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Introduction: There is increasing interest in developing mathematical and
computational models to forecast adverse events in physiological systems.
Examples include falls, the onset of fatal cardiac arrhythmias, and adverse
surgical outcomes. However, the dynamics of physiological systems are known
to be exceedingly complex and perhaps even chaotic. Since no model can be
perfect, it becomes important to understand how forecasting can be improved,
especially when training data is limited. An adverse event that can be readily
studied in the laboratory is the occurrence of stick falls when humans attempt
to balance a stick on their fingertips. Over the last 20 years, this task has been
extensively investigated experimentally, and presently detailed mathematical
models are available.

Methods:Here we use a long short-termmemory (LTSM) deep learning network
to forecast stick falls. We train this model to forecast stick falls in three ways:
1) using only data generated by the mathematical model (synthetic data), 2)
using only stick balancing recordings of stick falls measured using high-speed
motion capture measurements (human data), and 3) using transfer learning
which combines a model trained using synthetic data plus a small amount of
human balancing data.

Results:Weobserve that the LTSMmodel ismuchmore successful in forecasting
a fall using synthetic data than it is in forecasting falls for models trained with
limited available human data. However, with transfer learning, i.e., the LTSM
model pre-trained with synthetic data and re-trained with a small amount of
real human balancing data, the ability to forecast impending falls in human data
is vastly improved. Indeed, it becomes possible to correctly forecast 60%–70%
of real human stick falls up to 2.35 s in advance.

Conclusion: These observations support the use of model-generated data and
transfer learning techniques to improve the ability of computational models to
forecast adverse physiological events.

KEYWORDS

forecast, transfer learning, long short-term memory, pole balancing, synthetic data,
micro-chaotic systems, physics-inspired physiological model, adverse events
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1 Introduction

There is increasing interest in leveraging physiological
measurements to forecast adverse clinical events ranging
from susceptibility to cardiac arrhythmias (Walker et al., 2017;
Varshneya et al., 2021) to adverse surgical outcomes (Chen et al.,
2021), predicting limb movements using electromyography (EMG)
signals (Smirnov et al., 2021), understanding the effects of ankle
weakness on human gait (Ong et al., 2019) and adverse events in
human balancing tasks (Zgonnikova et al., 2016; Wang et al., 2022;
Márquez et al., 2023). Studies over the last few years have utilized
advances in machine learning and, more specifically, deep learning,
to learn dynamical behaviors (Gilpin et al., 2020). However, inmany
physiological processes, the dynamics are exceedingly complex and
may not be amenable to these techniques, especially when given a
limited amount of data.

A case in point concerns the forecasting of falls for stick
balancing on the fingertip (Márquez et al., 2023). The dynamics
of the movements of the balanced stick are exceedingly complex
and include on-off intermittency (Cabrera and Milton, 2002), Levy
flights (Cabrera and Milton, 2004a), and micro-chaotic fluctuations
(Milton et al., 2016; 2018). These dynamical signatures form the
cornerstone upon which current theories of human balance and
falls can be based (Insperger and Milton, 2021). Thus, it can
be anticipated that strategies that forecast the fall of an inverted
pendulum will translate into effective strategies for forecasting
human falls. An important benchmark is how far in advance is it
possible to forecast a fall? Clearly, the longer a fall can be forecasted
ahead, themore time is available to activate strategies tomitigate the
adverse effects of a fall (Nemeth et al., 2022).

Recently it was shown that by using traditionalmachine learning
techniques (e.g., artificial neural networks, random forest, support
vector machine, k-nearest neighbor), it is possible to forecast falls
for human pole balancing on the fingertip by≈0.83 s (Márquez et al.,
2023) based on data from two pole balancers. However, it is known
that machine learning model trained with small amount of data
cannot generalize to the different skill levels of pole balancers, as
reflected by different mean balance times. Pole balancing times
can range from a few seconds to many minutes depending on the
skill of the human balancer. Thus, fatigue limits the number of
balance trials to <100 per day with a significant bias towards the less
skilled balancers.

An attractive solution to this data scarcity problem is to use a
mathematical model to generate any desired amount of synthetic
stick falls and use this data to train a machine learning model to
approximate the complex dynamics of stick falling. This strategy is
similar in spirit to the use of physics-inspired models to investigate
the effects of ankle plantar flexor weakness on gait (Ong et al., 2019),
prediction of arrhythmias susceptibility (Varshneya et al., 2021), and
to estimate limb movements using EMG signals (Smirnov et al.,
2021). In all of these cases, synthetic data is generated via the
relevant mathematical models in order to gain insights into the
underlying physiology of the clinically-relevant system. These
relevant mathematical models serve as a “digital twin” of the various
systems in question (Kapteyn et al., 2020).

