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Introduction: Doping remains a persistent concern in sports, compromising fair
competition. The Athlete Biological Passport (ABP) has been a standard anti-
doping measure, but confounding factors challenge its effectiveness. Our study
introduces an artificial intelligence-driven approach for identifying potential
doping suspicious, utilizing the Athlete’s Performance Passport (APP), which
integrates both demographic profiles and performance data, among elite
female weightlifters.

Methods: Analyzing publicly available performance data in female
weightlifting from 1998 to 2020, along with demographic information,
encompassing 17,058 entities, we categorized weightlifters by age, body
weight (BW) class, and performance levels. Documented anti-doping rule
violations (ADRVs) cases were also retained. We employed AI-powered
algorithms, including XGBoost, Multilayer Perceptron (MLP), and an
Ensemble model, which integrates XGBoost and MLP, to identify doping
suspicions based on the dataset we obtained.

Results: Our findings suggest a potential doping inclination in female
weightlifters in their mid-twenties, and the sanctioned prevalence was the
highest in the top 1% performance level and then decreased thereafter.
Performance profiles and sanction trends across age groups and BW
classes reveal consistently superior performances in sanctioned cases. The
Ensemble model showcased impressive predictive performance, achieving a
53.8% prediction rate among the weightlifters sanctioned in the 2008, 2012,
and 2016 Olympics. This demonstrated the practical application of the
Athlete’s Performance Passport (APP) in identifying potential doping
suspicions.

Discussion: Our study pioneers an AI-driven APP approach in anti-doping,
offering a proactive and efficient methodology. The APP, coupled with
advanced AI algorithms, holds promise in revolutionizing the efficiency and
objectivity of doping tests, providing a novel avenue for enhancing anti-
doping measures in elite female weightlifting and potentially extending to

OPEN ACCESS

EDITED BY

James Hopker,
University of Kent, United Kingdom

REVIEWED BY

Jim Griffin,
University College London, United Kingdom
Dustin J Oranchuk,
University of Colorado, United States
Nicolas Bourdillon,
Université de Lausanne, Switzerland

*CORRESPONDENCE

YuSik Kim,
cromoton@yuhs.ac

Sang-Hoon Suh,
ssh@yonsei.ac.kr

RECEIVED 25 November 2023
ACCEPTED 13 May 2024
PUBLISHED 13 June 2024

CITATION

Ryoo H, Cho S, Oh T, Kim Y and Suh S-H (2024),
Identification of doping suspicions through
artificial intelligence-powered analysis on
athlete’s performance passport in
female weightlifting.
Front. Physiol. 15:1344340.
doi: 10.3389/fphys.2024.1344340

COPYRIGHT

© 2024 Ryoo, Cho, Oh, Kim and Suh. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Physiology frontiersin.org01

TYPE Original Research
PUBLISHED 13 June 2024
DOI 10.3389/fphys.2024.1344340

https://www.frontiersin.org/articles/10.3389/fphys.2024.1344340/full
https://www.frontiersin.org/articles/10.3389/fphys.2024.1344340/full
https://www.frontiersin.org/articles/10.3389/fphys.2024.1344340/full
https://www.frontiersin.org/articles/10.3389/fphys.2024.1344340/full
https://www.frontiersin.org/articles/10.3389/fphys.2024.1344340/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2024.1344340&domain=pdf&date_stamp=2024-06-13
mailto:cromoton@yuhs.ac
mailto:cromoton@yuhs.ac
mailto:ssh@yonsei.ac.kr
mailto:ssh@yonsei.ac.kr
https://doi.org/10.3389/fphys.2024.1344340
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2024.1344340


diverse sports. We also address the limitation of a constrained set of APPs,
advocating for the development of a more accessible and enriched APP system
for robust anti-doping practices.

KEYWORDS

athlete’s performance passport (APP), doping, anti-doping, artificial intelligence (AI),
female weightlifting

Introduction

The utilization of banned substances for performance
enhancement, commonly referred to as doping, has been a
persistent concern since its initial detection in the 1960s, as it
compromises the fundamental tenets of fair competition within
sporting events (Connor et al., 2013). Over the years, various
measures and strategies have been introduced to address the
issue and rectify the lack of awareness regarding anti-doping
regulations while fortifying doping control (Lauritzen and
Holden, 2023). One prominent approach, the Athlete Biological
Passport (ABP), involves the indirect detection of biomarkers
derived from biological samples obtained from athletes (Saugy
et al., 2014). Despite the ABP’s emergence as a standard test for
identifying anti-doping rule violations (ADRVs), there persists a
need for advancing methodologies in the realm of anti-doping
practices, primarily due to the influence of confounding factors
on the current variables used in ABP assessments. These factors
encompass the use of prescribed medications for unrelated health
conditions, individual hematological and endogenous variations
(Zorzoli et al., 2014). Furthermore, the effectiveness of ABP may
be hindered by the exploitation of the drug detection window and
the delayed yet sustained performance enhancement derived from
doping practices (Puchowicz et al., 2018). In fact, the actual
prevalence of doping considerably exceeds the estimated
prevalence in the realm of adult elite sports (de Hon et al., 2015).

