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Calcium influx through plasma membrane ion channels is crucial for many events
in cellular physiology. Cell surface stimuli lead to the production of inositol 1,4,5-
trisphosphate (IP3), which binds to IP3 receptors (IP3R) in the endoplasmic
reticulum (ER) to release calcium pools from the ER lumen. This leads to the
depletion of ER calcium pools, which has been termed store depletion. Store
depletion leads to the dissociation of calcium ions from the EF-hand motif of the
ER calcium sensor Stromal Interaction Molecule 1 (STIM1). This leads to a
conformational change in STIM1, which helps it to interact with the plasma
membrane (PM) at ER:PM junctions. At these ER:PM junctions, STIM1 binds to
and activates a calcium channel known as Orai1 to form calcium release-activated
calcium (CRAC) channels. Activation of Orai1 leads to calcium influx, known as
store-operated calcium entry (SOCE). In addition to Orai1 and STIM1, the
homologs of Orai1 and STIM1, such as Orai2/3 and STIM2, also play a crucial
role in calcium homeostasis. The influx of calcium through the Orai channel
activates a calcium current that has been termed the CRAC current. CRAC
channels form multimers and cluster together in large macromolecular
assemblies termed “puncta”. How CRAC channels form puncta has been
contentious since their discovery. In this review, we will outline the history of
SOCE, the molecular players involved in this process, as well as the models that
have been proposed to explain this critical mechanism in cellular physiology.
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Introduction

Calcium is a crucial secondary messenger that serves a multitude
of functions ranging from subcellular signaling to organ system-level
changes. It serves many roles in biological processes, including
growth, disease, and death (Berridge et al., 2000; Carafoli, 2002;
Clapham, 2007). Calcium levels in the cytosol are maintained at
~100 nM in many ways, including calcium pumps and exchangers on
the plasma membrane and various organelles. The extracellular
calcium concentration is 1–1.5 mM (Clapham, 2007). The calcium
ion gradient across the plasma membrane (PM) is maintained by
calcium efflux pumps and ion channels, in addition to calcium
reuptake mechanisms in ER. Sarco-endoplasmic reticulum calcium
ATPase (SERCA) pumps use an active transport mechanism to move
calcium across the concentration gradient from the cytosol into the ER
lumen (Hasselbach and Makinose, 1961; Ebashi and Lipmann, 1962).
Upon cellular stimulation by agonist actions at plasma membrane
receptors, a multitude of signaling cascades starts that lead to the
production of inositol 1,4,5-trisphosphate (IP3) due to phospholipase-
C-mediated cleavage of membrane phosphatidylinositol 4,5-
bisphosphate (PIP2) (Rhee, 2001). Once produced, IP3 binds to
and activates the IP3 receptors (IP3Rs) on the ER membrane to
promote calcium release from the ER lumen into the cytosol. This
decrease in calcium levels in the ER leads to intracellular calcium store
depletion (Parekh and Penner, 1997). Store depletion leads to the
activation of an ER transmembrane protein known as stromal
interaction molecule 1 (STIM1), which then binds to
Orai1 channels on the plasma membrane to promote store-
operated calcium entry (SOCE) (Parekh and Penner, 1997; Parekh
and Putney, 2005). The channel formed by Orai1 and STIM1 is
known as the calcium release-activated calcium (CRAC) channel. A
general overview of SOCE is presented in Figure 1.

Store-operated calcium entry is a predominant mechanism for
calcium entry from the extracellular milieu to increase cytosolic
calcium after store depletion. It also serves to refill the ER calcium
stores after IP3-mediated calcium release (Negulescu and Machen,
1988; Jousset et al., 2007). The most important role SOCE plays is a
sustained calcium entry that can last from several seconds to up to an
hour in some cellular systems (Cheng et al., 2011; Quintana et al.,
2011). One specific case where this differential role of calcium entry
plays a crucial role is the activation of T cells. The activation of
nuclear factor of activated T cells (NFAT), which regulates IL-2
production, a sustained calcium entry is needed, which lasts for
several minutes (Hogan et al., 2003). While for activation of NF-ΚB,
calcium oscillations of lower frequency from Orai1 channels are
required. Finally, CaMKII, a calcium sensitive kinase, needs calcium
oscillations of higher frequency for its activation. Thus, cellular
functions regulated by calcium are mediated by changes in both
frequency and amplitude (Smedler and Uhlen, 2014). Calcium entry
from the plasma membrane is essential for shaping the
spatiotemporal aspects of calcium transients, including the
amplitude and duration of calcium release events. Calcium entry
contributes to many cellular functions such as secretion, gene
transcription, and enzyme activation. Efficient SOCE requires the
formation of multiple Orai1-STIM1 complexes at defined ER:PM
junctions known as “puncta” (Wu et al., 2006; Liou et al., 2007; Barr
et al., 2008; Penna et al., 2008). A key difference between CRAC
channels and other calcium channels such as voltage or ligand gated
ion channels is their ability to conduct calcium currents at resting
membrane potentials without ligand binding (Lewis and Cahalan,
1989). This property allows CRAC channels to be gated in non-
excitable cells by exclusively by binding to STIM1. This facilitates
precise spatiotemporal regulation of cellular calcium signaling by
store depletion.

FIGURE 1
General overview of store-operated calcium entry (SOCE). Agonist stimulation through the PLC-coupled receptors leads to IP3-mediated calcium
release which leads to ER calcium store depletion. As a result, calcium dissociates from the EF-hand of STIM1 and leads to its activation. This leads to a
conformation change in STIM1 which extends its C-terminus toward plasma membrane where it binds to Orai1 channels and form calcium release-
activated calcium (CRAC) channels. CRAC channels promote calcium entry from extracellular milieu into the cells. One subunit of STIM1 dimer is
shown here for simplicity.
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In this review, we look at the historical origins of SOCE and
summarize a few landmark studies that established the
characteristics of SOCE. We will delve into the proteins that
form the CRAC channel complex, such as Orai1 and STIM1, and
how these proteins are regulated. In addition to STIM1, STIM2 is
another member of ER resident calcium sensor that promotes
SOCE. Orai2 and Orai3 are genes in the Orai family with Orai1.
Proteins outside these two families such as TRP channels also play a
role in SOCE. Finally, we will also review the effect of SOCE-
associated regulatory factor (SARAF) and role it plays in SOCE.
SARAF promotes calcium dependent inactivation, but how it
functions as an inactivator of SOCE is not well known. Our
review outlines the key modulators of SOCE. We will conclude
with a discussion of very recent work indicating the protein
S-acylation is a key mediator of CRAC channel assembly and
function.

History of SOCE

The earliest known proposal for SOCE was introduced by the
Putney group in 1985 as outlined by their model for receptor-
regulated calcium entry, in which they proposed the mechanism for
sustained calcium entry from extracellular matrix upon agonist
binding to G-protein coupled receptors (Putney, 1986). Termed
as the capacitive calcium entry model, they carefully analyzed the
calcium release from the ER and entry from extracellular milieu, and
the coupling between these two processes. A few years later, Hoth
and Penner identified a similar inward rectifying calcium current in
mast cells upon depletion of intracellular calcium stores using IP3
(Hoth and Penner, 1992). Zweifach and Lewis then showed store
depletion in T cells leads to a similar calcium current using
thapsigargin, a SERCA pump inhibitor (Zweifach and Lewis,
1993). Later, studies published by Liou et al., and Roos J et al.,
identified STIM proteins as sensors of ER luminal calcium (Liou
et al., 2005; Zhang et al., 2005). A year later, studies by Feske et al.
showed how a mutation in Orai1 protein causes immune deficiency
by affecting SOCE (Feske et al., 1996). Other studies during this
same period also showed Orai1 is crucial for SOCE (Vig et al.,
2006b). A genome wide RNAi screen in drosophila S2 cells showed
the role of both Orai1 and STIM1 in SOCE. They demonstrated that
RNAi of olf186-f, the drosophila Orai1 homologue, reduced
thapsigargin-evoked SOCE, which was improved by 3-fold upon
its overexpression. In addition, co-expression of STIM with olf186-f
increased SOCE by approximately 8-fold (Gwack et al., 2006;
Yeromin et al., 2006). These seminal studies identified the key
regulatory proteins involved in SOCE. What followed is an
expansion of studies involving Orai and STIM proteins and their
role in CRAC channel formation to promote SOCE.

IP3-mediated calcium release

Cleavage of membrane phospholipids by phospholipase C
(PLC) leads to the production of IP3 and diacylglycerol (Rhee,
2001). Liberated IP3 binds to IP3 receptor calcium channels on
ERmembranes and leads to calcium efflux from the ER lumen (Streb
et al., 1983). Depending on the strength and duration of agonist

stimulation, IP3R activation leads to a decrease inf calcium levels in
the ER lumen which is termed store depletion (Streb et al., 1983;
Parekh and Penner, 1997). The role of IP3 in activating calcium
release from the endoplasmic reticulum was initially discovered by
experiments by the Berridge group in blowfly salivary glands based
on the ability of those tissues to respond to hydrolysis of PIP2
(Berridge and Irvine, 1984). Subsequently, the role of IP3 as a
secondary messenger was to mobilize internal calcium stores in
mammalian cells was demonstrated in saponin-permeabilized
hepatocytes (Joseph et al., 1984). Application of IP3 led to a brief
rise in intracellular calcium levels followed by a sustained calcium
plateau (Joseph et al., 1984). Capacitive calcium entry was the first
model proposed to explain the calcium entry observed in cells upon
emptying intracellular calcium pools (Putney, 1986). This idea
originated from the observation that calcium entry from the
extracellular milieu lasted for a long duration after the levels of
IP3 returned to the baseline. These observations were made in rat
parotid gland upon carbachol (Aub et al., 1982) application, and
rabbit ear artery upon application of noradrenaline (Casteels and
Droogmans, 1981). Based on the biphasic nature of agonist-induced
increase in the cytosolic calcium, it was proposed that the initial
increase is a result of calcium release from the ER due to the action of
IP3 followed by influx of calcium through channels in the plasma
membrane until the levels of calcium in the ER reaches to a
significant level that stops the entry (Putney, 1986).

CRAC channel characterization and models
of activation

An effort to accurately define the mechanism of SOCE and to
distinguish it from other calcium currents led to further research
into the channels underlying these currents. CRAC channels
conduct calcium currents at a negative membrane potential. The
voltage independence of CRAC channel gating was first observed in
patch recordings conducted on Jurkat T cells treated with various
cell mitogens such as phytohaemagglutinin (PHA), a substance
known to activate T-cell signaling pathway (Lewis and Cahalan,
1989). A similar current was also observed in these cells recorded in
low extracellular calcium. In a separate set of experiments conducted
in mast cells, intracellular dialysis with IP3 and extracellular
application of substance P generated a similar low-noise current
(1–2 pA) in patch-clamp recordings (Penner et al., 1988; Matthews
et al., 1989). This current developed in these cells with a concomitant
increase of intracellular calcium. The currents observed by both
groups showed similar features such as inward rectifying current-
voltage relationship, voltage-independent gating, very high calcium
selectivity, an extremely low unitary conductance, and extracellular
calcium-dependent feedback inhibition.