We approach the difficult problem of obtaining a generalized
model for forecasting of pole falls limited by a small amount of
real data by first generating synthetic pole movement data using a

physiologically motivated mathematical model for pole balancing
on the fingertip. This mathematical model for pole balancing
has been developed and refined in our laboratory over the last
20 years (Cabrera and Milton, 2004b; Insperger and Milton, 2014;
Milton et al., 2016; Milton et al., 2018; Milton and Insperger, 2019;
Insperger and Milton, 2021; Nagy et al., 2023). Although not yet
perfect, this model nonetheless reproduces the same balance time
distribution and many of the frequency and kinematics-dependent
properties as measured experimentally for human pole balancing.
Next, we trained a stacked long short-term memory (LSTM) deep
learning network on synthetic data generated using this model to
learn the patterns leading to pole falling. Finally, we use transfer
learning to fine-tune this model with a limited amount of real-world
human pole-balancing data.

LSTMs are part of a class of recurrent neural network
(RNN) deep-learning algorithms that have been used in time-
series forecasting. Unlike traditional feed-forward neural networks,
LSTMs are able to use their internal memory to process arbitrary
sequences of inputs, capturing the temporal dynamics of the data.
Moreover, deep learningmodels do not require hand-crafted feature
engineering. The model can learn the latent representation inherent
in the data via lots of examples/data. Designing good hand-crafted
features requires expert knowledge and is a labor-intensive process.
This particular deep neural network architecture has been used
previously to train a model to recognize motion-related activities
from a wristwatch over a period of time so that they can be better
distinguished from others (Mauldin et al., 2018). A bi-directional
LSTM has also been used in Çiçek et al. (2022) for the forecasting
of human physical activity from smartphone sensors.

We conducted an extensive set of experiments to train a range of
forecastingmodels with forecast times ranging from 0.85 to 2.35 s to
assess the limit of forecasting in an unstable dynamic system using
a combination of measured human stick balancing data, simulated
data generated by a mathematical model for stick balancing and
deep transfer learning for refinement. We show that it is possible
to correctly forecast 60%–70% of real human falls up to 2.35 s
in advance.

Our paper is organized as follows. First, we describe how real-
world human pole balancing data is collected. Next, we present the
mathematical model for human pole balancing and describe how
the important parameters (time delay, sensory dead zone, and four
reflex gains) were estimated. We describe how the mathematical
model-generated data is pre-processed as suitable input to LSTM
algorithm, and how the unbalanced nature of the fall events (i.e.,
falls being “rare” events relative to non-falls) was overcome. In the
next section, we show how transfer learning was utilized to combine
the benefits of synthetic data generation with real-world examples
for improved accuracy in event anticipation. Finally, we discuss the
implications of our findings and future directions for this approach
for fall forecasting.

2 Materials and methods

2.1 Data collection

Human pole balancing data collection was approved by the
institutional review board at Claremont McKenna College and
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FIGURE 1
Human pole balancing illustrating both (A) human position during task, and (B) the mathematical representation of the pole balancing behavior as an
inverted pendulum-cart mechanical model.

de-identified. Pole balancing at the fingertip was performed as
described previously using the training protocol outlined in
Milton et al. (2016). Briefly, subjects were seated in a chair while
facing a blank black screen (Figure 1A). They were required to keep
their back against the back of the chair. This requirement eliminates
(greatly reduces) the extreme fluctuations in stick angle that precede
a fall if the seated subject is allowed to move freely (Márquez et al.,
2023). The pole is an oak dowel with diameter 6.35 mm, length
0.57 m (length of dowel plus 0.009 m reflective markers attached
at each end). The mean balance time for Subject A was 31 s and
for Subject B it was 25 s. Since the mean balance times were less
than 240 s, both of these subjects are considered to be “novice” pole
balancers (Milton et al., 2016). The mass of the pole plus reflective
markerswas 13.8 g. A high-speedmotion capture system (3Qualisys
Oqus 300 cameras, 250 Hz) was used to measure the position of
reflective markers during pole balancing as a function of time.
Balance trials in which the fall occurs in the sagittal plane were
selected for this study [70− 80% of stick falls occur in this direction
(Milton et al., 2016; Insperger and Milton, 2021)]. Data was down-
sampled to 100 Hz for all our fall forecasting experiments to mimic
real-world motion sensor devices, such as smartwatches and phones
which typically collect data at 30–100 Hz.

2.2 Mathematical model for stick balancing

Stick balancing on the fingertip was modeled using an inverted
pendulum-cart mechanical model along with human control force
in the form of time-delayed predictor feedback (Figure 1B). The
equation of motion for the stick itself is

(
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where m is the mass of the stick, m0 is the mass of the cart, which is
equivalent to the inertia of the human arm segments plus the hand

(Nagy et al., 2020), θ is the vertical displacement angle of the stick, ̈x
is the acceleration of the fingertip (cart), ̈θ is the angular acceleration
of the stick, and f(t) is the control force. The linearized equation of
motion for the control of the pendulum-cart model is
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Assuming predictor feedback, the control action, f(t), takes the form

f (t) = kp,θθ (t− τ) + kp,xx (t− τ) + kd,θ
̇θ (t− τ) + kd,x ̇x (t− τ)