Given that the primary objective of doping among athletes
revolves around the enhancement of athletic performance, the
Athlete’s Performance Passport (APP), which encompasses
demographic profiles and performance data, presents an
opportunity to identify unusual improvements and/or sustained
high-performance records. Previous observations, linking
performance changes with trends in doping practices
(Schumacher and Pottgiesser, 2009; Iljukov and Schumacher,
2017; Iljukov et al., 2020), support that APP can be effectively
leveraged in the efforts to detect ADRVs. Notably, substantial
performance improvements were observed in middle- and long-
distance runners and professional cyclists after the introduction of
commercially available recombinant human erythropoietin,
followed by a marked decline in performance as anti-doping
measures were reinforced (Schumacher and Pottgiesser, 2009;
Perneger, 2010). The utilization of APPs in anti-doping practice,
incorporating statistical analyses and AI algorithms, has been
recently introduced as well. Based on the performance results in
track and field, previous studies conducted statistical analysis on the
variations in an athlete’s standardized performance throughout their
career, with a focus on distinguishing between clean and doped
athletes (Hopker et al., 2020; Hopker et al., 2023). Through the
analyses, they introduced the statistical model capable of identifying

the differences between these two groups and determining the
volatility in performance over an athlete’s career (Hopker et al.,
2020), as well as the model capable of identifying unusual
improvement in performance compared to their age-matched
peers (Hopker et al., 2023). Both of these studies demonstrated
the potential for modeling athlete performance data in the risk
stratification based on athletes’ likelihood of doping. In this context,
the APP may serve as an indirect marker or a means to establish
criteria for recognizing potential doping suspicions. It is worth
noting that the identification of potential doping suspicions
through the APP may be less conspicuous in sports where
competition settings lack standardization and performance
outcomes are expressed in discrete variables. Nevertheless, the
utility of the APP in testing for ADRVs appears evident in sports
where an athlete’s physical capacity is the primary determinant of
performance within standardized settings, such as track and field,
weightlifting, cycling, and swimming (Puchowicz et al., 2018). In
this regard, the development of accurate models for targeting
suspicious athletes based on APP can provide secondary evidence
for establishing criteria to target and test individuals with doping
suspicions. Despite prior studies introducing the application of the
APP in anti-doping measures, its implementation remains in the
nascent stage, warranting further scholarly investigation.

Widespread doping practices in elite weightlifting have
presented a significant and ongoing. A striking example of this
problem is evident in the fact that among the 515 participants in the
Beijing 2008 and London 2012 Olympic Games, 30 weightlifters
were subjected to the retroactive revocation of medals, prompting
the International Olympic Committee (IOC) to require the
International Weightlifting Federation (IWF) to devise a
comprehensive anti-doping strategy to avoid exclusion from the
Paris 2024 Olympic Games (Kolliari-Turner et al., 2021). Despite
positive steps taken by the IWF to address this issue, numerous
sanctioned cases continue to be reported by various organizations.
This raises questions about whether sufficient measures against
ADRVs have been implemented, especially in the countries with
a longstanding history of doping. Weightlifting is a sport that places
premium on both speed and strength (Morris et al., 2022). Notably,
the performance of the weightlifters is significantly influenced by
athletes’ body weights (BW) (Ryoo et al., 2022). Age has been
identified as another pivotal factor in weightlifting performance,
as biological aging has been shown to be associated with
performance decline after an athlete’s mid-twenties (Huebner and
Perperoglou, 2019). Moreover, weightlifting is a sport in which
performance outcomes are precisely quantified in discrete values of
the total weight lifted in kilograms (kg), and a significant number of
ADRVs have been documented (Lauritzen and Holden, 2023).
These factors collectively highlight the suitability of weightlifting
for conducting research utilizing the APPs in anti-doping practice.
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However, the extensive history of doping in elite weightlifting may
pose significant challenges for the effectiveness of APP in anti-
doping practice, especially if doping practices have been initiated
before the introduction of detection methods for certain types of
substances and their metabolites or before athletes reach high
performance levels as the identification of doping suspicious
based on APPs primarily relies on unusual deviations from an
athlete’s established physiological parameters. In addition, the
detection of the unusual deviations from the estimated
performance ranges in the athletes’ age groups and BW classes
may underestimate the efforts of the athletes during their training.
However, the observed decline in performance results in elite
weightlifting during 2016–2022 compared 2009–2015, which may
partly be attributed to the implementation of new methods to detect
long-term metabolites of certain banned substances (Bezuglov et al.,
2024), emphasizes the importance of systematical monitoring of the
performance data and sanction status over time, as trends in the
performance results of sanctioned and non-sanctioned athletes may
differ from those of the past. A comparative analysis of athletes’
performance data within their respective BW classes, individuals’
BW, history of sanctions, and ages can establish a reliable basis for
identifying potential doping suspicions in weightlifting.