The discovery of thapsigargin as a potent, selective, and
irreversible SERCA pump inhibitor helped in delineating the
difference between CRAC currents and other calcium currents
(Thastrup et al., 1989). Thapsigargin promotes a slow calcium
leak from the ER lumen into the cytosol, and thereby passively
depletes ER calcium stores, possibly through the Sec61 translocon
on the ER membranes (Van Coppenolle et al., 2004). In addition,
the development of calcium sensitive fluorescent dyes made live-
calcium imaging feasible without the need for electrophysiological
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recordings (Grynkiewicz et al., 1985). One established model of
isolating SOCE currents using calcium-sensitive dyes involves
depletion of ER calcium stores by treatment with thapsigargin in
calcium-free buffer. Subsequent treatment of these cells with
calcium replete buffer results in calcium entry from extracellular
milieu which can easily be monitored using microscopy in live cells.
Using this methodology, along with other imaging paradigms, many
groups have reported SOCE in both excitable and non-excitable
cells. It was discovered that PLC-mediated IP3 production was
dispensable for SOCE (Gouy et al., 1990; Mason et al., 1991;
Sarkadi et al., 1991). A seminal observation made in parotid
acinar cells using thapsigargin to deplete stores garnered evidence
that the ER calcium store levels and activate SOCE independently of
IP3 production (Takemura et al., 1989). A subsequent set of
experiments done on T cells using thapsigargin established the
role of ER calcium store depletion and T-cell activation. The
term ICRAC was coined by Hoth and Penner after identifying
calcium currents in whole cell currents elicited by a number of
agents such as ionomycin, IP3, and EGTA (Hoth and Penner, 1992).
The crucial experiments conducted by Lewis and others using
perforated-patch clamp and thapsigargin in T cells showed the
similarity between TCR-mediated calcium currents and CRAC
currents (Zweifach and Lewis, 1993; Fanger et al., 1995; Serafini
et al., 1995). These studies led to the definitive conclusion that
CRAC currents are controlled by intracellular ER calcium stores.

Hypotheses for CRAC channel activation

The research into how ER calcium depletion leads to CRAC
channel activation led to three main hypotheses: 1) diffusion of an
activating factor released from the ER to the plasma membrane, 2)
targeting of active CRAC channels to the PM by membrane fusion,
and 3) conformational coupling between a putative ER calcium
sensor and a PM calcium channel. Here we will discuss these
proposals in detail.

Calcium influx factor (CIF): The earliest proposal for a diffusible
mediator that is released from the ER into the cytosol and/or the
extracellular milieu to activate calcium influx was presented in early
1990s. Application of phytohaemagglutinin (PHA)-treated Jurkat
T cell extracts to P388D1 macrophage cells showed a sustained but
fluctuating calcium increase. A diluted version of the extract
decreased the amplitude and increased the latency of the calcium
flux (Randriamampita and Tsien, 1993). Interestingly, NG115-401L
cells did not show CIF-induced calcium entry (Thomas and Hanley,
1995). In later studies, it was shown that NG115-401L cells do not
express endogenous STIM1 (Zhang and Thomas, 2016). The
treatment of putative CIF-containing extracts with alkaline
phosphatase neutralized the effect of these extracts. These
observations led to a proposal where cellular stimulation leads to
the production of a diffusible factor that activates extracellular influx
of calcium (Parekh and Penner, 1997; Parekh and Putney, 2005).

Membrane fusion of active CRAC channels: It was found that
acid extracts from thapsigargin-treated Jurkat cells leads to a
chloride current in Xenopus oocytes (Thomas and Hanley, 1995).
Microinjection of Xenopus oocytes with the Rho GTPase inhibitor
clostridium C3 transferase potentiated a calcium entry current
termed ISOC. In addition, the expression of wild-type or

constitutively active Rho inhibited ISOC. Interestingly, botulinum
neurotoxin A and dominant negative SNAP-25 mutants activated
ISOC. Treatment of these cells with brefeldin A, an agent that blocks
exocytosis by inhibiting protein maturation and exit from Golgi
apparatus, has no effect on ISOC. Based on these results, Tsien and
others proposed the model where SOCE is mediated by exocytosis,
leading to CRAC channels being inserted into the plasmamembrane
(Yao et al., 1999).

Conformational coupling of an ER calcium sensor and a PM
calcium channel: The IP3 receptor has calcium binding sites in its
luminal domain. This calcium binding site on the IP3 receptor was
proposed to regulate calcium efflux from the ER into the cytosol
(Supattapone et al., 1988; Gill, 1989). Based on these observations, it
was proposed that the IP3R was a sensor for ER calcium levels. Upon
depletion of ER calcium stores, a cytosolic domain of the receptor
binds to the plasma membrane to promote calcium influx. In this
hypothesis, the IP3 receptor is the regulator of calcium homeostasis
in the cells, resulting in release from the ER lumen, as well as influx
from the extracellular milieu (Irvine, 1990). The role the IP3R plays
in this conformational coupling model is analogous to the role of
ryanodine receptors and dihydropyridine receptors in muscle cells
(Lee et al., 2004).

Identifying the mechanism(s) of CRAC channel activation
ultimately required the cloning and characterization of the
relevant calcium channel(s) activated by store depletion. In the
next section, we will discuss the putative role of transient receptor
potential (TRP) channels in mediating SOCE.

TRP channels as potential CRAC channels

Transient receptor potential (TRP) channels are ion channels
that show diverse ion selectivity, activation mechanisms, and
physiological functions. All TRP channels share some common
features such as six transmembrane domains, tetrameric
structure, cation selectivity, and sequence homology. The first
TRP channels were characterized in Drosophila visual
transduction mutants (Montell, 2001; Montell, 2005). The
Drosophila trp and trpl mutants have a significant decrease in
light-induced calcium influx (Cosens and Manning, 1969; Hardie
and Minke, 1992). Combined with other mutants in the PLC
pathway which also affected vision, it was hypothesized that trp/
trpl channels are putative SOCE channels. Cloning and
characterization of these channels showed that the protein
encoded by the trp gene localizes to the eye, contains four
N-terminal ankyrin repeats, and a transmembrane topology
similar to voltage-gated ion channels. (Montell et al., 1985;
Montell and Rubin, 1989). Whole cells currents recorded from
Sf9 insect cells showed the channels encoded by trp gene are
activated upon ER calcium store depletion and are moderately
selective for calcium over monovalent cations such as sodium
(PCa:PNa ~ 10:1) (Vaca et al., 1994).

Drosophila trp channels: In Drosophila, three TRPC members
are expressed in the eye that play an important role in
phototransduction. TRP, TRPL, and TRPγ are the three proteins
work in concert for successful operation of fly vision (Phillips et al.,
1992; Xu et al., 2000). TRPL and TRPγ have ~50% sequence identity
with TRP in the six TM domains, and only differ in the TRP domain,
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which contains highly conserved regions known as TRP boxes 1 and
2. Loss-of-function and dominant-negative mutations in Drosophila
TRPCs have demonstrated the importance of these channels in
calcium influx in photoreceptors of Drosophila upon light stimulus.
The trpl mutant flies affect the specificity of different cation influx
and a decreased response to light stimulus of long duration. In
addition, trp/trpl double mutant flies cannot respond to light,
showing the importance of these channels. Finally, TRPγ
heteromultimerizes with TRPL to form light-regulated channels,
and a dominant-negative form of TRPγ suppresses TRPL currents
(Niemeyer et al., 1996; Reuss et al., 1997; Leung et al., 2000; Xu et al.,
2000).

The Drosophila TRP can be activated in vitro by blocking the
SERCA (sarcoplasmic endoplasmic reticulum calcium ATPase)
pumps that maintain the calcium gradient between ER lumen
and cytosol (Phillips et al., 1992; Vaca et al., 1994). Thapsigargin
irreversibly blocks SERCA pumps and causes a passive ER calcium
leak, which will then activate store-operated calcium channels
(Thastrup et al., 1989; Thastrup et al., 1990). However, in vivo
observations do not support the in vitro analyses. Thapsigargin-
mediated SERCA blockade or IP3 receptor activation does not
promote calcium influx or affect phototransduction
(Ranganathan et al., 1994; Hardie, 1996; Hardie and Raghu,
1998). Some studies also evaluated the potential effect of
diacylglycerol, another product of PLC hydrolysis of PIP2, on
calcium influx and phototransduction. Isolated photoreceptor
cells from drosophila wild type and rdgA (DAG kinase) mutants
show constitutive TRP activity. Recently, endocannabinoids
produced in Drosophila photoreceptor cells in response to light
have been shown to activate TRP channels (Sokabe et al., 2022). In
addition, using flies engineered to express genetically encoded ER
calcium indicator, the sodium/calcium exchanger has been shown to
result in rapid calcium release from the ER upon light exposure (Liu
et al., 2020).

Mammalian TRP channels: The seven TRPC proteins in
mammals are divided into four groups based on sequence
homology (Wes et al., 1995; Zhu et al., 1995). Like Drosophila
TRPC proteins, the mammalian counterparts also include three to
four ankyrin repeats, 6 TM domains, and high sequence homology
in the TRP box domain in the N-terminus (Philipp et al., 1996;
Okada et al., 1998; Vannier et al., 1998; Wissenbach et al., 1998;
Okada et al., 1999). Like Drosophila TRPCs, the activation of
mammalian TRP channels can be activated in cultured cells
through PLC activation (Philipp et al., 1996; Zhu et al., 1996).
The specific mediator in the PLC pathway that ultimately activates
these channels is still unknown, and hypotheses include activation
by IP3, DAG, and calcium. TRPC1-4 proteins have been shown to
be activated upon store depletion, either by IP3 or thapsigargin
treatment in cultured cells expressing these proteins (Philipp et al.,
1996; Zhu et al., 1996; Zitt et al., 1997). Calcium influx factor was
proposed to be a factor to activate these channels to promote
calcium influx (Randriamampita and Tsien, 1993; Thomas and
Hanley, 1995; Smani et al., 2004). Additional hypotheses also
included conformational coupling between IP3R and the TRP
channels (Irvine, 1990). Some models also suggested
internalization of TRPC1/3/4 channels upon store depletion
(Lockwich et al., 2001; Itagaki et al., 2004). Other TRPC
proteins, such as TRP6/7, are activated by DAG and show

similarities to Drosophila TRP channels (Hofmann et al., 1999;
Itagaki et al., 2004).