+∫
t

t−τ
kf (t− s) fPF (s)ds, (3)

where kp,θ, kp,x, kd,θ and kd,x are, respectively, the proportional and
derivative control gains for θ and x, and kf is a function related
to the predictor feedback [for further details, see Insperger and
Milton (2021)]. The first four terms in Eq. 3 represent the delayed
state feedback, while the last term is associated with the weighted
integral of the issued control force over the interval [t− τ, t] (Krstic,
2009). The effect of a sensory dead zone in the sagittal plane,
related to difficulties with depth perception (Milton et al., 2016), was
modeled as a switching component to the control. In other words,
the feedback is turned on or off depending on whether θ is larger or
smaller than a sensory threshold Π, i.e.,

θperceived (t− τ) =
{
{
{

0 if |θ (t− τ) | < Π

θ (t− τ) if |θ (t− τ) | ≥ Π.
(4)

However, information related to ̇θ and ̈θ remains available
(Thiel et al., 2007). The presence of this dead zone accounts for
the observation that 70%–80% of human stick falls occur in the
anterior-posterior direction.

The model’s equations were integrated using semi-discretization
(Insperger and Stépán, 2011) because the integral term in Eq. 3
cannot be implemented analytically. In the computer code, we
discretized the control force and approximated the integral by a
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discrete sum of delayed values with a sampling time of 10 ms. This
approach is equivalent to the assumption that the nervous system
behaves like a digital controller with a discrete input and a discrete
output system. The solutions of this model exhibit micro-chaos
(Milton et al., 2016;Milton et al., 2018; Insperger andMilton, 2021).
Micro-chaotic dynamics arise generically in dynamical systems
in which there is time-delayed feedback, a sensory dead zone,
and frequency-dependent encoding of force. Consequently the
dynamics exhibit a sensitive dependence of initial conditions and
issues related to numerical algorithms and hardware. However, the
stabilometric properties of the solutions, such as the feedback gains
and time delays, are not affected.

2.2.1 Synthetic stick falls
We consider two ways that stick falls can occur: 1) θ becomes

too large and 2) x leaves the zone of possible movement, which we
will discuss a little later. For stick balancing, the changes in x and θ
are strongly correlated especially on time scales of 4τ− 5τ. On these
time scales when a change in x predicts a fall then so do changes in
θ. The largest θ for which balance can be maintained depends on the
skill of the stick balancer: we estimated 10° for subject A and 20° for
subject B.

There are two constraints placed on x: 1) x cannot be larger
than the effective length, L, of the subject’s arm, and 2) the fingertip
cannot hit the subject’s chest. The effective arm length, L, is shorter
than the length of the arm measured from the tip of the shoulder to
the tip of the out-stretched index finger. This is a result of the “slider
crank” movements of the arm which are limited by the bulk of the
upper arm. These constraints were modeled by assuming that the
reference position x = 0 of the fingertip as L/2. Changes in L due to
the subject leaning forward were minimized by having the subject
keep their back against the back of the chair at all times.

The arm length limitations become effective at time instant
t = t∗ if either.

• x(t∗) = L/2 and ̇x(t∗) > 0 (the arm cannot stretch further) or
• x(t∗) = −L/2 and ̇x(t∗) < 0 (the fingertip hits the chest).

In both cases, the fingertip position is constrained to either
x(t) = L/2 or x(t) = −L/2 with ̇x(t) = 0 for t > t∗ .This corresponds to
a sudden fixation in rigid body dynamics: the pole’s angular velocity
changes suddenly, and the control force can be neglected compared
to the arising constraint force. The pole’s angular velocity after the
sudden fixation (at time t∗+) can be calculated given that the angular
momentum about the fixation point (pole’s bottom) is preserved.
The angular velocity just after the sudden fixation is

̇θ (t∗+) = ̇θ (t∗) + 2
l
̇x (t∗) . (5)

The pole’s angular position after the sudden fixation can be
calculated by the open-loop dynamics of a pinned pendulum. Time
domain simulations show that arm length limitation ends up with
the pole falling within 1–2 s.

2.2.2 Parameter estimation
Before generating synthetic data using the model described by

Eqs 1–5, the following model parameters had to be identified: the
time delay (τ), the sensory threshold (Π) and the four feedback

FIGURE 2
Tuning of the control gains for the simulations of the simulated data.
Greyscale show the balance times, the blue dot indicates the identified
control gains for balance time >240 s, and red dot indicates the tuned
control gains for balance time ≈31 s.

control gains (kp,θ,kp,x,kd,θ,kd,x). The microchaotic nature of the
data makes it difficult to estimate model parameters by directly
comparing the model generated and observed time series. To
overcome this problem,weused a stabilometric approach to estimate
the parameters (Nagy et al., 2023). Briefly, this approach assumes
that the choices of the parameters are acceptable if the model using
these parameter values reproduces certain statistical properties of
the data including the standard deviation of the stick angle and
certain frequency dependent properties. The time delay (0.23 s)
determined in this way is in good agreement with that determined
bymeasuring the response to amechanical perturbation (Mehta and
Schaal, 2002) and to a visual blank out (Milton et al., 2016). The
threshold for the sensory dead zone agrees with that estimated from
time series analysis (Milton et al., 2016).