The application and integration of artificial intelligence (AI)-
powered algorithms have the potential to significantly enhance not
only the efficiency of anti-doping practice (Rodriguez Duque et al.,
2023) but also the fairness of competitions. AI’s ability to analyze
datasets, such as APP, may efficiently enables the identification of
anomalies and irregularities; this, in turn, allows anti-doping
organizations to allocate their resources more effectively and
prioritize testing based on data-driven insights, strengthening the
integrity of competitive sports.

In this study, we conducted a comprehensive analysis of the
athletic performances of elite female weightlifters, categorizing them
based on their sanction status, across a range of performance
predictors. Our primary objective was to assess the potential
utility of APP in identifying athletes with suspected doping
involvement. Furthermore, we undertook the development and
validation of an innovative APP-based prediction model for
potential doping suspicion, utilizing machine learning techniques.

Materials and methods

Data acquisition and processing

The performance data of female weightlifters along with their
demographical data were analyzed to evaluate the applicability of the
APP in the identification of potential doping suspicions. All data
used in this study were sourced from publicly available records on
the International Weightlifting Federation (IWF)’s official website
(www.iwf.net) and were granted an exemption by the Institutional
Review Board of Yonsei University. The dataset encompassed
demographic data and performance outcomes of women
weightlifters across all competitions organized by the IWF from
1998 to 2020. Demographic data included genders, ages, BW, and
doping history; performance outcomes included the total weight
lifted (in kilograms, Kg), which constituted the sum of the best
snatch and clean and jerk results, each comprising three attempts. A

total of 19,591 records were acquired, 2,533 were removed if the
entity contained no performance records, age, or BW, yielding a
total of 17,058 records with 15,404 belongs to athletes with no
history of being sanctioned (the not-sanctioned group) and
1,654 belonging to athletes with a history of being sanctioned
(the sanctioned group). Athletes with sanctions for ADRVs were
identified through the IWF sanction list, which designated athletes
as ‘DSQ’ for testing positive for prohibited substances in specific
events. The criteria for sanctioning aligned with the World Anti-
Doping Code, specifically Article 2.1, indicating the “presence of a
prohibited substance or its metabolites or markers in an athlete’s
sample,” and Article 2.2, defining “use or attempted use by an athlete
of a prohibited substance or a prohibited method.” All female
weightlifters in the sanctions list were found to have violated
either Article 2.1 or 2.2.

For benchmark analysis across various demographic and
performance parameters, the dataset systematically categorized
the weightlifters into three parameters: age groups, body weight
classes, and performance levels. Age was classified into seven groups:
under 15, 15–19, 20–24, 25–29, 30–34, 35–39, and 40 and more;
body weight in kg was classified into seven classes: 49, 55, 59, 64, 76,
87, and +87; and performance level was classified into eight groups:
top 1%, top 1%–5%, top 5%–10%, top 10%–25%, top 25%–50%, top
50%–75%, top 75%–90%, top 90%–100%. To facilitate a
comprehensive analysis and interpretation, performance
outcomes across age groups and BW classes were graphically
plotted. Sanction status in performance levels across age and BW
class categories were summarized in tables. Python programming
language (Ver. 3.9.6; Python Software Foundation, Beaverton, OR,
USA) was utilized for all data processing.

Machine learning approaches for detection
of doping suspicions in weightlifting

To ensure the relevance and completeness of our dataset, we
identified five key features: age, body weight, snatch record, jerk
record, and individual’s belonging body weight class. The dataset
was filtered to include senior weightlifters (≥15 years of age) in seven
body weight classes described above, with weight class encoded into
an ordinal variable ranging from 0 to 6, representing the lightest to
the heaviest class. Entities (rows) with a non-zero total (snatch +
jerk) and valid results from all three attempts for both lifts were
retained while entities with BW less than 65 kg or higher than 125 kg
were removed, resulting in a training set comprising 8,948 entities.
The exclusion of entities under 65 kg, a common weight for female
weightlifters, aimed to prevent potential hindrance to AI model
performance, possibly due to unpredictable patterns in the dataset.
For evaluating the performance of the AI-powered models, the
outcomes from the dataset of the participants of 2008 Beijing
Olympics, 2012 London Olympics, and 2016 Rio de Janeiro
Olympics were described. This data includes age, snatch record,
jerk records, individual BW and her belonging BW class, which was
encoded into ordinal variables identical to those in the
training dataset.