Another complexity in mammalian TRPC channel activation
comes from context and cell type-specific activation mechanisms.
For example, mouse TRPC2 in vomeronasal neurons has been
shown to be activated by DAG, whereas the same protein in
mouse sperm has been shown to be activated by calcium release
(Jungnickel et al., 2001; Lucas et al., 2003). Whether this differential
activation is due to alternate splicing or different multimerization is
unknown (Vannier et al., 1999; Hofmann et al., 2000). TRPC3 also
shows similar differential activation between DAG and store
depletion. Some reports also suggest direct binding between
TRPC3 and IP3R as a mode of activation of these channels (Zhu
et al., 1996; Kiselyov et al., 1998; Hofmann et al., 1999).

TRP Channels and their role in SOCE: Of the many roles TRP
channels play in cellular physiology, a crucial one is store-operated
calcium entry (Brough et al., 2001). TRP channels have low calcium
selectivity, which distinguishes them from conventional CRAC
channels or voltage-gated calcium channels. As such, TRP
channels are high conductance and non-selective cation channels
with varying permeability ratios between calcium, potassium, and
sodium (Petersen et al., 1995; Xu et al., 1997). The mechanism of
TRP channel activation and gating ranges from changes in cytosolic
calcium concentration, to membrane depolarization, and external
cellular stimuli (Hoth and Penner, 1992). The loop between
transmembrane domains 5 and 6 form the channel pore of these
TRP channels. Four individual TRP subunits form an active channel
complex to promote calcium entry (Venkatachalam and Montell,
2007; Hellmich and Gaudet, 2014). The domain architecture of
different TRP family proteins regulates the functions of these
proteins. For example, TRPC, TRPV, and TRPA channels have
repeats of ankyrin regions in their N-terminus (Hellmich and
Gaudet, 2014) and TRPC and TRPM channels have a conserved
TRP domain adjacent to the last transmembrane domain (Montell,
2005). TRPM subfamily of TRP channels have a catalytic kinase
domain in their C-terminus. These proteins also have a highly
conserved TRP box sequence (Glu-Trp-Lys-Phe-Ala-Arg) and
proline-rich sequence that regulates signal transduction and
gating (Gregorio-Teruel et al., 2014). In addition, coiled-coil
domains in C- and N- terminal domains aid in the assembly of
some TRP channel subfamilies (Baez-Nieto et al., 2011). These
coiled-coil domains also regulate the channel binding to STIM1,
the ER calcium sensor, to regulate SOCE (Lee et al., 2014). A
C-terminal calmodulin and IP3R binding region in TRPC
channels is known to regulate both store-independent, and store-
dependent calcium entry (Wedel et al., 2003; Dionisio et al., 2011a).

Support for TRP channels acting as store-operated channels
came from the studies done using TRPC1 expression in vitro that
showed increased calcium entry after store depletion (Zhu et al.,
1996; Zitt et al., 1996; Zitt et al., 1997). One key difference in these
experiments was even though these cells showed calcium entry upon
store depletion, this current was different from the biophysical
properties observed in CRAC currents (ICRAC) (Zitt et al., 1997;
Trebak et al., 2003; Desai et al., 2015). Experiments later determined
that TRPC1 is assembled with the Orai1-STIM1 complex (Ong et al.,
2007; Jardin et al., 2008a). Immunofluorescence and confocal
microscopy in human salivary gland cells showed colocalization
of Orai1, STIM1, and TRPC1 at the plasma membrane upon store
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depletion (Ong et al., 2007). Activation and gating of TRPC1 is
mediated by negatively charged aspartate residues which bind
STIM1 at both the SOAR domain as the polybasic domain (Zeng
et al., 2008). Examination of how calcium entry observed from
Orai1:STIM1 complex upon store depletion differs from TRPC1:
STIM1 complex led to many interesting hypotheses. One hypothesis
is that the local increase of cytosolic calcium near ER:PM junctions
upon store depletion activates cytosolic TRPC1 channels, which
then gets embedded into the plasma membrane to be activated by
STIM1 (Cheng et al., 2008; Cheng et al., 2011). This model can
explain the spatiotemporal differences observed in calcium
oscillations in Orai1:STIM1 complexes versus TRPC1:
STIM1 complexes. These differences also affect the physiological
and pathological outcomes of cytosolic calcium transients. One
specific example is the activation of nuclear factor of activated
T-cells (NFAT) versus activation of NF-kB. Calcium entry
mediated by Orai1 after T-cell stimulation leads to activation of
NFAT (Feske et al., 2005; McCarl et al., 2009; Akimzhanov et al.,
2010), while TRPC1-dependent calcium entry leads to activation of
NFkB (Ong et al., 2012). Interestingly, knockdown of Orai1 in Jurkat
cells inhibits both SOC and CRAC currents, with no effect upon
knockdown of TRPC1 or TRPC3 (Kim et al., 2009). In addition,
calcium entry observed from the Orai1:STIM1:TRPC1 complex
leads to insulin release from pancreatic beta cells, platelet
activation during blood clotting, and SNARE complex formation
for adipocyte differentiation and adiponectin secretion (Galán et al.,
2009; Sabourin et al., 2015; Schaar et al., 2019). Furthermore,
calcium entry from this complex contributes to prostate and
colon cancer cell migration (Guéguinou et al., 2016; Perrouin-
Verbe et al., 2019). Finally, calcium entry observed in STIM1-
Orai1-TRPC1-TRPC4 complexes plays a pivotal role in right
ventricular hypertrophy (Sabourin et al., 2018).

Decades of research has now shown the pivotal role of TRP
channels modulating the spatiotemporal aspects of calcium release
in many systems. This includes activation by store depletion and
other IP3-mediated signaling pathways. However, TRP channels do
not re-capitulate the “classic” biophysical properties of store-
operated calcium currents originally described T cells, including
small unitary conductance and very high calcium selectivity. We will
next describe the cloning of Orai1 and STIM1 as mediators of this
specific type of SOCE.

Discovery and cloning of Orai1 and
STIM1

Feske and others reported abnormalities in T-cell activation in
infants born to consanguineous parents that manifested as severe
combined immunodeficiency (SCID) (Feske et al., 1996). They
found increased CD4+ T cell counts and inability of these T cells
to produce IL-2 upon stimulation with phorbol 12-myristate 13-
acetate (PMA), concanavalin A, and anti-CD3 stimulation.
Exogenous application of IL-2 restored the proliferative
deficiencies of these cells. Further analyses into the DNA binding
activity of transcription factors showed a lack of NFAT binding to
DNA with no difference in AP-1, NF-kB, and Octamer binding
proteins. They also found no differences in the expression of NFAT,
but the dephosphorylation and nuclear translocation was affected in

these T cells (Feske et al., 2000a). In subsequent experiments using
PMA + ionomycin and increasing concentrations of extracellular
calcium, they found that higher levels of extracellular calcium
rescued IL-2 production in these T cells (Feske et al., 2000b).
They concluded that dysregulation in upstream signaling events
play a role in NFAT binding to DNA elements that ultimately results
in SCID (Feske et al., 1996).

During this time, it was discovered that there exist two different
calcium mobilization patterns in T cells after stimulation. An
immediate transient calcium spike (Berridge, 1993) followed by a
sustained calcium influx from extracellular milieu (Putney, 1986;
Clapham, 1995). The transient calcium release activates NF-kB and
JNK, but NFAT activation needs sustained elevations to promote
dephosphorylation by the calcium-dependent phosphatase
calcineurin (Timmerman et al., 1996; Dolmetsch et al., 1997;
Crabtree, 1999; Kiani et al., 2000). Calcium imaging of T cells
obtained from the patients with SCID showed dysregulated
calcium entry upon stimulation with anti-CD3, ionomycin, and
thapsigargin. More importantly, membrane hyperpolarization with
valinomycin did not alter calcium entry abnormalities found in these
cells, suggesting the lack of calcium entry is not a result of
depolarization (Feske et al., 2001). These intriguing results
warranted further research into the calcium entry in T cells upon
their activation and the ion channels that promote sustained calcium
entry.

Development of RNAi screening as a research tool in early 2000s
opened avenues for high throughput identification of proteins that
mediate specific signaling pathways (Downward, 2004; Dykxhoorn
and Lieberman, 2005). Two important siRNA screens performed at
this time identified the proteins involved in mediating ICRAC and
pinpointed the possible mechanism of activation (Gwack et al., 2006;
Zhang et al., 2006). These two screens were performed in the
Drosophila S2 cells, which were known to have a store-operated
channel with low conductance and high calcium selectivity similar to
ICRAC in mammalian cells (Yeromin et al., 2004). The siRNA screen
performed by Feske and others identified known proteins that affect
calcium influx in addition to NFAT regulatory proteins (Gwack
et al., 2006). When they used this RNAi screen to identify potential
regulators of Ca+2/calcineurin mediated NFAT activation, they
found a kinase that negatively regulated exogenously expressed
NFAT. In addition, they also found other candidates in this
screen that alter calcium levels in the cytosol such as SERCA,
Homer, and STIM. Concurrently, Zhang and others
independently performed a similar genome-wide RNAi screen
(Zhang et al., 2006). Probing for hits that resulted in an
inhibition of calcium influx after store depletion by thapsigargin,
they identified 11 transmembrane proteins including STIM. Of note
was another four transmembrane protein olf186-F, which showed a
reduction in SOCE and CRAC currents. They followed up this
experiment with an overexpression paradigm, which showed a
three-fold increase in CRAC currents, which was further
increased to eight-fold upon co-expression with STIM (Zhang
et al., 2006). These two pivotal experiments identified Orai1 and
STIM1 as the core proteins that form the CRAC channel.

At the same time these RNAi experiments were being
conducted, Feske and others continued their research into
understand the T-cell activation abnormalities in SCID infants.
Using whole-cell patch-clamp electrophysiology performed on
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T cells from control and SCID patients, they showed that T cells
obtained from some SCID patients lacked SOCE. Furthermore, they
also found that exogenous expression of STIM1 in these SCID cells
did not rescue SOCE in these cells (Feske et al., 2005). Next, they
used a combined approach of Drosophila RNAi screening and
linkage analysis with a single-nucleotide polymorphism (SNP)
array to screen for regulators of SOCE and nuclear import of
NFAT. T cells obtained from SCID infants and relatives of these
infants were analyzed for SOCE deficits and SNP mapping arrays
using their genomic DNA. This, in conjunction with Drosophila
RNAi screen for NFAT regulators, pointed to a gene olf186-f in
Drosophila and to the TMEM142A gene on chromosome 12 in
humans which they namedOrai1 (Feske et al., 2006). Genomic DNA
sequencing showed a mutation of an arginine to tryptophan at
residue 91 (R91W) on Orai1, identifying the molecular defect in
these patients leading to reduced SOCE. Finally, exogenous
expression of wild-type Orai1 in T cells from SCID patients
restored CRAC channel activity.