The gains determined by the stabilometric technique are those
for stable pole balancing, i.e., the balance times are greater than 240 s
(see blue dot in Figure 2). We assumed that transient pole balancing
resulted from alterations in the control gains for the pole angle, kp,θ
and kd,θ. The control gains for the movements for the position of
the cart were not changed. Figure 2 summarizes the balance time
predicted by themodel as a function of kp,θ and kd,θ for fixed kp,x and
kd,x. Three types of behaviors can be observed: 1) unstable balancing
with balance time ≤1 s, 2) stable balancing with BT ≥240 s, and 3)
transient balancing with 1s < BT < 240 s. The blue dot shows the
values of the gains for the control of the pole angle determined using
stabilometry.

We used the measured mean pole balancing time to choose
the gains for the control of the pole angle generated by the model
(simulated data). We estimated the mean pole balancing time
by simulating data with initial angles ranging from −3° to 3° in
increments of 0.001°.

The values of the gains for the simulated data were
chosen to give a similar mean balance time as observed
experimentally for each subject (see Table 1; Figure 3). For
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TABLE 1 Control gains estimated from real pole balancing data. Note that N is Newtons, rad is radians,m is meters and s is seconds. Π refers to the dead
zone threshold.

Subject kp,θ(N/rad) kd,θ(Ns/rad) kp,x(N/m) kd,x(Ns/m) Π (rad)

A 120 28 14 19 1.75

B 240 30 13 30 3.00

FIGURE 3
Comparison of the changes for the last 10 s of balancing in vertical displacement angle, θ, for synthetic data and real pole balancing data for Subject A.
The data pre-processing process excluded the data points in the last portion of the signal (indicated by LCT and labeled as Cutoff region) that
correspond to the start of a fall. We divide the remaining data into no fall and pre-fall which we label as 0 and 1. The generated data was further
partitioned into windows, which are visually represented by boxes colored in shades of gray (indicates no-fall region) and brown (indicates pre-fall
region). The horizontal dashed line indicates the θ when the control was lost.

Subject A’s parameters, the mean balance time for simulated
data was 30.4± 24.8 s (mean ± one standard deviation) and
the measured mean balance time for 95 balancing trials was
31± 19.8 s. The red dot in Figure 2 shows the values of the gains.
For Subject B’s the mean balance time for simulated data was
24.6± 9.8 s and the measured mean balance time for 21 balancing
trials was 24.8± 13.05 s.

2.3 Data generation and pre-processing for
machine learning

We configured the mathematical model using the control gains
shown in Table 1. An initial angle was randomly selected from a
range between [−3, 3].The data generation process involves running

six simulations, and computing the feature set: fingertip position
x, and vertical displacement angle θ at each time step. A total of
1,000 balancing trials are generated in each simulation. The time
point at which balance control was lost (LCT) was determined as
follows: First, the largest θ for which the stick remained balanced
was determined from all of the balance trials. Balance control was
lost when the angle in the next time step (0.01 s) was larger.The data
points for times greater than LCT were discarded. This is indicated
to the right of the vertical orange line in Figure 3. Since our focus
is on forecasting, not fall detection, we further removed the 0.75 s
prior to LCT to make sure that the changes in angular displacement
θ and fingertip position x were not those related to falling (i.e., truly
pre-fall data). This time can also be thought of as time (buffer zone)
available to activate strategies to either prevent or minimize the
consequences of a fall.
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FIGURE 4
A bidirectional recurrent unit (LSTM) for fall forecasting.

The remaining data is then partitioned into no-fall and pre-
fall regions and further segmented into fixed-size windows creating
training instances/windows using the sliding window protocol as
shown in Figure 3. In all of our experiments, each window is set
to 1.28 s long which is sufficient to account for the dynamics of a
pre-fall pattern. The amount of data labeled as pre-fall is determined
by the time-to-predict parameter and the size of the window we
used. We vary the time-to-predict parameters from 0.1 s to 1.5 s to
assess how far ahead we can forecast impending fall in an unstable
dynamical system.

2.3.1 Balancing training data
Given that each simulation will generate a lot more data for

the no-fall region than the pre-fall region, our data set is massively
unbalanced. In machine learning, training with an unbalanced
dataset will end up with a model that cannot be generalized. To
balance our data set, we dynamically computed the stride length
(i.e., the distance the window moves), within the no-fall region to
match the number of windows within the pre-fall region during
the sliding window generation process. The key is to first maintain
a fixed stride size of 1 (or other suitable sizes) within the pre-fall
region. Assuming that the length of the pre-fall region is represented
by n, we will obtain a total of (n−w+ 1) sliding windows within the
pre-fall region, with a stride of 1 and a window size of w. Afterward,
we dynamically calculate the stride size (S1)within the no-fall region
to correspond to the number of windows in the pre-fall region using
this computation:

S1 =
(number of sliding windows in no fall region)
(number of sliding windows in pre− fall region)

where, the number of sliding windows in the no-fall region is
(N−w+ 1). Here N refers to the length of the no-fall region. By
adjusting the stride sizewithin the no-fall region, themodel observes
a nearly equal number of data windows from both the no-fall and
pre-fall regions.

