-shot segmentations in medical imaging (Cheng et al., 2023;
Kirillov et al., 2023; Shi et al., 2023), and many studies have
embedded it into the development process (Ma et al., 2023;
Mazurowski et al., 2023). Zero-shot or few-shot learning implies
that with no or a small amount of data, it is possible to use or fine-
tune the foundation model to perform exceptionally well in specific
downstream tasks. This addresses real-world challenges like limited
clinical data or a lack of annotated data. Here, we can consider using
the SAM-based DL model to achieve rapid cervical disc
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segmentation and develop classification diagnosis algorithms on this
basis.

Therefore, in this study, we aimed to develop and validate an
MRI-based radiomics decision support tool for a personalized
classification of cervical intervertebral disc degeneration
according to the Pfirrmann scheme (Pfirrmann et al., 2001). To
the best of our knowledge, this is the first study to develop the
radiomics-based automated classification system for the
intervertebral disc degeneration of the cervical spine. The
imaging difference of discs with different degeneration grading
scores may contribute to the understanding of the mechanisms
underlying the onset and progression of disc diseases.

2 Materials and methods

2.1 Ethics and study design

The study was conducted in accordance with the Declaration of
Helsinki (as revised in 2013). This retrospective study was approved
by the Ethics Committee of Biomedical Research, West China
Hospital (2021-1490). Written informed consent was waived
owing to the retrospective nature of data collection (age/gender)
and the use of de-identified MRI images.

Figure 1 shows the workflow of the study. A total of
2,610 cervical disc samples of 435 patients were retrospectively
analyzed. Each patient underwent both T1 and T2 MRI
modalities. Each patient had six intercalated discs (C2/3, C3/4,
C4/5, C5/6, C6/7, and C7/T1) on the image, which were all semi-
automatically segmented using a deep learning-embedded

segmentation tool. Then, a fine-tuned MedSAM model was
developed for automated disc segmentation. Meanwhile, the
grading classification of cervical disc degeneration was performed
using the Pfirrmann grading system. Based on the segmented
regions of interest (ROIs), i.e., every disc, we extracted the high-
throughput radiomic features including shape and first-order
features, second-order texture features, and higher-order texture
features. Then, we performed the diagnosis performance
comparison between different machine learning algorithms and
MRI images. Finally, through comparison, the optimal combined
radiomics model was developed in the training set and validated in
the test set.

2.2 Study population

A total of 452 consecutive patients aged between 18 and 95, forwhom
cervical MRI was prescribed for medical reasons, were scanned between
2019 and 2021 at theWest China Hospital of Sichuan University and the
First People’s Hospital of Longquanyi District using either Siemens 3.0T
scanners. Overall, 17 patients were excluded for the following reasons: 1)
incomplete image of the cervical spine (n = 14) and 2) insufficient MRI
quality (n = 3). Finally, 435 patients were retrospectively collected in this
study. The inclusion and exclusion flowchart of the study population is
shown in Figure 2.

The data were randomly divided into a training set (1,830 study
samples of 305 patients) and a test set (780 study samples of 130 patients)
according to the ratio of 7:3. The radiomics analysis, feature selection,
and model development were implemented in the training set, and then
the related radiomics models were validated in the test set.

FIGURE 1
Study workflow overview. Workflow includes (A) data acquisition, (B) segmentation and grading, and (C) radiomics analysis, modeling, and
validation. MRI, magnetic resonance imaging; ROIs, regions of interest; AUC, area under the receiver operating characteristic curve; XGBoost, eXtreme
Gradient Boosting.
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2.3 MRI data acquisition

All MRI examinations were performed on a 3.0T MRI system
(MAGNETOM Skyra, Siemens, Germany and Discovery 750w, GE,
United States) with a phased-array body surface coil. The imaging

protocol was the same for all patients. Images were acquired with a
sagittal T2-weighted spin echo sequence with the following
parameters: repetition time (TR), 3,064–6,220/3,675–4,200 msec;
echo time (TE), 102–104/74 msec; matrix, 288 × 224/128 × 128;
field of view (FOV), 256 × 256 mm2; slice thickness, 3.6/3.6 mm; and

FIGURE 2
Inclusion flowchart of the study population. MRI, magnetic resonance imaging; N, the number of patients; M, the number of cervical discs.