STIM1 is mammalian homolog of Drosophila STIM, which is
essential for CRAC channel activation in human T cells. Roos and
others showed in S2, HEK293, and Jurkat cell lines that silencing of
STIM1 abrogates SOCE (Roos et al., 2005). Zhang et al. determined
the role of the luminal EF hand motif by expressing calcium binding
mutants in Jurkat T cells and analyzing SOCE. The STIM1 EF hand
calcium binding mutants 1A3A and 12Q were found to be
constitutively active STIM1 mutants (Zhang et al., 2005). At the
time, the pore forming Orai1 subunit had not been cloned and it was
hypothesized that STIM1may traffic to the PM upon store depletion
to activate a channel or form a channel itself. The critical role of the
EF hand in SOCE and puncta formation was independently
confirmed by another group in HeLa cells using a D76A mutant
(Liou et al., 2005). This discovery, along with the discovery of
Orai1 as CRAC channel pore forming subunit, potentiated a
barrage of research into these proteins in SOCE.

The discovery of Orai1 as pore-forming subunit of CRAC
channels was a direct result of the RNAi approaches in
Drosophila S2 cells by several groups as outline above.
Following the research into calcium deficits observed in SCID
human patients, two different groups pursued RNAi screens
focused toward decreases in NFAT translocation into nucleus,
and they individually found the same four transmembrane
plasma membrane protein with intracellular C and N termini
olf186-F (Feske et al., 2001; Vig et al., 2006b), and named it
CRACM1 (Vig et al., 2006b). The human homolog of this protein
was eventually named Orai1. There are three homologs of Orai
proteins with high sequence identity, with up to 90% identity in
the transmembrane regions. Overexpression of Orai1 and
STIM1 in HEK293 cells helped identify the pore forming
subunit of CRAC channels. The definitive proof for Orai1 as
the pore forming subunit came from experiments that showed the
importance of acidic residues in the transmembrane domains of
Orai1. Residues E106 and E190 are two important glutamic acid
residues that line the pore of Orai1 channel. Mutation of these
residues to aspartate and glutamine respectively decreased the
calcium influx, increased monovalent cation current, and made
the channel cesium permeable (Prakriya et al., 2006). These
experiments strongly supported Orai1 as the pore forming
unit of CRAC channel.

Molecular players in SOCE

The discovery of STIM1 as ER calcium sensor that activates
SOCE upon store depletion was a pivotal moment in furthering the
field of store-operated calcium entry (Liou et al., 2005). Soon after
the discovery of STIM1, multiple research groups discovered a four
transmembrane cell surface protein in Drosophila and its homologs
in mammalian cells which would ultimately be known as Orai (Vig
et al., 2006b; Feske et al., 2006; Zhang et al., 2006). Overexpression of
Orai1 in T cells isolated from patients with SCID restored the
calcium entry deficits in those cells. In addition, co-expression of
Orai1 with STIM1 inHEK293 cells showed calcium currents in these
cells that matched the biophysical properties of CRAC currents
(Mercer et al., 2006). CRAC channel formation is interesting in that
is requires the assembly of proteins from two different membranous
subcellular compartments to form the active channel complex
(Zhang et al., 2005; Ong et al., 2007; Lioudyno et al., 2008; Zhou
et al., 2010a; Kim and Muallem, 2011). In this next section, we will
discuss how this mechanism of activation was discovered.

STIM1

Depletion of ER calcium stores initiates a cascade of events
starting with the activation of STIM1 and culminates with calcium
entry from the extracellular milieu. STIM1 is a dimer of two single
pass type I ER transmembrane proteins. In the N-terminus, there is a
canonical and a noncanonical EF hand motifs that play a role in
calcium sensing in the ER (Stathopulos et al., 2006; Stathopulos et al.,
2009). Immediately adjacent to the EF hand motifs, there is a sterile
alpha motif (SAM) domain. On the cytosolic side, there is a calcium-
activating domain (CAD) which is also known as STIM-Orai
activation region (SOAR), which binds to the Orai1 channel
(Yuan et al., 2009). The cytosolic C-terminus also contains three
coiled-coil domains (CC1, CC2, CC3) that help maintaining
STIM1 in its inactive conformation when ER calcium stores are
full. Near the C-terminus, there is a polybasic domain which binds to
the PIP2 in the plasma membrane (Yuan et al., 2009). In addition to
these domains, STIM1 also has and inhibitory domain (ID), a
proline-serine rich domain (P/S domain), EB1 binding domain
(EB) in its cytosolic side. These domains act in conjunction with
each other upon store depletion to colocalize with Orai1 to form
CRAC channels.

The calcium binding EF hand motifs are required for STIM1 to
sense ER calcium store levels. This was confirmed using experiments
with mutations in the EF hand motif. The mutations D76A, D78A,
and E87A reduce the affinity of this motif to bind to calcium and
show constitutive puncta formation as well as CRAC currents in
resting cells (Liou et al., 2005; Zhang et al., 2005; Mercer et al., 2006).
The EF-SAM domains of STIM1 and STIM2 show similar affinities
to calcium in vitro, however, structural differences in the two
proteins results in dramatically different abilities to oligomerize
in response to store depletion (Stathopulos et al., 2006; Zheng et al.,
2008).

The first step in the CRAC channel activation after ER calcium
store depletion is the conformational change in STIM1. This was
elucidated in experiments conducted using the cytosolic fragment
composed of amino acids 233–685, which is capable of activating
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SOCE regardless of store depletion (Huang et al., 2006). Further
experiments involving truncation mutants of STIM1 led to
identification of STIM1-Orai1 activating region (SOAR/CAD),
the stretch of amino acids that can activate SOCE without store
depletion. It is, however, interesting to note the difference in the
amino acid sequences identified by individual groups ranged from
342 to 448 (Park et al., 2009), 344–442 (Yuan et al., 2009), and
339–444 (Kawasaki et al., 2009). Despite these differences, the
consensus is that the SOAR/CAD region can activate CRAC
currents independently of store depletion. Further research into
CAD domain also showed that CAD binds both the N- and
C-termini of Orai1, but the strength of binding is higher at the
C-terminus (Park et al., 2009). This binding between Orai1 and
CAD is mediated by a coiled-coil interaction between the
CC2 region of STIM1-CAD and the polar residues in the C
terminus of Orai1 (Stathopulos et al., 2013).

In resting conditions, STIM1 is diffusely localized throughout
the ER, but upon store depletion redistributes into clusters that are
termed “puncta” (Park et al., 2009). In resting conditions, STIM1 is
in a compact conformation that keeps it from interacting with Orai1.
Upon store depletion, a conformational change in STIM1 leads to an
extended conformation with its N-terminus reaching toward the
plasma membrane where it binds to the C-terminus of Orai1 (Zhang
et al., 2005; Wu et al., 2006; Xu et al., 2006). Following store
depletion, a complex choreography of intramolecular events
happens between several domains of STIM1 that stabilizes
STIM1 in its extended conformation to promote binding with
Orai1. The ER:PM sites of cells are held in close apposition to
promote STIM1 and Orai1 binding to promote CRAC channel
formation by a multitude of accessory proteins such a septins,
synptogamins, junctate, and others as described above (Wu et al.,
2006). The extended conformation of STIM1 was proposed to trap
Orai1 into puncta, leading to channel gating to promote SOCE
(Hoover and Lewis, 2011; Wu et al., 2014). This is known as the
“diffusion-trap” model.

STIM1 exists as a dimer in cells with calcium replete stores in the
resting state. This was confirmed using the C-terminal cytosolic
fractions in vitro which formed dimers in solution. The specific
domains involved in dimerization of STIM1 were further resolved
using co-immunoprecipitation and fluorescence photobleaching of
individual fragments (Covington et al., 2010). The coiled-coiled
domain fragments and CAD domain independently can form
dimers in vitro. The CAD domain dimerization is interesting
because STIM1 binding to Orai1 is also mediated by this
domain. The CC1 domains alone can form dimers, but they are
weak and unstable (Muik et al., 2009; Covington et al., 2010). This
supports the conclusion that STIM1 dimerization is a complex
process requiring the interaction of multiple domains in the protein.

The CAD domain of STIM1 can independently and
constitutively activate Orai1 and promote CRAC currents. Based
on a crystal structure of CAD domain, hydrophobic residues form
hydrogen bonds between the two monomers to stabilize the dimer
(Kawasaki et al., 2009). In addition, interactions between the
CC2 and CC3 regions of the STIM1 are purported to stabilize
the extended conformation of STIM1. One interesting finding in the
structure of CAD domain is the role of the CC2 and CC3 helices in
binding to and activating Orai1 channels. In resting inactive state,
the two CC2 helices (in a dimer) are in a parallel configuration in a

tight hairpin structure with CC3 helices. Upon store depletion, these
CC2 helices pivot and twist to an antiparallel orientation, allowing
CC3 to extend out and allow for binding with Orai1 (Stathopulos
et al., 2008; Yang et al., 2012; Stathopulos et al., 2013; Fahrner et al.,
2014). These are highly complex and precise molecular movements
in a restricted space between ER and PM within seconds of store
depletion.

The EF hand domains of STIM1 residing in the ER lumen also
undergo dimerization upon release of calcium from their binding
pockets. In resting state, these domains exist as compact monomers
bound to calcium (Stathopulos et al., 2006). NMR-resolved calcium-
bound STIM1/2 EF-SAM fragments show an α-helical structure
with a canonical (cEF) and non-canonical (nEF) EF hand
domains. The cEF domain contains a helix-loop-helix structure
that binds to calcium and nEF domain does not bind to calcium but
stabilizes the cEF through hydrogen bonding (Zheng et al., 2011).
Upon calcium release, the EF-SAM domains unfold leading to
conformational changes in luminal and cytosolic domains of
STIM1. Mutations in the glutamate (E87A) or leucine residues
(L195R) individually, and phenylalanine and glycine (F108D and
G110D) together, in the EF-hand domain led to puncta formation
irrespective of calcium depletion (Stathopulos et al., 2008). This led
to a proposal that calcium release from EF-hands leads to
STIM1 oligomerization upon store depletion. Live-cell imaging
and FRET studies using STIM1 mutants added support to this
hypothesis, as they show increased FRET between STIM1 fused with
YFP and CFP in RBL cells, which was reverse upon calcium addback
(Liou et al., 2007). Furthermore, FRET experiments conducted using
Orai1-CFP and STIM1-YFP also show a spatiotemporal correlation
between STIM1 oligomerization and Orai1-STIM1 binding (Muik
et al., 2008).

Orai1

There are three homologs of Orai proteins (Orai1, Orai2, Orai3)
in humans, and all three proteins promote calcium entry upon store
depletion with varying biophysical properties. They can also form
both homo- and hetero-multimers. For example, Orai1 and
Orai3 can assemble as heteromultimers to promote store-
independent calcium channels that are regulated by arachidonic
acid or leukotriene C4 (Mignen et al., 2008a; Mignen et al., 2009;
Gonzalez-Cobos et al., 2013; Thompson and Shuttleworth, 2013).
These are called ARC channels and LRC channels, respectively.