The traditional or naive way of balancing the dataset is by
running additional simulations, labeling the simulated data as no-
fall and pre-fall after cropping off the specified number of data points

in the LCT region at the end, and only saving the pre-fall section of
the data for training. This is a much more computation-intensive
way of data balancing and might generate inconsistent training
datasets since additional pre-fall data do not have a corresponding
no-fall data region. Given the temporal relationships that could
arise between the corresponding no-fall and pre-fall regions,
only adding in one of those regions could negatively affect the
training process.

2.4 LSTM networks and model training

The ideal model for fall forecasting should be able to learn
a nonlinear function that could accurately recognize patterns
preceding falls, within a specified amount of time ahead (i.e., time to
predict). We want to investigate whether a deep-learning model can
be used for learning this nonlinear function, specifically the LSTM
model, to predict the stick fall in human stick-balancing problems.
Starting with LSTM, the simplest model for capturing temporal
dynamics, we lay the groundwork for future exploration into more
complex models.

Our choice of Bi-LSTM was based on its ability to learn patterns
from both directions, making it contextually more aware. It also
addresses the limitations of traditional LSTMs, such as the vanishing
gradient problem, and enables the handling of longer temporal
dependencies. Our choice is supported by other researchers. For
example, in Wang et al. (2022), many variants of stacked LSTM
models were used for crash prediction in a disorienting spaceflight
analog balancing task from the time series data. Figure 4 shows
the stacked bi-directional LSTM architecture we used with batch
normalization. Incorporating a batch normalization layer stabilizes
the training process, facilitating faster convergence, and enhancing
model performance. Moreover, it also regularizes the model,
minimizing overfitting and enhancing its ability to generalize to new
data to make the model more robust.

We selected SGD (StochasticGradientDescent) as our optimizer
since it can lead to faster convergence, which is vital for quickly
learning from historical data in time series forecasting. Since our
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TABLE 2 LSTMmodel configuration.

Names BiLSTM

Learning rate 0.001

Epochs 100

Batch size 128

Optimizer SGD

Loss function BCE

problem can be framed as a pre-fall-vs-no-fall classification, a
Binary-Cross-Entropy (BCE) is chosen for the loss function. We set
a large epoch size of 100 but adopt an early stopping strategy. All our
models were built and trained using Keras and TensorFlow on Dell
Precision 7820 Tower with 256 GB RAM, and four GeForce GTX
1080 GPUs. The hyperparameters used in our bi-directional LSTMs
are presented in Table 2.

We adopt a methodical approach for fine-tuning the hyper-
parameters of the model. The window size of 128 units, was
chosen based on the delay inherent in our physical system. Other
parameters, including the number of layers and neurons, were
determined through a progressive grid search, aimed at validating
our hypothesis. This search was halted upon achieving successful
preliminary results, indicating the model’s potential. The learning
rate, initially set through trial and error, was dynamically adjusted
via a scheduler to decrease over time, optimizing the model’s
performance.

These hyper-parameter adjustments had significant impacts. For
instance, excessive layers or neurons increased model complexity,
leading to overfitting and poor generalization. Conversely, too
few layers or neurons result in less expressive model because of
low parametrization, causing under-fitting. A fixed learning rate
was found inadequate, as it hindered the model’s convergence
to an optimal solution over time. Implementing a learning
rate scheduler effectively addressed this, ensuring optimal model
performance.

2.4.1 Input features
The inputs to our bi-directional LSTM are the angular

displacement and the position of the pole both at time t and at
t− τ, where τ is the time delay in the mathematical model as
discussed earlier. The vertical angular displacement is defined as
the angle made by the pole with the sagittal plane. Similarly, the
position of the pole at time t is defined by the actual position of
the fingertip (on the x-axis). Data is fed one window at a time
with the above four features. It is important to note that in the
experiments, the dimension of the input features is defined as,
Xinput = (θ(t− τ),θ(t),x(t− τ),x(t)) such that Xinput ∈ ℝd×4, where d
is the size of the window of data (1.28 s) for the optimal learning of
pre-fall signals.

2.4.2 Model validation
To determine how well our models perform and which model

will perform best on unseen data in each experiment, we split

the dataset into training, validation, and testing sets. In the first
experiment, we trained our Bi-LSTM solely with all the limited
real data we had, dividing the dataset into approximate 80/10/10
ratios for the training, validation, and test sets. For the second
experiment, we train the BI-LSTM using only the synthetic data
generated from the mathematical stick balancing model, we split
the synthetics dataset into 90 percent for training and 10 percent
for validation. Since the dataset is large, reserving 10 percent for
validation is sufficient. We used the entire real dataset to test the
model’s generalizability. For the third experiment, which is transfer
learning, we started with a pre-trained model from the synthetic
data. We split all the available real human data into training and test
sets in the approximate ratio of 85/15. This division was performed
based on the available number of trials for each subject. Using
subject A’s as an example, this translates to 22 trials of the train
and 4 trials for the test where the total available real data for
subject A is 26.