TABLE 1 Clinical characteristics of the study population.

Characteristic Full (N = 435) Training set (N = 305) Test set (N = 130)

Age (years)

Mean ± 47.66 47.63 47.74

SD 12.87 12.91 12.79

Gender

Male 298 (68.5%) 213 (69.8%) 85 (65.4%)

Female 137 (31.5%) 92 (30.2%) 45 (34.6%)

Cervical disc samples 2,610 1,830 780

Degeneration grading

Low grade 794 (30.4%) 527 (28.8%) 267 (34.2%)

High grade 1,816 (69.6%) 1,303 (71.2%) 513 (65.8%)

SD, standard deviation.
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intersection gap, 2 mm. T1-weighted MRI was acquired with the
following parameters: an inversion time of approximately 400 ms,
resolution at 0.8*0.8*0.4 mm, 25 slices in 3 min 20 s, and single-shot
mode with an echo train length (ETL) of 230.

2.4 Fine-tuned MedSAM segmentation
model

We segmented the cervical discs from T1 and T2MRImodalities
separately. Six discs (C2/3, C3/4, C4/5, C5/6, C6/7, and C7/T1) were
segmented as the independent study samples. First, ROI
segmentation was performed by two orthopedic radiologists with
approximately 5 years of experience by using Pair software (https://
www.aipair.com.cn/en/, Version 2.7, RayShape, Shenzhen, China),
which embedded deep learning algorithms and trained
segmentation models inside (Liang et al., 2022). The final
segmentation results were checked and modified by a third
radiologist with more than 10 years of experience. By using the
DL-based segmentation tool, the work efficiency had been
significantly improved.

For achieving fast automated segmentation of discs, we
provided a disc segmentation model by fine-tuning the
MedSAM model (Ma et al., 2023) based on real results. The
image encoder and box prompt encoder were frozen, and the
mask encoder was re-trained for the task. Here, we only fine-
tuned the MedSAM model on 64 MRI data with real
segmentation, and the fine-tuned MedSAM model was
evaluated in other datasets. The Dice coefficient was used to
evaluate the segmentation performance.

2.5 Disc degeneration grade assessment

The disc degeneration grade assessment was assessed by an
experienced orthopedic radiologist, according to the Pfirrmann
guideline, conducted by Pfirrmann et al. (2001). The grading system
was performed on T2 MRI, and all the discs were classified into five
grades (grade 1–5). To facilitate clinical portable use and promote clinical
decision-making, we classified grades 1 and 2 as low-grade disc
degeneration and grades 3, 4, and 5 as high-grade (Pfirrmann et al.,
2001). Based on the gold standard grading results, the radiomics models
were developed using supervised learning in the subsequent experiments.

2.6 Radiomics analysis, modeling, and
validation

Radiomics analysis was implemented using the PyRadiomics library
(https://www.radiomics.io/pyradiomics.html, version 3.0.1), which was a
commonly used tool for radiomics development (van Griethuysen JJM
et al., 2017). The image preprocessing setting followed the previous work
(Dong et al., 2022). Then, a total of 924 radiomic features were
quantified, including shape and first-order features (n = 32), second-
order texture features (n = 73), and higher-order texture features (n =
819). The second-order texture features were calculated using the gray-
level co-occurrence matrix (glcm), gray-level run-length matrix (glrlm),
gray-level size-zone matrix (glszm), gray-level dependence matrix
(gldm), and neighboring gray-tone difference matrix (ngtdm). The
higher-order texture features were quantified using the Laplacian of
Gaussian (LoG) and wavelet transformation. The details of radiomic
features can be seen in PyRadiomics documentation (https://