Orai protein subunits are composed of approximately
300 amino acids. Early evidence from co-immunoprecipitation
and FRET experiments suggested that these proteins are
oligomers in functional CRAC channels (Vig et al., 2006a; Gwack
et al., 2007; Muik et al., 2008; Navarro-Borelly et al., 2008).
Experiments using preassembled tandem Orai1 multimers and
co-expression with dominant-negative Orai1 mutants showed
that Orai1 may form homotetramers in CRAC channels similar
to other ion channels (Mignen et al., 2008b). Using photo-bleaching
of individual fluorophores in tandem Orai1-STIM1 multimers
suggested a similar result of four Orai1 molecules with two
STIM1 dimers, which was confirmed using FRET (Ji et al., 2008).
These results were replicated in live mammalian cells as well as
cellular lysates obtained from lymphocytes (Penna et al., 2008; Madl
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et al., 2010). However, the X-ray crystallographic structure of
Drosophila Orai revealed a hexameric stoichiometry challenging
these observations (Hou et al., 2012).

The X-ray and CryoEM structures of the Drosophila Orai
channel helped resolve the oligomeric status of Orai and revealed
the mechanisms for gating and ion permeation (Hou et al., 2012;
Hou et al., 2018; Hou et al., 2020). This structure shows Orai1 as a
four transmembrane protein with cytosolic C and N termini. The
TM1 forms the channel pore with the Orai1 N terminus. TM2 and
TM3 shield the pore from the membrane and TM4 and C terminus
extend away from the channel pore. The channel pore has a ring of
glutamate residues on TM1 (E178 is Drosophila, E106 in humans)
that form a highly negative electrostatic region and serves as a
selectivity filter. The side chains of these glutamate residues extend
into the central pore, where the oxygen atoms of the carboxylic
groups are in close proximity (~6 Å). Below the selectivity filter is a
region of hydrophobic amino acids followed by positively charged
residues that extend into the cytosolic lumen. One interesting
observation from the crystal structure is that the C terminal tails
of Orai1 helices form anti-parallel helices with each other in the
hexamer. These interactions are held together by hydrophobic
interactions between leucine residues at 316 and 219 (273 and
276 in humans). Mutations at these residues, such as L273S/D
and L276D, lower the coiled-coil probability of the C terminus as
well as inhibit STIM1 binding and channel activity (Li et al., 2007;
Navarro-Borelly et al., 2008; Li et al., 2011). However, an NMR
structure between Orai1 272–292 fragment and
312–387 STIM1 fragment shows that the anti-parrel orientation
does not change upon binding, but only leads to a small change in
the angle or Orai1 helices (Stathopulos et al., 2013). The information
obtained from these multitude of experimental approaches revealed
key details regarding the gating of CRAC channels, especially how
the allosteric modulators regulate Orai1 channel function. Four
seminal studies helped us elucidate the structural features
regulating gating and ion permeation in the Orai channel (Hou
et al., 2012; Hou et al., 2018; Hou et al., 2020). Glutamate residues in
the extracellular side of TM1 (E106, E178 in Drosophila), as
explained earlier in the review, were hypothesized to form a
selectivity filter by selectively binding calcium over other divalent
cations. Mutation of a valine at position 102 (V174 in Drosophila) in
the TM1 domain to alanine or serine made the channels
constitutively active (McNally et al., 2012). The Drosophila Orai
structure also shows the hydrophobic valine residues making
extensive connections protruding into the ion permeation
pathway that presents a de-solvation barrier for ions in closed
configuration of the channel (Hou et al., 2012; Dong et al., 2013).
Using terbium luminescence and disulfide crosslinking, others have
also shown that STIM1 binding to Orai1 leads to a conformational
change in the extracellular side near E106 and V102, and that this
short segment forms a STIM1-dependent barrier (Gudlur et al.,
2014). Based on these observations, V102 was proposed as a
hydrophobic gate, which was eventually refuted and F171 is now
considered to be the hydrophobic gate (discussed in more detail
below). Surprisingly, mutation of glycine and arginine residues in
the intracellular side of TM1 region of Orai1, at 98 and
91 respectively, resulted in constitutive activation of
Orai1 channels. This led to a speculation whether there is
another gate in the in the cytosolic side of the channel (Zhang

et al., 2011). Based on these observations, R91 was thought to be the
physical gate at the intracellular side that leads to dilation of the
helices upon STIM1 binding. G98 was suggested to serve as a hinge,
upon which the N terminus can rotate to allow for calcium entry. In
addition, a phenyl alanine at 99 is on the opposite side of the pore
helix to G98. STIM1 binding has been proposed to evoke a
conformational change that exposes G98 while concealing
F99 away from the channel pore (Yamashita et al., 2017). The
Drosophila Orai crystal structure revealed basic residues in the
immediate inner cytosolic end of channel pore which led to
another hypothesis where these residues stabilize the closed
channel through either binding of anions or electrostatic
repulsion of cations near this pore (Hou et al., 2012). With the
knowledge obtained from structural and functional studies using
Orai1 and STIM1 mutants, several hypotheses have been put
forward to explain the mechanism of activation of Orai1 by
STIM1. STIM1 has been proposed to activate Orai1 in stepwise
manner, first by initial binding to the C terminus for docking and a
subsequent weaker binding to the N terminus to initiate
conformational changes in the TM pore leading to pore opening
(Zheng et al., 2013).

A stretch of conserved acidic amino acids of Orai1 have been
shown to confer calcium selectivity. These include residues at E106,
E190, D110, D112, and D114 all of which are either in the TM1 or
TM1-2 loop. Mutation of aspartate residues to alanine resulted in
increased cesium permeability in these channels (Yamashita et al.,
2007; Zhou et al., 2010b). In addition, mutation of E106 residue in
the channel pore resulted in the same increase in cesium
permeability. These mutants also increase the pore diameter as
evidenced by increased permeability of methylammonium
derivatives (Yamashita et al., 2007). Finally, E106D mutant also
increases the fast calcium-dependent inactivation time latency
compared to wild-type Orai1 (Yamashita et al., 2007).

The structure of the open conformation of Orai1 was recently
resolved at 3.3 Å using cryo-electron microscopy (Hou et al., 2020).
As mentioned earlier, the hydrophobic amino acids F99 and V102
(F171 and V174 in human) within the channel pore were thought to
function as channel gate (Hou et al., 2012). This structure shows the
channel pore lined by acidic residues facing the extracellular
entrance by D184, D182, Q180 and E178 followed by
hydrophobic residues V174, F171, and L167 lining the middle of
the pore, and positively charged K163 and K159 lining the pore on
the intracellular side. A comparison of the open and closed
structures revealed that F171 is the primary gate, with the side
chain rotating into the ion conduction pathway in the closed state
(Hou et al., 2020). Amino acids Q180, D182, and D184 on the
extracellular surface create a negative electrostatic surface to attract
cations near the mouth of the pore with E178 acting as a selectivity
filter at the entrance to the ion conduction pathway.

SARAF

SARAF (SOCE-associated regulatory factor) is an ER
transmembrane protein known to be bind to STIM1, keeping it
in an inactive state. It primarily localizes to the ER membrane and
possibly to the plasma membrane (Palty et al., 2012; Albarran et al.,
2017). SARAF was discovered in a functional expression screen to
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identify proteins that affect mitochondrial calcium homeostasis
(Palty et al., 2012). HEK293 cells transfected with SARAF cDNA
showed lower baseline cytosolic, ER, and mitochondrial calcium
levels. In addition, siRNA-based knockdown of SARAF resulted in
an increase of basal cytosolic and ER calcium levels. This suggested a
role for SARAF in cellular calcium homeostasis. Further
experiments conducted using SARAF in conjunction with
Orai1 and STIM1 led to deciphering its role in calcium entry.
Electrophysiology recordings of Jurkat T cells and HEK293 cells
showed SARAF regulates SOCE, specifically the slow calcium-
dependent inactivation of CRAC channels (Palty et al., 2012).
Subsequent experiments conducted in SH-SY5Y and NG115-
401L cell lines also showed that SARAF is expressed in the
plasma membrane where it interacts with and negatively
regulates ARC channels (Albarran et al., 2016c). In addition,
SARAF can also inhibit calcium entry mediated by
TRPC1 channels (Albarran et al., 2016b).

How SARAF affects STIM1 structure and function is still not
completely understood. Several reports indicate that SARAF
interacts with STIM1 in resting conditions to keep STIM1 in its
inactive state (Jha et al., 2013; Albarran et al., 2016a). Co-
immunoprecipitation studies have shown that SARAF binds to
STIM1, and this binding is mediated by the C-terminus of
SARAF. The TM and ER-luminal domains are not required for
this interaction (Palty et al., 2012). Interestingly, constitutively active
STIM1 which has four glutamates mutated to alanine in its SOAR
domain does not bind to SARAF and has deficits in slow calcium-
dependent inactivation (Jha et al., 2013). The physical interaction
between STIM1 and SARAF has been confirmed by multiple reports
(Jha et al., 2013; Albarran et al., 2016a; Albarran et al., 2017; Lopez
et al., 2019). In addition, SARAF has been shown to bind Orai1 and
EFHB (EF hand containing family member B) (Jha et al., 2013;
Maleth et al., 2014; Albarran et al., 2016a; Albarran et al., 2018;
Lopez et al., 2019).

The nature of SARAF binding to STIM1 and Orai1 is interesting,
especially when put into the context of SOCE. SARAF binds to
STIM1 in resting conditions to keep it from spontaneously
activating. Upon store depletion, co-immunoprecipitation
experiments have shown that SARAF immediately dissociates
from STIM1 within the first minute, but then they re-associate
rapidly (Maleth et al., 2014; Albarran et al., 2016a; Albarran et al.,
2018). It is possible that SARAF binds to Orai1 after store depletion,
not STIM1. The exact sequence of events by which SARAF binds/
releases STIM1 and Orai1 during SOCE is difficult to determine
using existing techniques. Experiments conducted using fragments
of these proteins show that SARAF interacts with STIM1 at the
CC1 and the C-terminal inhibitory domain (CTID) of STIM1 (Jha
et al., 2013). TIRF microscopy using STIM1-mCherry and SARAF-
GFP show that these two proteins co-localize at the ER:PM junctions
upon store depletion using thapsigargin. Co-immunoprecipitation
of the SARAF N- and C-termini with STIM1 shows that SARAF
binds to the C-terminus of STIM1 (Palty et al., 2012).