To develop AI-powered methodology for the identification of
doping suspicions in female weightlifting based on the APPs, we
implemented XGBoost and Multilayer Perceptron models to
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optimize predictive power and the Ensemble model combining the
strengths of XGBoost and Multilayer Perceptron (MLP) to further
maximize predictive performance. The models were developed
based on the analyses using R (Ver. 4.3.1), employing the
XGBoost package (Version 1.7.5.1) for gradient boosting and the
Neuralnet package (Version 1.44.2) for neural network
implementation. XGBoost, a decision tree-based ensemble model,
was chosen for its proven efficacy in handling tabular data and its
ability to sequentially enhance weak classifier models (Sacks et al.,
2018). We fine-tuned our AI model by systematically exploring
different configurations through a process known as grid search,
which involved optimizing crucial hyper-parameters, including the
max_depth, gamma, colsample_bytree, and min_child_weight. To
ensure the reliability of our results, we employed a 5-fold cross-
validation strategy. In 5-fold cross-validation, the dataset was
randomly partitioned into five equally sized folds, where the
model was trained on four of the folds and validated on the
remaining fold iteratively. This approach provides a robust
assessment of the model’s generalization performance across
various data subsets (Zou et al., 2022). We employed feature
importance analysis with Python to quantify the relative

importance of input variables (age, performance results of Clean
and Jerk, individual BW, and athlete’s belonging BW class) in our
XGBoost models for identifying doping suspicions. This analysis
allowed us to visualize the significance of each feature. To leverage
the capabilities of machine learning, we employed a Multilayer
Perceptron (MLP) model. This model is a type of artificial neural
network that processes information in layers, aiming to predict
outcomes based on patterns learned from data. For our
implementation, we standardized the input data, ensuring it has
a mean of 0 and a standard deviation of 1, which helps the model
perform effectively across different types of data. The training of the
MLP involved utilizing the standard backpropagation algorithm,
which enables the model to learn from its mistakes during the
training process, adjusting its internal parameters to improve
accuracy (Taye, 2023). The MLP had 5 input units representing
various features and 1 output unit to predict the binary outcome:
0 for “not-sanctioned” and 1 for “sanctioned.” To optimize the
performance of the MLP model, we experimented with varying
the number of neurons and the configuration of hidden layers. To
systematically identify the best-performing model, we also
implemented a grid search combined with 5-fold cross-validation.

FIGURE 1
Performance Distribution and Trends in Female Weightlifters Across Age and Body Weight with Sanction Status Differentiation. (A) Scatter plot
illustrating the distribution of performance across body weight in female weightlifters. (B) Line graph depicting the trend of performance across body
weight. (C) Scatter plot displaying the distribution of performance across age in female weightlifters. Gray open circles represent not-sanctioned cases,
and black star marks (*) represent sanctioned cases. (D) Line graph illustrating the trend of performance across age. Gray open circles denote not-
sanctioned cases, while black asterisks indicate sanctioned cases in (A, C). The solid line represents themean performance of not-sanctioned cases, while
the dashed line represents the mean performance of sanctioned cases in (B, D).
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Results

Weightlifting performance profiles and
sanction trends across age groups and body
weight classes in female weightlifting

The comprehensive analysis of female weightlifters’
performances, illustrated through the overall distribution and the
average performance trend line across BWs (Figure 1A, B) and ages
(Figure 1C, D) indicates that a performance trend of sanctioned
cases consistently surpassed the average performance of the non-

sanctioned counterparts. Of the 1,654 sanctioned cases, the
distributions of sanctioned cases across age groups and BW
classes were as follows: [Age groups: 14 cases in <15 group
(0.8%), 505 cases in 15–19 group (30.5%), 571 cases in
20–24 group (34.5%), 388 cases in 25–29 group (23.5%),
148 cases in 30–34 group (8.9%), 26 cases in 35–30 group
(1.7%), and 2 cases in ≥40 group (0.1%); BW groups: 219 cases
in 49 kg (13.2%), 251 cases in 55 kg (15.2%), 226 cases in 59 kg
(13.7%), 237 cases in 64 kg (14.3%), 427 cases in 76 kg (25.8%),
51 cases in 87 kg (3.1%), and 243 cases in +87 kg (14.7%) (Tables 1,
2). The results of the comparative analysis regarding weightlifting

TABLE 1 Distribution of sanctioned cases across age groups and performance levels in female weightlifting analysis of 17,058 cases.

Age
group

Top 1%
(n =
155)

Top 1%–
5%

(n = 681)

Top 5%–
10%

(n = 823)

Top 10%–
25% (n =
2,490)

Top 25%–
50% (n =
4,174)

Top 50%–
75% (n =
4,219)

Top 75%–
90% (n =
2,613)

Top 90%–
100% (n =

1903)

ADRVs

<15 (n = 81) 0 1 0 4 4 4 1 0 14
(17.3%)

15–19 (n =
8,636)

24 59 58 96 137 98 26 7 505
(5.9%)

20–24 (n =
4,834)

11 72 63 111 137 114 52 11 571
(11.8%)

25–29 (n =
2,485)

4 42 32 66 105 79 41 19 388
(15.6%)

30–34
(n = 818)

3 12 12 24 26 36 26 9 148
(18.1%)

35–39
(n = 161)

0 0 0 4 5 12 4 1 26
(16.2%)

≥40 (n = 34) 0 0 0 0 1 1 0 0 2 (5.9%)

ADRVs 42 (27.1%) 186 (27.3%) 165 (20.1%) 305 (12.3%) 415 (9.9%) 344 (8.2%) 150 (5.7%) 47 (2.5%) 1,654

*The percentages in the parentheses denote the number of ADRVs, per analyzed cases in the matched age group (rows) or in the matched performance level (columns).