In general, the data should be split in such a way that none of
the data in the validation or test set appears in the training set. Data
used for our experiments are balanced in terms of no-fall and pre-
fall data windows. Since time to predict will affect the amount of data
available for training, down-sampling of data is performed to ensure
that all our experiments are using the same number of windows of
no-fall and pre-fall data as used in the experiment using the smallest
time-to-predict value.

2.4.3 Evaluation metric
We adopted the standard metric to evaluate the performance of

a machine-learning model. There are the F1 score, Precision, Recall,
and Accuracy. These metrics are defined as:

Precision = TP
TP+ FP

Recall = TP
TP+ FN

F1_Score = 2 ⋅Recall ⋅ Precision
Recall+ Precision

Accuracy = TP+TN
TP+TN+ FP+ FN

True Positive (TP) occurs when the model correctly predicts a
positive instance, such as accurately forecasting a fall. True Negative
(TN) is when the model correctly predicts a negative instance
(non-fall for our case). False Positive is the case when the model
erroneously predicts a negative data sample as positive and False
Negative is the opposite case. Precision assesses the accuracy of
positive prediction, and Recall, which is the same as sensitivity,
quantifies the correct identification of real positives. The F1 score
is a harmonic mean of precision and recall to provide a balanced
measure of model performance.

In general, higher score of precision, recall, F1-score and
accuracy indicate better generalization of the model. A high recall
means that we do not miss predicting an impending fall (all true
events are detected), while high precision indicates that we do not
predict non-falls as impending falls (resulting in very low false
alarms). Accuracy measures how well the model correctly forecasts
impending fall and non-fall events. In a stick balance experiment or
simulation, the occurrence of a fall is a critical event. Surrounding
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FIGURE 5
The three models used for our experiments: real data only, synthetic data only, and a combined approach.

this event, the characteristics that precede the fall of the stick
are significantly informative for the prediction task. We do not
want to overlook any potential falls, so relying solely on accuracy
as a performance metric is inadequate. The additional evaluative
criteria, such as precision, recall, and F-score are all needed to
comprehensively assess predictive performance.

To ensure the trained model generalizes well, the evaluation
process of themodel involves splitting the training data into training,
validation, and test sets. The validation and test sets contain data
independent from the original training data but with a similar
statistical distribution. The validation set is used to assess the
generalization of the model during training, and only a model
that generalizes well with the validation set is selected as the final
model to be tested with the test set. If a model fails to generalize
during validation, hyperparameters of the model need to be tuned.
For example, we added batch normalization and introduced a new
technique to balance the data.

2.4.4 Transfer learning
In the computer vision world, transfer learning has been applied

successfully to transfer knowledge from a model trained in an
existing domain to data captured from a new domain that has
a slightly different prediction target. For example, using transfer
learning, you can take an existing algorithm trained to identify 50
different flowers in images and use it to create a new algorithm that
can identify those 50 flowers plus 10 new types of flowers, all while
reducing the training time of the new algorithm (Pan and Yang,
2010; Zhuang et al., 2021). Essentially, transfer learning uses a pre-
trained model as a base for a new model of a target in a similar
domain. Transfer learning allows us to refine a base model with
a small amount of real human pole balancing data set and then
evaluate themodel on the rest of the real data. Figure 5 is a schematic
diagram that illustrates this process.

We implemented the transfer learning by first initializing the
network with the pre-trained weights of a saved model. We split our
real pole balancing data where one set was used for the refinement
of the saved model and another set was used for testing the model
after refinement.

2.5 Experiments

2.5.1 LSTM training with only real data
At first, we trained our LSTM model using only measured

data captured by the motion camera from the human subject.
This is to create a baseline model for comparison with other
models in our experiments. We used two subjects’ data to conduct
our experimental study. For subject A, there were a total of 28
data samples available. We used 26 data samples/balance trials for
training and 2 samples for testing. For subject B, only 14 samples
were available. We thus used 12 data samples for training and 2 for
testing. We only trained one forecasting model using the smallest
time to predict value (0.1 s) for each subject.

2.5.2 LSTM training with only synthetic data
The goal of this experiment is to train a series of models

purely using synthetic data with different time-to-predict values
to assess the limit of the performance of the LSTM machine-
learning algorithm for predicting impending stick falls. A MATLAB
program that implemented the mathematical model described in
Section 2.2 was used to generate synthetic data for subjects A and
B using the estimated parameter shown in Table 1. We labeled the
generated data set into no-fall and pre-fall regions, segmented them
into windows of 1.28 s long, and balanced the no-fall and pre-fall
windows as described earlier in Section 2.3.1. In each of the LSTM
training sessions, the training set contained 1,000 samples, while the
validation set contained 50 samples.This model is then tested on the
small amount of real pole balancing available to us to measure how
themodel trained with synthetic data performs against real data. For
each subject, we repeated this LSTM training six times with different
batches of synthetic training data to eliminate the probability of the
randomness effect. In addition, each of these LSTM training is run
15 times using a different time-to-predict value from 0.1 s to 1.5 s
with a step size of 0.1.