Membrane phospholipids play a crucial role in the interaction
between SARAF and STIM1/Orai1. Phosphatidylinositol 4,5-
bisphosphate (PI(4,5)P2) is a membrane phospholipid that
mediates many functions in cellular signaling. It has been shown
that the CRAC complex translocates between PI(4,5)P2 poor and
rich microdomains during SOCE, and this regulates SOCE

(Calloway et al., 2011). STIM1 interactions with Orai1 and
PI(4,5)P2 are both dependent on SARAF (Maleth et al., 2014). In
addition, localization of Oria1/STIM1 in PI(4,5)P2 microdomains
are maintained by stabilizing proteins such as extended
synaptogamin 1 (E-Syt1) and septin4 (Maleth et al., 2014). The
dynamic regulation of this complex in membrane microdomains
during store depletion has yet to be determined with suitable kinetic
resolution. More recently, the SOAR domain of STIM1 has been
shown to bind interact with plasma membrane phospholipids.
Interactions between lysine residues 382, 384, 385, and 386 in the
SOAR domain with plasma membrane phospholipids PI(3,4)P2,
PI(3,5)P2, PI(4,5)P2, and PI(3,4,5)P2 are crucial for the stability of
ER:PM junctions as well as SOCE (Jha et al., 2013). The Orai1/
STIM1 complex localized to the PI(4,5)P2 rich subdomains binds to
SARAF and this localization and binding is crucial for SARAF to
regulate slow calcium dependent inactivation (Maleth et al., 2014).
These complex binding interactions between the SOAR and CTID
domains of STIM1 and membrane phospholipids are crucial for the
activity of SARAF.

How SARAF regulates slow calcium-dependent inactivation is
still unknown. Multiple hypotheses have been proposed to explain
this phenomenon. One of them is that an additional calcium-
binding protein mediates SARAF activation in slow calcium-
dependent inactivation (Zhang et al., 2020). Calcium binding
proteins have been known to modulate SOCE, and some of them
have been discussed earlier in the review such as EFHB and
calmodulin (Mullins et al., 2009). Other hypotheses include
modulation by the calcium sensing abilities of STIM1 and Orai1.

Selectivity and permeation of CRAC
channels

One of the most distinguishing properties of CRAC channels is
their very high selectivity toward calcium over other cations. CRAC
channels show 1,000 times higher selectivity over sodium.
Mutagenesis of the residues lining the channel pore have
provided insights into the mechanisms mediating the remarkable
selectivity of Orai1 channels toward calcium. Alanine substitutions
of E106 in TM1 region, D110, D112, and D114 residues in the TM1-
TM2 loop, and E190 in the TM2-TM3 loop all result in a loss of
calcium selectivity and increased cesium permeating. In addition,
these mutations also diminish calcium-dependent inactivation of
these channels. Cesium permeability reveals that the loss of
selectivity is likely due to an increase in pore diameter
(Yamashita et al., 2007). The E190Q mutation in the TM2-TM3
loop also resulted in loss of calcium selectivity (Vig et al., 2006a;
Prakriya et al., 2006). Also, alanine substitution of the D180 residue
changed these channels from calcium selective and inward rectifying
channels to sodium/cesium selective and outward rectifying
channels (Yeromin et al., 2006). These observations highlight the
selectivity filter in the Orai1 channels is formed by the conserved
acidic residues lining the outer pore of the channel.

Cysteine scanning experiments showed that the channel pore
diameter is largely responsible for the low conductance and high
calcium selectivity. Lack of cysteine reactivity suggests that the
E190 residue does not form the channel pore. Molecular
dynamics simulation suggested that mutating this residue to
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glutamate (E190Q) decreases the pore hydration of the channel
(Alavizargar et al., 2018). In addition, mutating this residue to a
cysteine (E190C) decreased the calcium selectivity of Orai1 channel
(Yeung et al., 2018). It is possible this residue helps in maintaining
the pore size by regulating hydration of the ion conduction pathway.
Finally, cysteine substitution of aspartate residues at 110, 112, 114 in
the TM1-TM2 loop did not change calcium selectivity of these
channels (McNally et al., 2009; Zhou et al., 2010a). These results
show that TM1 lines the channel pore and a E106 residue
(E178 dOrai1) from each monomer forms the selectivity filter in
the extracellular side of Orai1 channel.

The combination of electrophysiological analysis and high-
resolution structures have resolved many questions regarding
Orai structure/function. Orai is unique with regards to subunit
composition, ion permeation properties, and the kinetics of

gating compared to other calcium channels. Indeed, they have
very little sequence homology to other calcium channel families
such as voltage-gated calcium channels and ligand-gated channels.
Orai channels may have evolved from the very large and ubiquitous
Cation Diffusion Facilitator (CDF) carrier family (Matias et al.,
2010).

It has been shown that store depletion leads to the relatively slow
activation of Orai1 channels (seconds to tens of seconds) (Prakriya
and Lewis, 2006). A non-linear gating mechanism has been
proposed to regulate CRAC channel gating, where these channels
exhibit a ‘modal gating’ mechanism where the channels alternate
between silent and high open probability (Yamashita and Prakriya,
2014). Modal gating mechanism was based on an observation that 2-
APB, a widely used as ICRAC inhibitor, elicits strong SOCE at low
concentrations and inhibition at high concentrations. This

FIGURE 2
STIM1-lipid binding at the plasma membrane: (A) The CRAC channels are stabilized at the ER:PM junctions by a multitude of bindings between
different domains of Orai1 and STIM1 with plasma membrane lipids upon store depletion. Orai1 undergoes S-acylation at its C143 residue which shuttles
the channels to lipid rafts. The SOAR domain of STIM1 binds to the N-terminus region of Orai1 and leads to activation of Orai1 channels. The cholesterol
binding domain (CBD) in the SOAR domain also binds to the cholesterol rich phospholipids in the plasma membrane, which is mediated by
I364 residue. The polybasic domain of STIM1 binds to the PI(4,5)P2 phospholipids in the plasma membrane which is mediated by the positively charged
amino acids in the C-terminal tail of STIM1. Finally, STIM1 undergoes S-acylation at its C437 residuewhich is crucial for SOCE. One subunit of STIM1 dimer
is shown here for simplicity. (B,C) The AlphaFold structure predictions of the compact (presumably inactive) and extended (presumably active)
conformations of STIM1 are shown. The residues on STIM1 that interact with the plasma membrane as well as C437 that undergoes S-acylation are
highlighted in (C). In (B,C), the lipid bilayer is represented in light blue. The compact model is the AlphaFold prediction of Uniprot #V5J3L2. The extended
model is the AlphaFold prediction of Uniprot #Q13586).
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hypothesis proposed that STIM1 binding to the Orai1 channel
increases the time spent by these channels in the high open
probability state. And because the frequency of these transitions
is lower, calcium entry is enhanced (Yamashita and Prakriya, 2014).

Taken together, how calcium depletion in the ER leads to
activation of STIM1 shows a complicated picture of multiple
events happening in a precise sequential order mediated by
several domains of STIM1. First, the binding of calcium ions to
the EF-hand keeps the EF-SAM in a compact state which helps
interactions between CC1 and CAD regions of STIM1 in the
cytosolic side. An inhibitory clamp formed by intramolecular
interactions between CC1/2/3 regions of STIM1 helps keep it in
inactive state (Xu et al., 2006; Yang et al., 2012; Yu et al., 2013). Store
depletion and calcium dissociation from EF-hands leads to a
conformational change that releases this clamp and formation of
a coiled-coil dimer between CC1 domains. Experiments done using
isolated cytosolic STIM1 fragments show that in resting state, these
cytosolic fragments are tightly bound, which are extended upon
binding to Orai1 (Muik et al., 2011). Mutations in the CC1 regions
that cause spontaneous activation of STIM1 also show a similar
phenotype (Fahrner et al., 2014). Finally, several leucine residues
(L251, L261, L419, and L416) in the CAD region play a crucial role in
extension of STIM1 toward plasmamembrane for STIM1 binding to
Orai1 (Zhou et al., 2013; Fahrner et al., 2014; Ma et al., 2015). This
intra-and-intermolecular choreography of STIM1 proteins upon
store depletion controls SOCE. An overview of important
binding events between STIM1 and plasma membrane lipids is
shown in Figure 2. These amino acid residues of STIM1 that interact
with plasma membrane are also highlighted using an AlphaFold
model of the compact and extended conformations of STIM1
(Jumper et al., 2021).

Orai1/STIM1 clustering/puncta

Orai1 in the plasma membrane and STIM1 in the ER membrane
are diffusely distributed in cells with replete ER calcium stores. Upon
store depletion, Orai1-STIM1 complexes are recruited to ER:PM
junctions where they form CRAC channel clusters to promote
efficient calcium entry upon store depletion (Liou et al., 2007).
These clusters were denoted as “puncta” upon observation under
fluorescence microscopy of tagged-STIM1 (Liou et al., 2005; Zhang
et al., 2005; Baba et al., 2006; Luik et al., 2006; Wu et al., 2006; Xu
et al., 2006). These ER:PM junctions are regions within the cell
where PM and ER are held in close apposition (~10–20 nm) (Wu
et al., 2006; Orci et al., 2009). Upon store depletion,
STIM1 accumulates near the thin cortical tubules of the ER (Orci
et al., 2009). An interesting observation in CRAC puncta formation
is the longevity of these puncta. Depending on the downstream
effect of calcium influx, the puncta can be active for a few minutes or
up to an hour. How these puncta can stay active to promote calcium
entry for this duration is still not completely understood. Even more
compelling is the ability of STIM1 to translocate to the sites of
already formed puncta repeatedly upon subsequent store depletion
(Smyth et al., 2008). A multitude of factors regulate this behavior to
increase the number of cortical ER tubules near the plasma
membrane. One mechanism is a secretion-like coupling model
which includes redistribution of F-actin into cortical layers

(Patterson et al., 1999). STIM1 has been known to interact with
microtube attachment protein EB1 and maintain ER tubule length
(Grigoriev et al., 2008). STIM1 also binds to plasma membrane
using its polybasic domain, which might strengthen the
STIM1 localization in the puncta (Liou et al., 2007). The SOAR
region of STIM1 also has a cholesterol binding domain which has
been shown to bind to cholesterol rich regions in the plasma
membrane (Pacheco et al., 2016). Several additional proteins like
synaptogamins and septins maintain the integrity of these ER:PM
junctions (Chang et al., 2013; Sharma et al., 2013). Cytosolic calcium
elevation leads to increased translocation of E-Syt1 to ER:PM
junctions, which subsequently recruits the phosphatidylinositol
transfer protein (PITP) Nir2 to these junctions to strengthen ER:
PM junction stability (Chang et al., 2013). E-Syt2 and E-Syt3 also
regulate the ER:PM junctions, in a calcium-independent manner
(Giordano et al., 2013). Interestingly, siRNA-mediated knockdown
of E-Syt proteins decreases the number of ER:PM contact sites but
does not affect SOCE (Giordano et al., 2013). This explains the
possibility that E-Syt proteins maintain the stability of ER:PM
junctions with no specific effect on Orai1 or STIM1. Another
protein that has shown a role in regulating SOCE as well as
long-term maintenance of ER:PM junctions is an ER
transmembrane protein TMEM110, also known as junctate
(Quintana et al., 2015). Junctate is a calcium binding protein in
the ER membrane that forms supramolecular complexes with IP3
receptors and TRPC3 calcium channels. Junctate has an EF-hand
domain in its ER luminal side, which is required for CRAC channel
activation independently of store depletion (Treves et al., 2004;
Srikanth et al., 2012). In addition to these proteins mentioned above,
many other proteins play a crucial role in maintenance of stable ER:
PM junctions that help CRAC channel formation and function
(Ivanova and Atakpa-Adaji, 2023).