TABLE 2 Distribution of sanctioned cases across body weight classes and performance levels in female weightlifting analysis of 17,058 cases.

BW
class

Top 1%
(n =
155)

Top 1%–
5%

(n = 681)

Top 5%–
10%

(n = 823)

Top 10%–
25% (n =
2,490)

Top 25%–
50% (n =
4,174)

Top 50%–
75% (n =
4,219)

Top 75%–
90% (n =
2,613)

Top 90%–
100% (n =

1903)

ADRVs

49 (n =
2,642)

9 21 21 65 59 33 10 1 219
(8.3%)

55 (n =
2,539)

5 23 23 62 74 48 14 2 251
(9.9%)

59 (n =
2,628)

4 24 18 46 55 58 17 4 226
(8.6%)

64 (n =
2,678)

12 31 22 70 53 39 7 3 237
(8.9%)

76 (n =
4,007)

23 60 44 96 103 66 25 10 427
(10.7%)

87
(n = 813)

2 10 4 14 15 6 0 0 51 (6.3%)

87+ (n =
1751)

4 16 32 69 79 36 6 1 243
(13.9%)

ADRVs 59 (38.1%) 185 (27.5%) 164 (20.5%) 422 (16.7%) 438 (10.6%) 286 (6.8%) 79 (3.0%) 21 (1.1%) 1,654

*The percentages in the parentheses denote the number of ADRVs, per analyzed cases in the matched BW, class (rows) or in the matched performance level (columns).
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performance levels of the athletes and their sanction statuses across
the age groups are represented in Table 1. Doping prevalence,
calculated as sanctioned cases divided by the number of analyzed
cases, in each age and BW class was as follows: [Age groups: 17.3%
(14/81) in <15 group, 5.9% (505/8,636) in 15–19 group, 11.8% (571/
4,834) in 20–24 group, 15.6% (388/2,485) in 25–29 group (23.5%),
18.09% (148/818) in 30–34 group (8.9%), 16.15% (26/161) in
35–30 group (1.7%), and 5.88% (2/34) in ≥40 group (0.1%); BW
groups: 8.3% (219/2,642) in 49 kg, 9.9% (251/2,539) in 55 kg, 8.6%
(226/2,628) in 59 kg, 8.9% (237/2,678) in 64 kg, 10.7% (427/4,007) in
76 kg, 6.3% (51/813) in 87 kg, and 13.9% (243/1751) in +87 kg]
(Tables 1, 2). The results of the comparative analysis regarding
weightlifting performance levels of the athletes and their sanction
statuses across the BW classes are represented in Table 2. Sanctioned
prevalence in each performance level, striated by age and BW class,
was as follows: [by age group: 27.1% (42/155) in Top 1%, 27.3% (186/
681) in Top 1%–5%, 20.1% (165/823) in Top 5%–10%, 12.3% (305/
2,490) in Top 10%–25%, 9.9% (415/4,174) in Top 25%–50%, 8.2%
(344/4,219) in Top 50%–75%, 5.7% (150/2,613) in Top 75%–90%,
2.5% (47/1903) in Top 90%–100%; by BW class: 38.1% (59/155) in
Top 1%, 27.5% (185/681) in Top 1%–5%, 20.5% (164/823) in Top
5%–10%, 16.7% (422/2,490) in Top 10%–25%, 10.6% (438/4,174) in
Top 25%–50%, 6.8% (286/4,219) in Top 50%–75%, 3.0% (79/2,613)
in Top 75%–90%, 1.1% (21/1903) in Top 90%–100%]. In summary,
cases of ADRVs were the highest in 20–24 age group; however, the
prevalence was the highest in 30–34 age group. Thereafter, the
prevalence was high in the order of 35–39, 25–29, 20–24, 15–19.
Considering the relative small numbers of analyzed cases
in <15 and ≥40 groups, doping prevalence appeared to increase
as athletes age. Cases of ADRVs were the highest in 76 kg BW class;
however, the prevalence was the highest in +87 kg BW class with no
specific discernible pattern of doping prevalence across BW class.
While there was no discernible pattern in the absolute number of
ADRV cases across performance levels, the prevalence was highest
in the Top 1%, gradually decreasing as performance levels decreased.