FIGURE 3
Fine-tuned MedSAM segmentation results. (A–D) Four disc segmentation examples. The left side is the real segmentation manually labeled by the
doctors, and the right side is the prediction results obtained using MedSAM. The blue bounding box indicates the prompt input, and the yellow area
indicates the segmentation results. DSC, Dice similarity coefficient.
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pyradiomics.readthedocs.io/en/latest/index.html). Most of them follow
the image biomarker standardization initiative (IBSI).

For the important feature selection, minimum redundancy
maximum relevance (mRMR) was performed, which was a
minimal-optimal feature selection method for finding the
smallest relevant feature subset (Zhao et al., 2019). mRMR was
used for feature selection in many radiomics studies in recent years
(Xie et al., 2021; Hou et al., 2022; Yang et al., 2022).

Here, we defined a machine learning pipeline for model
construction and selection. Through mRMR feature selection, the
top 10 features were selected for further modeling. For imbalance
processing, an adaptive synthetic (ADASYN) algorithm, as a valuable
oversampled method in radiomics (Han et al., 2023), was performed to
balance the training data. Then, the logistic regression, decision tree,
random forest, eXtreme Gradient Boosting (XGBoost), and support
vector machine (SVM) were implemented for model construction and
comparison. Here, all the machine learning hyperparameter
optimization (HPO) was performed using Bayesian optimization,
which was the state-of-the-art HPO algorithm (Yang and Shami,
2020). All the models were built in the training set and evaluated in
the test set. The performance difference between different machine
learning models was evaluated in all sets.

By using the machine learning pipeline, the optimal radiomics
models were confirmed on T1 and T2 MRI modalities. Finally, we

combined the selected T1 and T2 radiomic features and built the
combined radiomics model in the training set. The final radiomics
model was validated in the test set.

2.7 Statistical analysis

All statistical analyses and machine learning algorithms were
performed using SPSS (version 25; IBM Corporation) and Python
(version 3.8). The Mann–Whitney U test and chi-squared test were
implemented for continuous and count variables, respectively. The
diagnostic performance was evaluated using the receiver operating
characteristic (ROC) curve and AUC. The difference between
machine learning models was evaluated using the DeLong test.
p-value <0.05 was considered significantly different.

3 Results

3.1 Clinical characteristics

The clinical characteristics of the study population in the
training and test sets are shown in Table 1. There was no
significant difference in the two datasets. In the training set,

TABLE 2 Top 10 radiomic features on T1 and T2 MRI modalities.

MRI Transformation Feature type Radiomic feature

T1 log-sigma-5-0-mm First-order Kurtosis

wavelet-HH ngtdm Busyness

original First-order 10 percentile

wavelet-HH glcm IMC1

log-sigma-5-0-mm First-order Minimum

log-sigma-1-0-mm First-order Skewness

log-sigma-4-0-mm First-order 10 percentile

original Shape Maximum 2D Diameter Row

wavelet-HH glrlm Run variance

wavelet-LL First-order Kurtosis

T2 log-sigma-5-0-mm First-order Kurtosis

log-sigma-2-0-mm glszm Gray-level non-uniformity

wavelet-LL glcm Cluster prominence

original glszm Large area low gray-level emphasis

wavelet-HL glcm IMC1

log-sigma-2-0-mm First-order Skewness

original Shape Maximum 2D diameter column

wavelet-LL glcm Correlation

log-sigma-3-0-mm glrlm Long run low gray-level emphasis

log-sigma-5-0-mm gldm Dependence variance

Log, Laplacian of Gaussian; ngtdm, neighboring gray-tone difference matrix; glcm, gray-level co-occurrence matrix; glrlm, gray-level run-length matrix; glszm, gray-level size-zone matrix;

gldm, gray-level dependence matrix; IMC1, informational measure of correlation 1.
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1,303 (71.2%) were defined as the high-grade disc degeneration. Of
the test set, 513 (65.8%) disc samples were defined as high grade.

