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During development, phenotype can be adaptively modulated by environmental
conditions, sometimes in the long-term. However, with weather variability
increasing under climate change, the potential for maladaptive long-term
responses to environmental variations may increase. In the arid-adapted zebra
finch, parents emit “heat-calls”when experiencing heat during incubation, which
adaptively affects offspring growth in the heat, and adult heat tolerance. This
suggests that heat-call exposure may adjust individual phenotype to hot
conditions, potentially compromising individual sensitivity to cool weather
conditions. To test this hypothesis, we manipulated individual prenatal
acoustic and postnatal thermal experiences during development, and sought
to assess subsequent chronic responses to thermal fluctuations at adulthood. We
thus measured heterophil to lymphocyte (H/L) ratios in adults, when held in
outdoor aviaries during two summers and two winters. We found that birds
exposed to heat-calls as embryos, had consistently lower H/L ratios than controls
at adulthood, indicative of lower chronic stress, irrespective of the season.
Nonetheless, in all birds, the H/L ratio did vary with short-term weather
fluctuations (2, 5 or 7 days), increasing at more extreme (low and high) air
temperatures. In addition, the H/L ratio was higher in males than females.
Overall, while H/L ratio may reflect how individuals were being impacted by
temperature, heat-call exposed individuals did not show a stronger chronic
response in winter, and instead appeared more resilient to thermal variability
than control individuals. Our findings therefore suggest that heat-call exposure
did not compromise individual sensitivity to low temperatures at adulthood. Our
study also reveals that prenatal sound can lead to long-term differences in
individual physiology or quality/condition, as reflected by H/L ratios, which are
consistent with previously-demonstrated reproductive fitness differences.
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1 Introduction

Early-life experience can shape the phenotype of individuals in
the long-term, by altering developmental trajectories (Lindström,
1999; Bateson et al., 2004). This process, referred to as
“developmental programming,” may allow developing individuals
to match their phenotypes to future predictable environments.
However, when early environmental cues poorly forecast future
environments, long-term developmental programming can be
maladaptive (Bateson et al., 2004; Gluckman et al., 2005;
Monaghan, 2008). Especially for thermal environments, early
conditions may not predict those in later-life, particularly under
climate change, which increases weather variability and the
frequency of extreme weather events (IPCC, 2021). However,
whether developmentally plastic traits persist into adulthood or
are reversible remains unclear (Burggren, 2020), especially for traits
related to thermal physiology (Angilletta, 2009; Tattersall et al.,
2012). Notably, in ectotherms, while there are clearly cases of early-
life thermal environment affecting long-term thermal preferences or
tolerance (e.g., reptiles: Refsnider et al., 2019; flies; Kellermann et al.,
2017; fish; Schaefer and Ryan, 2006), meta-analyses report little
effect overall across ectotherm taxa (fishes, amphibians, reptiles,
invertebrates: Pottier et al., 2022; reptiles; Zhang et al., 2023). In
endotherms however, including birds, much less is known about the
impact of early-life experience on individual thermal physiology
(e.g., thermoregulation capacities, body temperature) later in life,
especially at adulthood (Nord and Giroud, 2020; but see Pessato
et al., 2022). Yet, in these species, even though prenatal temperatures
are typically under parental control, thermal fluctuations still occur
through variation in parental behaviour or body temperature (Nord
and Giroud, 2020), in addition to fluctuations experienced by
offspring postnatally. Studies in poultry suggest that incubation
temperature may sometimes influence juvenile body temperature
or heat-tolerance (e.g., Piestun et al., 2008a; Collin et al., 2007
reviewed in Loyau et al., 2015), but studies in non-domesticated
birds are lacking (Nord and Giroud, 2020). We therefore know little
about how developmental history affects the vulnerability of
individuals to weather fluctuations later in life. This hinders our
capacity to accurately forecast the impact of climate change on avian
population health.

Recent evidence highlights that information about the
surrounding environment can be transmitted to embryos via
sound (Mariette et al., 2021). In the zebra finch (Taeniopygia
castanotis), an arid-adapted passerine, parents incubating at high
temperatures (>29°C–32°C in the nest) produce “heat-calls”
(Mariette and Buchanan, 2016; Mariette et al., 2018), through
“vocal panting,” an intense form of panting that improves the
emitter’s thermoregulation in the heat, in addition to its
signalling function to embryos (Mariette and Buchanan, 2016;
Pessato et al., 2020). Prenatal exposure to heat-calls adaptively
reduces nestling growth in hot nests (Mariette and Buchanan,
2016), possibly through the modulation of their mitochondrial
function (Udino et al., 2021). Both effects plausibly contribute to
the higher reproductive success of heat-call birds in adulthood
(Mariette and Buchanan, 2016), through a reduction of oxidative
damage during development. In addition, individuals exposed
prenatally to heat-calls have, in adulthood, hotter thermal
preferences, and a different panting strategy on hot summer days

compared to control individuals (Mariette and Buchanan, 2016;
Udino and Mariette, 2022), as well as greater heat tolerance (Pessato
et al., 2022). These findings suggest that prenatal heat-calls program
embryos for high postnatal temperatures, which is currently the only
known transgenerational mechanism for heat adaptation in
endotherms (Mariette and Buchanan, 2016). However, by
adjusting their phenotype for hot environments, heat-call
exposed individuals may be more challenged by cooler
temperatures brought on by seasonal fluctuations (e.g., winter).