These observations highlight the significance of considering
demographic factors in assessing performance outcomes and
potential doping suspicions in female weightlifting.

Performance of prognostic models for
doping suspicions among female
weightlifters

The performance of the prognostic models for doping suspicious
in female weightlifting, including logistic regression, XGBoost
model, MLP model, and the optimal Ensemble model, is detailed
in Table 3. The logistic regression model demonstrated performance
on the training set, achieving an accuracy of 0.710, AUC-ROC of
0.695, and F1 score of 0.300, while in the test dataset, it exhibited
enhanced efficacy with an accuracy of 0.852, AUC-ROC of 0.761,
and F1 score of 0.581. Our investigation of the performance of the
XGBoost model, with varying tree depths ranging from 2 to 7,
revealed that the highest achievement in the training dataset was
observed in the model with a depth of 7, while the highest
performance in the test dataset was attained by the model with a
depth of 6. Specifically, during 5-fold cross-validation, the model
with a depth of 7 exhibited an accuracy of 0.818, an AUC-ROC of
0.695, and an F1 score of 0.3207 within the training dataset; and the
model with a depth of 6 exhibited an accuracy of 0.875, an AUC-
ROC of 0.790, and an F1 score of 0.621 within the test dataset.
Across all depths, BW emerged as the most important feature to the
models’ prediction for the doping, with gains of 0.576, 0.539, 0.513,
0.552, 0.461 and 0.489 at depth from 2 to 7, respectively. Following
BW, snatch record exhibited significant importance, particularly in
the models with depths 3 to 5, serving as the second most important
feature for the models’ prediction performance. However, as the
depth increased to 6 and 7, BW class emerged as the second most
important feature while snatch result became the third. Jerk record
was not deemed as important, with gains less than 0.1 in models with

TABLE 3 Performance metrics of AI-Powered models for doping suspicion prediction in female weightlifting.

Model Train (5-fold CV) Test

Accuracy AUC-ROC F1 score Accuracy AUC-ROC F1 score

Logistic Regression 0.710 0.695 0.300 0.852 0.761 0.581

XGBoost Depth: 2 0.844 0.636 0.254 0.784 0.685 0.457

Depth: 3 0.710 0.6623 0.285 0.796 0.730 0.471

Depth: 4 0.773 0.677 0.305 0.796 0.746 0.471

Depth: 5 0.815 0.689 0.308 0.830 0.777 0.546

Depth: 6 0.798 0.694 0.315 0.875 0.790 0.621

Depth: 7 0.818 0.695 0.321 0.864 0.780 0.600

MLP Hidden: 2 0.764 0.701 0.305 0.830 0.748 0.546

Hidden: 3 0.772 0.705 0.311 0.875 0.760 0.621

Hidden: 4 0.716 0.709 0.315 0.886 0.766 0.615

Ensemble Depth: 5 Hidden: 4 0.693 0.697 0.313 0.875 0.783 0.645

CV, cross validation; MLP, multilayer perceptron; AUC-ROC, area under the curve of receiver operating characteristics.
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depth from 3 to 7; it was not considered by the model with depth 2.
Age appeared to be the least important feature as it was not
considered by the models until depth increased to 6 and 7 with
the gains less than 0.005 at these depths. Feature importance plots
for our XGBoost models are shown in Supplementary Figure S1.

In our investigation of the Multilayer Perceptron (MLP) model’s
performance with varying number of hidden units from 2 to 4, the
model with 3 hidden units demonstrated highest performance in
both the training and test datasets. Employing a 5-fold cross-
validation framework, this model exhibited an accuracy of 0.772,
an AUC-ROC of 0.705, and an F1 score of 0.311 in the training
dataset, while in the test dataset, it exhibited enhanced efficacy with
an accuracy of 0.875, an AUC-ROC of 0.760, and an elevated
F1 score of 0.621. Due to the ‘black-box’ nature MLP models, we
were not able to quantify the relative importance of the
input variables.

While the XGBoost model with a tree depth of 6 and the MLP
model with 3 hidden units individually demonstrated the best
performance, our investigation extended to the exploration of
ensemble models to further improve predictive capabilities.
Optimal result was attained in the Ensemble model combining
XGBoost with a tree depth of 5 and MLP with 4 hidden units.
This combination yielded notable results, achieving an accuracy of
0.875, an AUC-ROC of 0.783, and an F1 score of 0.645 in the test
dataset. This integration of machine learning models demonstrated
a synergistic effect, augmenting predictive capacity for the
identification of doping suspicions in female weightlifting.
Among female weightlifters participated in 2008 Beijing
Olympics, 2012 London Olympics, and 2016 Rio de Janeiro
Olympics, the model correctly identified 10, 9, and 2 athletes for
potential doping suspicions out of 15, 16, and 8 athletes who were
subsequently sanctioned, respectively, achieving a prediction rate of
66.7%, 56.3%, and 25%, respectively, while erroneously identifying 6,
13, and 4 athletes for ADRV out of 73, 74, and 83 athletes who were
not sanctioned (Table 4).