To ensure that our results are not due to insufficient training
data, we trained one LSTM model using 10,000 samples/balance
trials of synthetic data. Training this large data set took 8 h on a
computer with four GPUs. The model trained using this large data
set performed similarly to the one trained with only 1,000 balance
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TABLE 3 Result of training with only a small amount of real data.
Time-to-predict is 0.1 s.

Subject A Subject B

Precision 0.48 0.38

Recall 0.37 0.40

Accuracy 0.55 0.54

trials. For computational efficiency, we ran all of our remaining
experiments with only 1,000 balance trials.

2.5.3 Refining LSTM model via transfer learning
In this third experiment, we studied the impact of transfer

learning on improving a model trained using purely synthetic data
by utilizing a small amount of real human pole-balancing data. To
achieve that, we refined all the models trained with synthetic data
using both subject A and B’s real-human pole balancing data. As
in other experiments, we split the available human balancing data
into training and validation sets. The model was re-trained with a
very small learning rate so that we do not drastically change the
trained weights.

3 Results

3.1 Training with only real data

Table 3 presents the result of training solely on real human pole
balancing data, which reveals bad performance for both subjects
A and B. This model was trained using only a time-to-predict of
0.1 s, which presumably should be the best that can be done as
the data is closest to the fall. These results were expected as the
limited availability of data was not able to train the LSTM model
effectively.

3.2 Training with only synthetic data

In Figure 6, we present the average and standard deviation
of the precision, recall, and accuracy values obtained from six
independently trained LSTM models for both subject A’s and B’s
synthetic data. The LSTM models performed well when tested using
synthetic data, but did not perform as well when tested against real
human data. For synthetic data, we observe that as the time-to-
predict values increase, there is a decrease in accuracy, precision,
and recall scores. This trend holds true for accuracy and precision
scores when dealing with real data as well. This observation applies
to both Subject A’s and Subject B’s data. These results indicate that
our LSTM model can perform better with a shorter time to predict
value, which is expected given that the larger time-to-predict values
incorporate data further away from the fall itself. The recall score for
both Subject A and B’s real data appears to exhibit some variability
with respect to the time to predict values. One possible explanation
for this low recall could be that the synthetic data may not capture

the full range of diversity and complexity found in real pole-
balancing scenarios. Additionally, the model trained on synthetic
data may not exhibit effective generalization when applied to real
pole-balancing data.

3.3 Refining LSTM model through transfer
learning

Figure 7 summarizes the results of the LSTM model trained
initially on synthetic data and refined with real human pole
balancing data. As we can see from this figure, the results for both
subjects A and B suggest an improvement with transfer learning.We
see that for both subjects, precision, recall, and accuracy have all
improved substantially fromwhen the LSTMmodelwas trained only
on synthetic data. After training with transfer learning, the overall
accuracy for both Subject A and B exhibited an improvement of
approximately 10%–18%. The results also demonstrate an increase
in both precision and recall for both subjects. These improvements
indicate that the LSTM model, which was originally trained solely
on synthetic data, now demonstrates improved generalization to real
pole balancing data.

This improved generalization can be explained by the fact
that transfer learning starts with a pre-trained model that
already learned a sub-optimal model of the physics of stick falls.
This pre-trained model greatly facilitates the learning of the
dynamics of real human stick falls because the initial model is
initialized with weights derived from observing a large number of
examples of synthetic stick fall data. Without transfer learning,
the initial model is randomly initialized, and coupled with a
limited amount of data, the training cannot achieve a model with
high accuracy.

When evaluating accuracy and precision scores on data from
both subjects, the results after training with transfer learning also
reveal a subtle pattern where the scores gradually decrease as the
time to predict values increases. This phenomenon is expected as an
increasing time-to-predict means that the window being examined
is farther away from the fall. As with any forecasting problem, there
is more uncertainty when predicting far into the future compared to
predicting closer to the present.This is evenmore truewith complex,
chaotic dynamical systems as the smallest fluctuations can have
rapid divergence in a few time steps. We recognize that our model
will not be useful for predicting stick fall with a long anticipation
time. However, the short anticipation of 2.35 s that we achieved
is sufficient for alerting users or triggering preventive measures to
stabilize it. The particular machine learning architecture chosen
here is relatively simplistic, and the data is limited. Future studies
may show that improving the LSTM architecture may yield longer
anticipation times.

We notice that while our accuracy and precision are relatively
high, our recall is low when testing against the model re-trained
with a small amount of human balancing data. In our binary
classification of no-fall or pre-fall, a threshold of 0.5 is being used.
Recall can be improved by fine-tuning the hyper-parameters of the
LSTM model such as the threshold value, the window size, and the
systematic investigation of the trade-off between precision and recall
in future work.
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FIGURE 6
Results for training with only synthetic data. In each plot, test results on simulated data (blue) are compared to results when tested with real human
data (orange). Both data from subject A (A,C,E) and subject B (B,D,F) are displayed. Each data point represents the mean accuracy (A,D), precision (B,E),
and recall (C,F) values evaluated across six separate trained models. The bars indicate the standard deviation.