3.2 MedSAM segmentation

The fine-tuned MedSAM count achieved the mean Dice coefficient
of 0.93 ± 0.04. Figure 3 provides four examples of MedSAM
segmentation, which all showed the good segmentation performance.
When using the fine-tuned MedSAM model, the doctor only needs to
roughly give a bounding box (like the blue box), and our model can
achieve accurate disc segmentation (the yellow area).

3.3 Radiomic feature discovery

Table 2 shows the top 10 radiomic features in the T1 and T2MRI
modalities. All the features were selected using mRMR. Most of
them were higher-order texture features (N = 16, 80%), including
LoG and wavelet transform features. Of the feature type, first-order
(N = 8, 40%) and glcm (N = 4, 20%) were the dominant factors.
Compared with T1 and T2 radiomic features, we observe that the
key features were relatively similar. In particular, the kurtosis feature
appeared three times, and the kurtosis of log-sigma-5.0-mm first-
order feature was the highest ranked radiomic feature in both MRI
modalities.

FIGURE 4
ROC curves of different radiomics models in T1 and T2 MRI modalities. (A,B) ROC curves of radiomics models using T1 MRI in the training and test
sets. (C,D) ROC curves of radiomics models using T2 MRI in the training and test sets. ROC, receiver operating characteristic; AUC, area under the ROC
curve; XGBoost, eXtreme Gradient Boosting.
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3.4 Diagnostic performance across T1 and
T2 MRI modalities

The radiomics models of various machine learning algorithms
and MRI images were constructed and compared (Figure 4). In all
the modes, random forest obtained the higher diagnostic
performance than other machine learning algorithms (AUC =
0.82, p < 0.01, T1 test set; AUC = 0.91, p < 0.01, T2 test set).
The performance of T2 MRI was significantly higher than T1 MRI
(p < 0.05).

3.5 Diagnostic performance of the
combined radiomics model

After confirming the selected radiomic features and random
forest modeling method, the final combined radiomics model was
constructed and evaluated. Figure 5 shows the ROC curves of the
combined model. The AUC of the training ROC was 0.98 and the
test AUC was 0.95. Table 3 shows the diagnostic performance
between the final T1, T2, and combined radiomics models. The
combined model had the accuracy of 89.51%, the precision of

87.07%, the recall of 98.83%, and the F1 score of 0.93 in the test
set, which was better than those of other models (p < 0.05).

3.6 Radiomic feature mapping

Here, in order to provide the visualization tools that are easy to
use clinically, the radiomic feature maps are provided (Figure 6).
Only the top three feature maps of the two modalities were used to
aid in diagnosis, enabling some mode differences to be seen on these
virtual medical imaging through the comparison of low- and high-
grade disc degeneration.

4 Discussion

There is still a paucity of studies reporting the automated
grading of cervical disc degeneration on MRI. In clinical practice,
the automated decision support tool to intelligently grade disc
degeneration through MRI will greatly assist physicians in
individualized patient management. In this study, we developed
and validated an MRI radiomics-based cervical disc degeneration
grading method, which can automatically segment the disc ROIs,
extract valuable radiomic features, and predict the degeneration
grades, showing a high diagnostic performance (AUC = 0.98 in the
training set; AUC = 0.95 in the test set).

We found that both T1 and T2 MRI modalities showed good
diagnostic results, although T2 showed higher performance than T1.
To the best of our knowledge, T2 MRI is the most used MRI
modality in the diagnosis of cervical degenerative disc disease
(Farshad-Amacker et al., 2015), and many studies developed AI
models only based on T2 MRI (Gao et al., 2021; Zheng et al., 2022).
Our study showed that even though T1 MRI was macroscopically
difficult to use directly for disc grading, it was still possible to
construct the diagnostic model with good performance through
radiomics and machine learning methods. By integrating the
valuable information in T1 and T2, the performance of the
combined model will significantly be improved, which may have
some positive hints for clinical practice.