Discussion

In this study, we demonstrated the efficacy of APP in predicting
doping suspicion among elite female weightlifters through our
developed Ensemble Model, leveraging the advantages of
XGBoost and MLP. Cognizant of prior attempts to utilize the

APP in anti-doping practices, our study introduces a substantive
advancement in methodology. In contrast to earlier investigations
employing the Bayesian spline model or the delta excess
performance model, which primarily focus on analyzing
standardized performances and measuring unusual improvements
through yearly changes, our distinguished approach enables the
classification of athletes into ‘sanctioned’ or ‘not-sanctioned’
categories, offering a proactive strategy in doping suspicion
identification by incorporating artificial intelligence algorithms.
Our Ensemble model, strategically combining the strengths of
both XGBoost and MLP, utilized pooled data including ages,
BWs, performance results and sanction status of elite female
weightlifters; it adeptly identified doping suspicions among
weightlifters participated in 2008 Beijing Olympics, 2012 London
Olympics, and 2016 Rio de Janeiro Olympics. These findings
highlight the pragmatic applicability of APP in doping suspicion
prediction and demonstrate its potential for practical deployment in
targeted doping control efforts, efficiently identifying athletes with
high suspicion levels.

While ADRV instances are dispersed across diverse age groups,
our comparative analysis suggests a potential inclination towards
doping in athletes approaching the age of peak performance. It has
been previously reported that elite female weightlifting
performances exhibit a peak around the median age of 25.6,
succeeded by a decrement with advancing age (Huebner et al.,
2021). Our result concurs with this trend, revealing that female
weightlifters aged 24 (20–24 age group) performed optimally
(Figure 1B, D). Remarkably, within this age cohort, and
particularly within the top 25%–50% performance level category,
we identified the highest incidence of sanctioned cases. A parallel
study analyzing APP in elite male weightlifters also yielded
analogous outcomes (Ryoo et al., 2022), further accentuating a
potential doping proclivity among female weightlifters in their
early twenties. The highest propensity in this age group may be
conceivably driven by the substantial pressure to attain peak
performance during this phase or to forestall the performance
decline concomitant with aging (Petróczi and Aidman, 2008;
Huebner and Perperoglou, 2019). Our analysis substantiates the
underlying hypothesis by revealing significantly inflated average
performance results (kg) among sanctioned athletes compared to
their non-sanctioned counterparts across age groups and BW classes
(Figure 1B, D). Considering these observations, APP emerges as a
valuable source, enabling the establishment of predictive

TABLE 4 Ensemble model performance in predicting doping suspicions among female weightlifters–2008, 2012, 2016 olympics.

Best prediction by ensemble References

Not -sanctioned Sanctioned

2008 Beijing Not-Sanctioned 67 5

Sanctioned 6 10

2012 London Not-Sanctioned 61 7

Sanctioned 13 9

2016 Rio de Janeiro Not-Sanctioned 79 6

Sanctioned 4 2
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performance ranges for female weightlifters in distinct age groups
and BW classes. Furthermore, the utility of APP extends to the
identification of abnormal deviations indicative of potential doping
practices, thereby reinforcing its value in the context of anti-doping
strategies.

The incidence of ADRVs varied from 0.96% to 2.45% during the
period spanning 1987 to 2013 (de Hon et al., 2015); this fluctuation
could be attributed to the inherent challenges associated with
ambiguous criteria and subjectivity in the identification of positive
cases (Nissen-Meyer et al., 2022). Additionally, limitations in the ABP
monitoring system and the inefficiency of current athlete selection
methods, which rely on finishing position, randomization, or specific
targeting for doping tests, may contribute to these fluctuating rates
(Maennig, 2014). Recognizing these challenges, our proposed
solution, the implementation of an APP-based prognostic model,
has the potential to significantly enhance the efficiency of doping tests
by systematically identifying and suggesting potential doping
suspicions. The application of mathematical representations to
performance data has found utility in sports in the identification
of doping suspicions (Jones and Vanhatalo, 2017). One such example
is the utilization of the concept of critical power (CP), originally
describing the hyperbolic relationship between power output and the
time it can be sustained. This concept has been applied in various
timed sports where the velocity of athletes or teams is available,
allowing for performance prediction. Models based on CP have been
proposed as a valuable approach in anti-doping practice as they have
demonstrated efficacy in describing mean-maximal power profiles
collected from athletes or teams during competitions and detecting
performances that exceed typical errors (Puchowicz et al., 2018). The
parameters derived from the power-time relationship in sports, while
valuable, are conventionally limited to performance during constant
power output exercise. Consequently, models based on CP cannot be
universally implemented across diverse sports (Jones and Vanhatalo,
2017). To address the limitation of CP-based models, the integration
of AI holds promise, as AI-powered algorithms can excel in analyzing
extensive datasets, offering a more comprehensive and refined
evaluation of athletes’ profiles for the application for the
identification of doping suspicions in sports (Chmait and
Westerbeek, 2021; Molavian et al., 2023). Through the detection of
irregular patterns, trends, and anomalies, AI systems can support
stakeholders in pinpointing athletes engaged in prohibited practices,
thus serving as an independent and valuable criterion for selecting
individuals for doping tests.