4 Discussion

While traditional machine learning techniques have been
used by many researchers for the forecasting of adverse events
(Zgonnikova et al., 2016; Varshneya et al., 2021; Wang et al., 2022;
Márquez et al., 2023), recent studies have shown that when data sets
are complex and dynamic, deepmachine learning techniques always
surpass these approaches (Martí-Juan et al., 2020). In our previous
study, we compared traditional machine learning techniques
(Support Vector Machine, Random Forest, Naive Bayes) against
deep learning architectures for fall detection and found better
performance from deep learning approaches Mauldin et al. (2018).
In this paper, we investigated in depth the use of transfer learning

and a stacked LSTM deep learning model to train the forecasting
model for stick fall.

We addressed the data scarcity problem in trying to forecast
impending falls using deep learning by showing that data generated
by a mathematical model for stick balancing can be used to
effectively train a deep machine learning algorithm to predict
stick falls. We balanced the massively unbalanced data using an
innovative balancing technique. In particular, our results show that
by combining mathematically generated data with a limited amount
of real data using transfer learning, the ability to forecast falls is
increased significantly over that obtained with training using a
small amount of available real data alone. Our approach resulted
in a fall forecasting model that is 60%–70% reliable up to 2.35 s.
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FIGURE 7
Results after refining LSTM model via transfer learning. In each plot, test results before transfer learning (orange) are compared to results when tested
after transfer learning (green). Both data from subject A (A,C,E) and subject B (B,D,F) are displayed. Each data point represents the mean accuracy (A,B),
precision (C,D), and recall (E,F) values evaluated across six separate trained models. The bars indicate the standard deviation.

This increase in forecasting times increases the time available for
activating strategies to minimize the effects of a fall (Nemeth et al.,
2022; Márquez et al., 2023).

As stated earlier, we noticed that as the time-to-predict increases,
the accuracy and prediction decrease. One way to understand this
is that the latent space representations of the pre-fall and no-
fall data windows become more similar to some extent, and the
“signatures” indicative of the dynamics of pre-fall may not have fully
manifested because the time-to-predict is too large. This provides
us with an interesting direction for future research in exploring
the specific dynamical changes that occur as the fall approaches.
One possible future direction is thus to train our model with a
contrastive supervised learning (Khosla et al., 2020) approach. By
this method, we first train our model to distinguish between the

pre-fall data and no-fall data by increasing the distance between
the latent space representation and later refine the model by further
training to classify the pre-fall and no-fall. Another direction is
to compare the effectiveness of the forecasting model trained with
the mathematically generated data versus other techniques such
as Diffusion (Tashiro et al., 2021), GAN (Ganin et al., 2016), and
statistical approaches when data scarcity is a problem. This will
confirm the importance of empirical modeling to capture “key
signatures” of stick fall as compared to those reproduced by the
popular generative AI approaches.

The results that we have when tested against simulated data
indicate that the stacked LSTM architecture is able to accurately
forecast complex and chaotic dynamical systems. However, whenwe
tested against real humandata, the low recall suggests that ourmodel
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can continue to be improved in its anticipation of a fall.Theprecision
indicates thatwhen themodel suggests a fall is indeed impending,we
can expect a fall to occur. Unfortunately, for about 30% of the time,
the models are unable to distinguish between pre-fall and no-fall
windows. These results suggest that while this approach has indeed
improved our ability to anticipate fall events despite the complexity
and chaotic nature of the data, discrepancies between the simulated
data and real data remain.

Indeed, in our approach, the matching of the mathematical
model to human data was purposely designed to take into account
the individual’s differences in mean balance time, the gains for time-
delayed predictive feedback, and their sensory dead zones. However,
when plotting the real humandata and synthetic data side by side, we
can visualize the differences in their dynamical properties as shown
in Figure 3. This suggests that there may be other factors important
to anticipating impending stick falls that the LSTM has learned to
anticipate, that are not necessarily found in the real data.

The above points are critically important since many attempts to
generate synthetic data could potentially fail for the same reason.
For example, although synthetic data generation by Generative
Adversarial Networks (GANs) could potentially construct time-
series data that have similar statistical properties as real data when
aggregated, GANs may fail to accurately capture key features or
signatures when examining a single trajectory that are indicative
of an impending collapse or critical transition. Our observation
that LSTM is able to forecast adverse events in a micro-chaotic
dynamical system suggests that such approaches rely more on the
probabilistic properties of such systems is as yet an unidentified
manner. Without having some insights into the appropriate metrics
that describe these key features, synthetic data generators may
instead construct data that are very accurate in every feature except
the signatures themselves. The fact that human pole balancers are
able to sense when they are about to lose control suggests that
a signature does exist, and thus there are features that should
be matched between synthetic data and real human data. Future
directions may explore the use of alternative metrics to match real
data with those generated through mathematical models including
decomposition-based, statistical generative models and alternative
embedding spaces (Wen et al., 2021).
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