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One possible explanation for magnetosensing in biology, such as avian
magnetoreception, is based on the spin dynamics of certain chemical reactions
that involve radical pairs. Radical pairs have been suggested to also play a role
in anesthesia, hyperactivity, neurogenesis, circadian clock rhythm, microtubule
assembly, etc. It thus seems critical to probe the credibility of such models.
One way to do so is through isotope effects with different nuclear spins. Here
we briefly review the papers involving spin-related isotope effects in biology.
We suggest studying isotope effects can be an interesting avenue for quantum
biology.
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In atoms, the number of protons determines the element (e.g. carbon, oxygen, etc.),
and the number of neutrons determines the isotope of the desired element. It has
been observed that different isotopes of the element in certain chemical reactions can
influence the outcomes differently. This has been shown in many chemical reactions
(Bigeleisen, 1965; Zel’dovich et al., 1988; Wolfsberg et al., 2009; Faure, 1977; Hoefs and
Hoefs, 2009; Fry, 2006; Van Hook, 2011; Buchachenko, 2001) including biological
systems (Cook, 1991; Grissom, 1995; Kohen and Limbach, 2005; Buchachenko, 2009;
Buchachenko et al., 2012; Koltover, 2021). Not only do different isotopes of an element
have different masses, but they can also possess different spin angular momentum,
which has a magnetic property. Thus, one can consider isotope effects in (bio)chemical
reactions from two distinct points of view: mass- and spin-dependency. Isotope effects
have been reported for numerous (bio)chemical reactions (Buchachenko et al., 2012;
Buchachenko, 2013; Buchachenko, 2014a; Buchachenko, 2014b; Bukhvostov et al., 2014;
Buchachenko et al., 2019; Arkhangelskaya et al., 2020; Buchachenko et al., 2020; Koltover,
2021; Letuta, 2021). Sechzer and et al. observed that administering different lithium
isotopes resulted in different parenting behaviors and potentially delayed offspring
development in rats (Sechzer et al., 1986). In 2020, Ettenberg co-workers (Ettenberg et al.,
2020) reported that lithium isotope effect on rat’s hyperactivity, where 6Li produced
a longer suppression of hyperactivity in an animal model of mania compared to
7Li. Buchachenko et al. reported that ATP production was more than twofold in the
presence of 25Mg compared to 24Mg. They suggested that the different nuclear spin of
these isotopes was the key to these observations. The same group, in multiple studies,
also observed that 25Mg reduced enzymatic activity in DNA synthesis compared to
24Mg, where the rate of DNA synthesis was suggested to be magnetic field-dependent
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(Buchachenko et al., 2013a; Buchachenko et al., 2013b;
Stovbun et al., 2023).They also observed isotope effects by replacing
magnesium with calcium and zinc ions (Buchachenko et al., 2010;
Bukhvostov et al., 2013). Li et al. observed that different xenon
isotopes induced anesthesia in mice differently. In that experiment,
four different xenon isotopes were used, 129Xe, 131Xe, 132Xe, and
134Xe with nuclear spins of 1/2, 3/2, 0, and 0, respectively (Li et al.,
2018). They reported that isotopes of xenon with non-zero nuclear
spin had lower anesthetic potency than isotopes without nuclear
spin.

The first mass-independent isotope effect was detected by
Buchachenko and co-workers in 1976 (Buchachenko et al., 1976),
in which applied magnetic fields discriminated isotope effects by
their nuclear spins and nuclear magnetic moments. Since then, the
term “magnetic isotope effect” was introduced for such phenomena
as they are controlled by electron-nuclear hyperfine coupling in the
paramagnetic species.

The sensitivity of biological systems to weak magnetic fields is
an intriguing phenomenon (Zadeh-Haghighi and Simon, 2022a), yet
incompletely understood. It is challenging to understandbecause the
corresponding energies for such low fields are far smaller than the
energies for thermal fluctuations and motions. So from a classical
point of view, these effects should be washed out. But that is not the
case.

One possible explanation for such effects is based on the spin
dynamics of naturally occurring radical pairs, namely the radical
pair mechanism (Hore and Mouritsen, 2016). Spin has a magnetic
property, and thus for every spin, any surrounding magnetic field
from either other spins or applied magnetic field influences its
state. On the other hand, spin states can determine which chemical
reactions are possible, providing a mechanism for magnetic fields
to influence chemical reaction products. A considerable amount of
studies suggest that isotope effects in biology can be due to the spin
dynamics of radical pairs in biochemical reactions.

In the context of avian magnetoreception (Xu et al., 2021),
it was suggested that substituting 17O2 for 16O2 would strongly
attenuate magnetosensing and also accelerate the generation of the
fully oxidized state of flavin adenine dinucleotide (FADox) (Player
and Hore, 2019). Recent studies have proposed that radical pair
models help explain isotope effects in xenon anesthesia (Smith et al.,
2021) and lithium treatment for hyperactivity (Zadeh-Haghighi and
Simon, 2021). In these models, it is proposed that anesthesia and
hyperactivity involve spin-selective electron transfer, and different
isotopes of xenon and lithium influence the electron transfer process
differently due to the hyperfine interaction between the xenon or
lithium nuclear spin and the electron spin of the radicals, and
hence possess different potency. Based on similar models, it has
also been suggested that isotope effects can be tested in the role
of superoxide in neurogenesis (Rishabh et al., 2022), the effect of
lithium on the circadian clock (Zadeh-Haghighi and Simon, 2022b),
and the effect of zinc onmicrotubule assembly (Zadeh-Haghighi and
Simon, 2022c).

It is also worth mentioning that non-mass-dependent effects
or mass-independent fractionation in isotope effects have been
observed with oxygen, sulfur, mercury, lead, and thallium

(Thiemens and Heidenreich, 1983;Thiemens, 1999;Thiemens et al.,
2001; Thiemens, 2006; Schauble, 2007; Thiemens et al., 2012),
which are based on non-magnetic mechanisms. However,
it is reported that biomolecules susceptible to oxidation by
reactive oxygen species (ROS) can be protected using heavier
isotopes such as 2H (D, deuterium) and 13C (carbon-13)
(Shchepinov, 2007). Moreover, in numerous studies, magnetic
field effects in biology are accompanied by modulation in
the ROS levels (Zadeh-Haghighi and Simon, 2022a). This
suggests radical pairs might be involved in such ROS-related
effects.

Exploring isotope effects may thus be a potential avenue to
probe the radial pair mechanism hypothesis and ultimately to
see whether Nature harnesses quantum physics in biology. We
hope that this short article will encourage experimental experts in
the field of quantum biology to test isotope effects. Furthermore,
this could pave new paths for discovering new medicine and
treatments.
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