The utilization of XGBoost, a gradient-boosted decision trees
(GBDT) algorithm, XGBoost, presents several advantages in
developing the classifier model for identifying doping suspicions
among elite female weightlifters. GBDT is well known for its ability
to handle complex, non-linear relationships among input variables
and the target outcome, making it particularly effective in capturing
subtle patterns in diverse datasets (Friedman, 2001). By
incorporating multiple input variables, including age,
performance record of clean and jerk, individual body weight,
and athlete’s belonging body weight class, our model could
leverage the collective information provided by these variables to
enhance predictive accuracy. GBDT inherently performs feature
selection during model training, automatically identifying the most
informative variables for predicting the target outcome (Upadhyay
et al., 2021). This capability ensured that our model focused on

relevant input features, optimizing its predictive performance. Our
feature importance analysis revealed that body weight emerged as
the most important feature across all depths, followed by the snatch
record and body weight class, highlighting their crucial roles in
identifying doping suspicions. This capability ensured that our
model focused on relevant input features, optimizing its
predictive performance. Traditional machine learning methods,
such as GBDT, have long been recognized as dominant in
tabular data modeling, exhibiting superior performance over deep
learning (Chen and Guestrin, 2016; Shwartz-Ziv and Armon, 2022).
However, recent efforts have been made to apply deep learning
networks to tabular data, with some neural network models claimed
to outperform GBDT (Borisov et al., 2022). Consequently, experts in
relevant fields suggest implementing hybrid methods to leverage the
flexibility of neural networks while retaining the inductive biases of
GBDT (Borisov et al., 2022). In consideration of these, we aimed to
enhance predictive by adopting a hybrid approach through
developing an Ensemble model. Our prediction models exhibited
relatively good performance, with the Ensemble model being as the
best performing model, achieving the highest F1 score. Considering
that F1 score is a fundamental metric for evaluating the effectiveness
and the performance of the classification models, describing the
harmonic mean of the quality of positive predictions (precision) and
the sensitivity of correct detections of positive events (recall)
(Sokolova and Lapalme, 2009), the Ensemble model appeared to
outperform logistic regression, XGBoost and MLP models. The
Ensemble model demonstrated prediction rates of 66.7%, 56.25%,
25% for ADRV in 2008 Beijing Olympics, 2012 London Olympics,
and 2016 Rio de Janeiro Olympics, respectively. These indicate the
significance of our effort to implement a hybrid method for
enhancing predictability of identification of doping.

While athletes can exhibit exceptional performance
improvements beyond typical ranges through doping, others may
achieve substantial performance enhancements through training.
Consequently, criticism has been directed towards selecting athletes
for doping tests solely based on performance results (de Hon et al.,
2015). To address this concern, the ongoing development of the APP
system, incorporating higher qualitative and quantitative data to
enhance its predictive capabilities for identifying doping suspicions.
Acknowledging the observed occurrence of ADRVs across all age
groups, BW classes, and performance levels, the incorporation of
demographical and individualized performance changes over time
into the APP system may enhance its utility in anti-doping
strategies. The implication of data/AI-driven approach in
identification of doping suspicions, akin our Ensemble model,
demonstrated its proactive and efficient practicality, and it may
substantially enhance the efficiency and objectivity in the selections
for doping tests when implemented in diverse sports, particularly
with the integration of more advanced APP system.

A limitation of our study is the constrained set of available APPs
(age, discrete performance outcomes, individual BW and belonging
BW class) utilized in developing the prediction models, primarily
owing to restricted public availability. This limitation may
potentially impact the robustness and practical applicability of
the models. For future studies in anti-doping research, the
development of prediction models tailored to specific sports,
utilizing APP and demographic features unique to each
discipline, is recommended. Establishing easily accessible and
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standardized systems for managing APP within each sport would be
essential for collecting consistent and relevant data, enabling the
construction of accurate and efficient predictionmodels. By focusing
on sport-specific systems, researchers can ensure that prediction
models are optimized for the intricacies of each athletic discipline,
thereby enhancing the effectiveness of anti-doping efforts.

In conclusion, we have effectively demonstrated the efficacy of
APP in predicting doping suspicions through the implementation of
an AI-powered prognostic model among elite female weightlifters.
Addressing the existing inefficiencies in current doping test selection
criteria marked by ambiguity and subjectivity, the constructive
deployment of APP-based prediction models is advocated. This
methodology represents a pioneering initiative, introducing a novel
approach to augment the efficacy of doping tests.
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