Models of CRAC channel assembly

ATP-dependent puncta formation

Based on the observation in live cells that STIM1 translocates to
the plasma membrane from the ER membrane and an earlier
hypothesis that STIM1 is transported to PM via a secretory
pathway (Hauser and Tsien, 2007), puncta formation was
hypothesized to be ATP-dependent. Mitochondria are known to
accumulate near the ER:PM junctions and regulate calcium
homeostasis (Park et al., 2001; Quintana et al., 2011). In
addition, depletion of intracellular ATP leads to decreased
calcium entry in rat lymphocytes (Marriott and Mason, 1995).
ATP depletion can also lead to translocation of STIM1 to puncta.
However, this required depletion of PI(4,5)P2 in addition to ATP
depletion (Chvanov et al., 2008).

Microtube-associated STIM1 translocation

As discussed earlier in the review, STIM1 binds to the
EB1 protein that is known to modulate microtubule growth. In
B cells, treatment with the anti-mitotic agent nocodazole, which
inhibits polymerization of microtubules, did not show the puncta
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formation observed in untreated cells (Baba et al., 2006). Pull down
assay with EB1, EB2, and EB3 proteins showed STIM1 binds to EB1.
This was also confirmed using immunocytochemistry and co-
immunoprecipitation experiments (Grigoriev et al., 2008). In
addition, treatment of cells with ML-9, a myosin light chain
kinase inhibitor, led to reversal of CRAC puncta as well
inhibition of SOCE (Smyth et al., 2008). These observations led
to a hypothesis that STIM1 traffics to the ER:PM junctions by
microtubule-assisted transport mediated by its binding to EB1.
However, this model shows that STIM1 and Orai1 proteins are
confined at the junctions after store depletion but does not offer any
explanation to why this happens.

Phosphatidylinositol-mediated membrane
sorting

Early experiments conducted on STIM proteins led to discovery
of a C-terminal polybasic domain that interact with PM
phospholipids, such as PI(4,5)P2 (Ercan et al., 2009; Calloway
et al., 2011). This polybasic domain was also found to mediate
the inward rectification of SOCE currents (Yuan et al., 2009). HeLa
cells treated with wortmannin and LY294002, inhibitors of
phosphatidyl inositol 3-kinase (PI3K) and PI4K respectively, led
to inhibition of STIM1 puncta formation as well as SOCE (Walsh
et al., 2009). In addition, the binding between STIM1 and Orai1 was
differentially modulated by the levels of PI(4,5)P2 (Calloway et al.,
2011). Decreased PI(4,5)P2 concentrations resulted in reduced
thapsigargin-mediated Orai1-STIM1 binding in the PM liquid-
ordered phase/rafts, and this affinity was reversed in membrane
disordered regions (Walsh et al., 2009). This led a hypothesis that
membrane phospholipids play a role in CRAC channel formation
and SOCE. However, depletion of phosphoinositides in cells
overexpressing Orai1 did not affect either STIM1 puncta
formation or SOCE (Walsh et al., 2009). In addition, the
experiments showing a role for phosphoinositides was shown
using inhibitors which do not discriminate between direct effects
on Orai1/STIM versus general effects due to severely perturbing PM
phospholipid composition.

IP3-mediated calcium depletion in ER lumen

Before the discovery of Orai1 and STIM1 as proteins forming
CRAC channels, experiments performed on TRP3 transfected
HEK293 cells using plasma membrane patches by treatment
with IP3. Based on this observation, they proposed a
hypothesis where the released IP3 binds to the IP3Rs and
activates them, which in turn regulate SOCE and CRAC
channels. However, they do not show physical binding
between IP3Rs and TRP3 proteins (Kiselyov et al., 1998). This
physical binding between the IP3Rs and TRP3 was shown later
using coimmunoprecipitation of tagged constructs of IP3R and
TRP3 (Boulay et al., 1999). They also show the role of this
binding in the regulation of SOCE. In subsequent studies, it
was also shown that TRP3 forms store-operated cation channels
dependent and independently with IP3Rs using DT40 WT and
IP3R knockout cells with rescue expression of TRP3 (Vazquez

et al., 2001). However, the mechanism behind this modulation of
SOCE by IP3Rs remained unresolved. Recently, it was shown that
STIM1 proteins interact with IP3Rs in the ER membrane
(Beliveau et al., 2014). Independently, others have shown that
overexpression of IP3Rs leads to increased ER calcium depletion,
larger CRAC puncta, and higher SOCE (Sampieri et al., 2018). In
addition, using confocal microscopy, they also show IP3Rs are
recruited to CRAC puncta upon activation of IP3Rs using
bradykinin. Based on these observations, they proposed a
mechanism for SOCE where recruitment of IP3Rs to CRAC
puncta leads to the generation of localized calcium-free
microenvironment in the luminal side of ER, which helps in
activation of STIM1 (Sampieri et al., 2018).

Diffusion-trap model

The diffusion-trap model postulates that STIM1 undergoes a
conformational change that exposes its C-terminal domains
toward plasma membrane, where it binds to membrane
phospholipids and stochastically binds to Orai1 channels
laterally diffusing in the PM (Hoover and Lewis, 2011; Wu
et al., 2014). In agreement with this hypothesis, super-
resolution microscopy experiments conducted using tagged
Orai1 and STIM1 constructs showed that these proteins
diffuse randomly in resting conditions. Upon store depletion,
these proteins slow down at distinct ER:PM junctions allowing
them to accumulate and form puncta (Wu et al., 2014).
Additionally, single particle tracking analysis shows single
STIM1 and Orai1 particles diffusing freely before getting
trapped at the junctions. Deletion of the polybasic domain in
the C-terminus of STIM1 showed altered puncta formation after
store depletion, suggesting a direct role for this domain. These
experiments also demonstrated that STIM1 and Orai1 particles
have a long half-life in puncta once trapped (Wu et al., 2014; Qin
et al., 2020).

The diffusion-trap model fails to explain some aspects of
puncta formation and SOCE. The polybasic domain was
hypothesized to act as a trap to attract Orai1 to STIM1.
However, a mutant STIM1 devoid of this polybasic domain is
capable of binding with Orai1. Orai1 binding by itself can also
trap STIM1 within ER:PM junctions which raises the possibility
that Orai1 may be trapping STIM1 (Walsh et al., 2009).
Interestingly, we have found that STIM1 can form puncta in
the absence of Orai1, but Orai1 cannot form puncta in the
absence of STIM1 (West et al., 2022b; Kodakandla et al.,
2022). The strong binding between Orai1 and STIM1 in the
puncta could also mean there is an equivalent amount of protein
particles enter and leave the puncta, thereby maintaining a
dynamic equilibrium at these ER:PM junctions (Wu et al.,
2014). Finally, single particle tracking and polydispersity
analyses conducted on Orai1 and STIM1 proteins show that
the mobility of these proteins decreases after store depletion, but
these proteins are also confined in compartmentalized
membrane regions before and after store depletion (Qin et al.,
2020). Based on these observations, the binding of Orai1 and
STIM1 upon store depletion appears to be more complicated
than a simple diffusion-trap model.
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S-acylation as a regulator of Orai1/
STIM1 assembly

S-acylation is a reversible addition of lipid moieties to cysteine
residues of target proteins that affects protein stability, function,
conformation, and trafficking between compartments within a cell
(Chamberlain and Shipston, 2015; Chen et al., 2021). S-acylation is a
post translational modification that is mediated by specific group of
enzymes known as protein acyltransferases (PATs). PATs are also
known as DHHC enzymes owing to the conserved aspartate-
histidine-histidine-cysteine motif in their active site that carries
out this reaction (Chamberlain and Shipston, 2015). The
different classes of DHHC enzymes distinguish among
themselves by their selectivity toward substrates, lipid
preferences, and mechanisms that activate and inactivate them
(Chen et al., 2021). Deficiencies in DHHC enzyme functions
leads to a range of diseases ranging from cancers such as
adenocarcinomas, lung cancer, bladder cancer, and breast cancer,
to diseases that affect neurological functions such as epilepsy and
schizophrenia, glioblastoma, and X-linked intellectual disability
(Ladygina et al., 2011; Resh, 2016; Essandoh et al., 2020; Fraser
et al., 2020; Chen et al., 2021). The subsequent process of removal of
lipid moieties from protein substrates, known as deacylation, is
mediated by another set of enzymes known as acyl protein
thioesterases (APTs) (Duncan and Gilman, 1998; Lin and
Conibear, 2015). These enzymes act in concert to dynamically
regulate protein function in a stimulus-dependent manner. How
most DHHC and APT enzymes are activated and inactivated is still
unclear.

DHHC enzymes catalyze the addition of lipid moieties to
proteins through a two-step mechanism, where the cysteine
residue in the active site of the enzyme receives the lipid group
and then transfers it to the cysteine residues of target proteins
(Jennings and Linder, 2012). This first step, known as auto-
acylation, is followed by the transfer of acyl group to target
proteins. The DHHC enzymatic reaction is sometimes referred to
as a “ping-pong” reaction. However, this may be a misnomer. Ping-

pong mechanisms (also known as double-displacement reactions)
always involve two substrates and two products, with the binding of
the second substrate dependent upon the successful completion of
the first reaction (Kullmann, 1984; Ulusu, 2015). The reaction
mechanism for DHHC enzymes is highlighted in Figure 3. For
the DHHC reaction to be considered ping-pong, we would have to
accept that CoA is product #1, and that substrate #2 binding (the
protein be S-acylated) depends upon autoacylation of the DHHC
enzyme. We would argue that the autoacylated DHHC enzyme is an
intermediate, not an enzyme newly capable of binding substrate #2.
Regardless, the ultimate result is the S-acylation of the target protein.
Motivated by the finding that the protein kinase Lck is dynamically
S-acylated in T cells during Fas signaling, we investigated the role(s)
of this modification in SOCE pathways (Akimzhanov and Boehning,
2015).