For the valuable radiomic features, higher-order texture features
showed the dominant force, which was consistent with the findings
of previous studies (Jiang et al., 2022a; Jiang et al., 2022b). Texture
features can adequately characterize the heterogeneous information
between tumors or inflammation (Alobaidli et al., 2014; Song et al.,
2023), and the higher-order transformations (wavelet, LoG,
convolutional neural network, etc.) may have the potential to
further enhance the expression of this heterogeneity, contributing

FIGURE 5
ROC curve of the combined radiomics model. ROC, receiver
operating characteristic; AUC, area under the ROC curve.

TABLE 3 Diagnosis performance of the final radiomics models.

Model Training set Test set

Accuracy (%) Precision (%) Recall (%) F1 Accuracy (%) Precision (%) Recall (%) F1

T1 MRI 94.95 94.07 99.15 0.96 80.72 79.13 96.28 0.87

T2 MRI 93.96 93.73 98.07 0.95 85.89 83.75 97.66 0.90

Combined 94.94 94.38 98.76 0.97 89.51 87.07 98.83 0.93
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to the diagnostic performance (Jiang et al., 2022a; Jiang et al., 2022b).
The mRMR, ADASYN, and Bayesian optimization algorithms also
showed the excellent selection performance in radiomics analysis,
which is consistent with the findings of Xie et al. (2021), Hou et al.
(2022), Wang et al. (2023), and Wu et al. (2023).

Here, we also provided the radiomic feature maps for the
classification of cervical disc degeneration (Figure 5). We can still
visualize relatively well the differences in patterns between low- and
high-grade degeneration, especially the log-sigma-5.0-mm first-
order kurtosis. However, in fact, the difference in this virtual
imaging was not very significant, and it was still difficult to be
used as an independent imaging biomarker that gives clinicians a
direct and significant indication. However, to a certain extent, the
imaging difference of discs with different degeneration grading
scores may help understand the mechanisms underlying the
onset and progression of disc diseases.

In the study, we used each cervical disc as an independent study
sample, and all six different cervical discs in each person were mixed
to perform the modeling analysis. The better diagnostic
performance showed that the different cervical discs could be
identified basically using the same mode. In addition, the gold
standard for Pfirrmann assessment usually classifies discs into
five categories, and for the purpose of clinical decision-making
we have used only two classifications: low grade (grades 1 and 2)

and high grade (grades 3, 4, and 5). In future studies, we will further
expand the amount of data to build clinical tools for automatic
segmentation and five-category diagnosis. Moreover, we will also
consider other clinical grading criteria (Adams and Dolan, 2012;
Wáng, 2018) and compare the performance differences between
machine learning models built under different criteria.

There are also some limitations to the study. First, as a
retrospective study, there was no clinical information enrolled.
Perhaps adding the broader range of clinical factors could further
enhance the performance of the model. Second, although it was a
two-center study, there was still a need to further expand the
validation of independent center data for the decision support
tool to be further promoted and validated. Therefore, a larger
multi-center study is needed.

5 Conclusion

In conclusion, we demonstrated that the radiomics-based
decision support tool by integrating T1 and T2 MRI modalities
can be used for a personalized classification of cervical disc
degeneration, showing the robust diagnostic performance, and
may aid in clinical decision-making and individualized
management.

FIGURE 6
Radiomic feature maps for the classification of cervical disc degeneration. (A) Low-grade cervical disc and (B) high-grade cervical disc. Log,
Laplacian of Gaussian; ngtdm, neighboring gray-tone difference matrix; glszm, gray-level size-zone matrix; GLNU, gray-level non-uniformity; glcm,
gray-level co-occurrence matrix.
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