Orai1 and STIM1 accumulate in lipid raft domains upon
depletion of intracellular calcium stores. Depletion of PM
cholesterol with methyl-beta-cyclodextrin impairs SOCE,
implying a role for lipid rafts in SOCE (Jardin et al., 2008b;
Dionisio et al., 2011b). As mentioned above, our group found
that signaling through the Fas death receptor in T cells requires
dynamic S-acylation of the kinase Lck, leading to translocation to
rafts where it activates PLC-y1-mediated IP3 production (Wozniak
et al., 2006). Subsequently, we found that many TCR components
such as Lck, Fyn, ZAP70, and PLCy1 undergo dynamic S-acylation
upon T cell activation (Akimzhanov et al., 2010; Akimzhanov and
Boehning, 2015; West et al., 2022a). This S-acylation was required
the calcium/calmodulin-dependent activation of the protein
acyltransferase DHHC21. We next investigated T cell function in
the mutant mouse depilated, which carry a functionally deficient
DHHC21 with an in-frame deletion of phenylalanine 233 (F233)
eliminated calmodulin binding. Depilated mice have severe deficits
in T cell differentiation, including differentiation into Th1, Th2, and
Th17 lineages (Bieerkehazhi et al., 2022). TCR signaling in depilated
mice is severely disrupted due to reduced activation of ZAP70, Lck,
PLCγ1, JNK, ERK1/2, and p38 in response to TCR stimulation (Fan
et al., 2020; Bieerkehazhi et al., 2022). As Orai1 and STIM1 are

FIGURE 3
Mechanism of DHHC enzyme catalysis. DHHC enzymes S-acylate their substrates by a two-step mechanismwhich involves autoacylation followed
by transfer of the acyl group to target protein cysteine residues (substrates). In this cartoon, lipid rafts are indicated in yellow. ACSL = Acyl-CoA synthetase
long-chain family members.
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essential for TCR signaling, we hypothesized that Orai1 and
STIM1 undergo S-acylation to regulate CRAC channel formation
and function in T cells.

We found that treating Jurkat T cells with anti-CD3 or
HEK293 cells with thapsigargin leads to stimulus-dependent
S-acylation of Orai1 and STIM1. The kinetics of S-acylation
Orai1 and STIM1 are very rapid consistent with the assembly of
puncta and channel activation. The cysteine-mutant versions of
Orai1 and STIM1 that are incapable of undergoing S-acylation have
significantly reduced puncta formation and SOCE, indicating a
direct role for S-acylation in CRAC channel assembly (West
et al., 2022b; Kodakandla et al., 2022).

One interesting observation between the cysteine mutants of
Orai1 and STIM1 is that the Orai1 cysteine mutant (C143S) was an
almost complete loss of function phenotype, whereas mutant STIM1
(C437S) retained some residual activity. The residue where
STIM1 undergoes S-acylation is at the proximal end of its SOAR
domain. As explained earlier in the review, the SOAR domain of
STIM1 is crucial in the tethering of STIM1 to plasma membrane.
The C-terminus of STIM1 also has the polybasic membrane binding
domain. We hypothesize the S-acylation of STIM1 stabilizes the
C-terminus in the plasmamembrane. Due to redundant membrane-
binding domains in the C-terminus, we postulate that the loss of
S-acylation would only partially reduce the affinity of the
C-terminus for the membrane, thus possibly explaining our
partial loss-of-function phenotype (Figure 2) (Pacheco et al.,
2016). Our model is that a plasma membrane resident DHHC
enzyme, probably DHHC21, S-acylates STIM1 and anchors its
C-terminus in the plasma membrane, thereby stabilizing the
CRAC complex at these ER:PM junctions to facilitate SOCE
(West et al., 2022b; Kodakandla et al., 2022). An overview of the
models suggested in this section is presented in Figure 4.

At the same time as our research into S-acylation of Orai1 and
STIM1, the Demaurex group also showed that Orai1 undergoes
S-acylation (Carreras-Sureda et al., 2021). It was found that
S-acylation of Orai1 is critical for its recruitment to the
immunological synapse as well as TCR-mediated calcium entry
in Jurkat T cells. Using TIRF and confocal imaging techniques,
they showed that S-acylation of Orai1 is critical for channel
clustering as well as their trafficking to the lipid rafts. Finally,
using overexpression analysis, they show that DHHC20 is the
enzyme that mediates S-acylation of Orai1 in the plasma
membrane, at least under resting conditions. We hypothesize that
DHHC20 may mediate Orai1 S-acylation under resting conditions,
whereas store depletion leads to calcium/calmodulin-dependent
activation of DHHC21 leading to increased Orai1/
STIM1 S-acylation and active partitioning to ER:PM junctions.
This would be consistent with our data in depilated
DHHC21 mutant mice showing altered T cell calcium signaling
in response TCR activation (Fan et al., 2020; Tewari et al., 2021;
Bieerkehazhi et al., 2022).

Unanswered questions and further
directions

Our hypothesis that S-acylation plays a role in store-operated
calcium entry was derived from the inability of current models to

explain the specific characteristics that make this process unique.
As explained earlier in the review, Orai1 and STIM1 proteins
show distinct features upon store-depletion, such as decreased
mobility in the membrane, targeting to membrane subdomains,
and dynamic nature of CRAC puncta, among other observations.
We based our hypothesis that S-acylation, being a process that is
controlled by a set of enzymes, gives a dynamic control to
Orai1 and STIM1 function.

Of the many topics not answered in our studies, we want to
highlight a few that are more intriguing and necessitate scrutiny. We
have discussed the role of DHHC enzymes in S-acylating CRAC
channel components, including DHHC20 and DHHC21. But the
enzymes that deacylated these proteins have not been studied yet. As
explained earlier, S-acylation is reversible. Acyl protein thioesterases
(APT) are responsible for removing the lipid moiety from S-acylated
proteins. APT enzymes have been thought to be constitutively
active. For example, radiolabeling studies using tritiated palmitate
have shown than palmitate incorporation has a half-life of 20 min
whereas depalmitoylation is 10–20 times faster (Magee et al., 1987;
Rocks et al., 2005). Another difference between S-acylation and
deacylation is the localization of proteins that undergo this process.
Some reports suggest S-acylation is restricted to compartments
where the specific DHHC enzyme resides, such the Golgi
apparatus, while deacylation can happen throughout the cell
(Rocks et al., 2010). However, the specific mechanisms how
DHHC and APT enzymes coordinate these steps has not been
explored. Interestingly, APT enzymes themselves are targets for
S-acylation, indicating the DHHC enzymes regulate APT enzyme
localization and function (Abrami et al., 2021). Nothing is known
about the regulation of Orai1/STIM1 by APT enzymes other than
the S-acylation of both proteins is transient after store depletion,
suggesting a direct for APT enzymes in puncta disassembly (West
et al., 2022b; Kodakandla et al., 2022).

How S-acylation drives the movement of these proteins to
subdomains in the plasma membrane is also interesting.
Addition of lipid moieties (long chain lipids) changes the
hydrophobicity of the proteins. The result of this addition is an
increased affinity toward phospholipids, cholesterol, or other
moieties in membrane subdomains (Greaves and Chamberlain,
2007). For example, addition of saturated lipids can result in
translocation to cholesterol and sphingolipid-enriched membrane
subdomains such as lipid rafts (Pani and Singh, 2009; Resh, 2016).
Indeed, previous work by our group has shown that S-acylation is
critical for the assembly of the TCR complex in lipid rafts
(Akimzhanov et al., 2010; Akimzhanov and Boehning, 2015; Fan
et al., 2020; Tewari et al., 2021). This might also help us understand
the differences observed between cysteine mutants of Orai1 and
STIM1, which show different calcium entry patters upon store-
depletion.

Another interesting point of emphasis which we failed tomake is
the specific lipid moiety that is added to target proteins, and how the
lipid moiety affects the protein behavior. The lipid moiety could
range from saturated palmitate (C16:0, 74%) to monounsaturated
oleate (C18:1, 4%) or saturated stearate (C16:0, 22%) among others
(Towler and Glaser, 1986). The specific type of lipid moiety attached
to Orai1 and STIM1 will help answer some questions regarding the
function of the S-acylated residue. For example, we hypothesized
S-acylation of Orai1 helps it recruit to cholesterol-rich lipid rafts,
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whereas STIM1 S-acylation anchors the SOAR domain of STIM1 in
the plasma membrane to facilitate its interaction with Orai1 in lipid
rafts. Palmitic acid has long known to have higher affinity toward
cholesterol compared to other phospholipids (Melkonian et al.,
1999; Levental et al., 2010). So, we can test if Orai1 S-acylation
leads to addition of a palmitate group using metabolic labeling. On
the other hand, stearic acid is known to recruit to plasma membrane
domains that have low levels of phosphatidylinositol-4,5-
bisphosphate (PIP2) (Laquel et al., 2022). Some reports have
suggested the CRAC channels translocate to these domains upon
store-depletion for propagating SOCE currents (Maleth et al., 2014).
Stearic acid conjugation to STIM1 may lead to differential
association with plasma membrane domains depleted of PIP2.
Delineating these hypotheses is crucial for understanding the role
of S-acylation in SOCE.

The S-acylation of STIM1 may stabilize the C-terminus of the
active conformation at the plasma membrane. In addition to
S-acylation, two other critical binding events happen between the
C-terminus of STIM1 and the plasma membrane. In particular,
STIM1 binds to membrane lipids on the inner leaflet via the
polybasic domain and the cholesterol-binding domain (Figure 2;
Yuan et al., 2009; Pacheco et al., 2016). This functional redundancy
of membrane-associated features in the C-terminus of STIM1 may
explain the partial loss of function in the cysteine-mutant STIM1.
Future work can test this hypothesis using different STIM1 mutants
that lack the polybasic or CBD domains alone and in combination
with the S-acylation mutant.

Finally, how the DHHC enzymes that S-acylate Orai1 and
STIM1 are regulated is a question that remains unanswered.
There is surprisingly little information about how these enzymes
are regulated. Previously, we have shown that DHHC5, an enzyme
the S-acylates many signaling proteins involved in beta adrenergic
receptor function, is itself regulated by S-acylation of several
cysteines in the C-terminal tail. S-acylation of DHHC5 in its
C-terminal tail upon receptor stimulation increases its stability in
the plasma membrane where it can S-acylate its target proteins
(Chen et al., 2020). In addition, the DHHC enzymes regulate each
other, where one DHHC enzyme can S-acylate another DHHC
enzyme, which in turn affects its localization, function, or stability.
For example, DHHC16 S-acylated DHHC6, which is an ER
membrane protein that S-acylates many ER proteins such as
calnexin, E3 ligase gp78, and IP3 receptor (Abrami et al., 2017).
We previously showed that DHHC21 is a calcium-calmodulin
regulated enzyme S-acylates many T cell proteins in vitro and in
vivo. Future studies will determine if DHHC21 is also the key

regulator of Orai1/STIM1 S-acylation. Ultimately, the regulation
of CRAC channel formation and SOCE by S-acylation adds a
regulatory step for channel assembly and disassembly during
store depletion. This allows for the fine tuning of the
spatiotemporal aspects of calcium signaling in cells expressing
Orai1/STIM1.
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