Individuals’ ability to cope with environmental fluctuations,
such as weather variation, can be indicated via stress biomarkers
(Krams et al., 2011; Moagi et al., 2021; Skwarska et al., 2022). In
particular, the chronic impact of environmental perturbations can
be assessed with leucocyte profiles (Davis et al., 2008; Romero and
Wingfield, 2015; Skwarska, 2019), as chronic stress alters the relative
proportion of different circulating white blood cells (Gross and
Siegel, 1983; Davis and Maney, 2018). Among leucocytes,
heterophils (in birds; or neutrophils in mammals) and
lymphocytes are the most abundant cell types (c.a. 80%),
involved in innate and adaptive immunity, respectively (Davis
et al., 2008; Campbell, 2015). Under challenging environmental
conditions, the heterophil to lymphocyte (H/L) ratio increases in
peripheral blood. This mostly results from a concomitant increase of
heterophils, and decrease of lymphocytes that are redistributed
across body compartments to prepare the body to cope with
infection (Gross and Siegel, 1983; Dhabhar, 2002). In birds, even
though responses to temperature have mostly been studied in
poultry, the H/L ratio has been shown to increase following heat
exposure, for hours or weeks (Altan et al., 2003; Prieto and Campo,
2010; Xie et al., 2017), or after a cold spell of one or 2 weeks (Krams
et al., 2011). In addition to its usefulness as a chronic stress
biomarker, the H/L ratio may be indicative of individual overall
health status or “quality”/condition, if higher quality individuals are
generally more resilient to environmental challenges (Hylton et al.,
2006; Krams et al., 2011). Accordingly, the H/L ratio correlates with
adult body mass in several avian species (Gladbach et al., 2010;
Włodarczyk et al., 2018; Skwarska, 2019; but see Powell et al., 2013),
or evenwith song repertoire size in song sparrows (Melospizamelodia;
Pfaff et al., 2007). Ultimately, the H/L ratio has also been reported to
predict survival, in both adults (Kilgas et al., 2006; Maness et al., 2023)
and young (Hylton et al., 2006) in wild birds.

In this study, we investigated whether early-life conditions affect
individual chronic responses to weather variation at adulthood. To
this aim, zebra finch embryos were exposed to heat-calls or control-
calls, and were subsequently raised under contrasting postnatal nest
temperatures as nestlings. At adulthood, we assessed individual H/L
ratio in the peripheral bloodstream, over two summers and two late
winters, while individuals were held in outdoor aviaries. We
predicted that in summer, individuals exposed to prenatal heat-
calls and/or reared in hot nests would have lower H/L ratios (i.e., will
be less impacted) compared to individuals exposed to control-calls
or reared in cooler nests. However, if tailoring phenotype to hot
conditions in early-life is traded-off against resilience to cold
conditions throughout life, we expected these individuals to have
higher H/L ratios (i.e., will be more challenged) in late winter.
Alternatively, if heat-call exposure reduces the physiological costs of
growing in the heat in a way that improves individual fitness at
adulthood (Mariette and Buchanan, 2016), this may be reflected by a
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consistently lower H/L ratio in heat-call birds, across environmental
conditions. If so, the H/L ratio may also positively correlate with
individual body mass and be repeatable within individuals. In
addition, we verified that the H/L ratio is indeed responsive to
seasonal or weather conditions, and also tested which short-term
temporal scale (2, 5, or 7 days) and air temperature variable (daily
minimum or maximum) best explained variation in this biomarker.
We expected individuals to be more strongly impacted (i.e., higher
H/L ratio) by thermal extremes (low and high) than mild conditions
(i.e., non-linear quadratic temperature effect).

2 Material and methods

2.1 Experimental subjects

The experiment was carried out at Deakin University (Geelong,
Australia), from September 2017 to September 2019. We worked on
51 adult wild-derived zebra finches (27 males, 24 females) of similar
age, hatched in captivity and 8–10th generation descendants from a
wild population from Northern Victoria. Individuals from both
prenatal acoustic treatment groups were housed together in mixed-
sex outdoor aviaries, although there were more males than females,
in both playback groups. The birds were provided with food (finch
seed mix (Golden Cob™ finch mix), grit, cuttlefish bone, fresh
greens) and water ad libitum. Birds were not breeding at the time of
sampling, in either season.

2.2 Developmental conditions: prenatal
playback and nest temperature

Early-life conditions of the birds were experimentally
manipulated as part of a previous playback experiment
conducted in 2014 (Mariette and Buchanan, 2016). Eggs were
collected from the nests on laying day, replaced with dummy
eggs, and placed in a main incubator (Octagon 20 plus, Brinsea,
Australia) set at 37.5°C and 60% humidity. On the 10th day of
incubation, eggs were transferred to one of the two experimental
incubators, broadcasting a playback of either contact calls (control),
or heat-calls (treatment) for the last 4–5 days of incubation. Both
playbacks also included whine calls, to ensure normal stimulation of
the auditory system by calls with a complex acoustic structure. All
call types are naturally produced by parents in the nest, to
communicate with their partner (contact and whine calls) or
when experiencing heat (heat-calls). The playbacks were
broadcast inside the incubators via two speakers (Sennheiser
HD439) externally connected to an amplifier (Digitech 18W) and
an audio player (ZoomH4nSP), and were played daily (9:30 to 18:00;
16 min of control- or heat-calls per hour) until hatching. To prevent
any incubator-specific effect, eggs and sound cards were swapped
daily between the two experimental incubators.

At hatching, nestlings were identified (by clipping head down
feathers) and returned to their parents or foster parents, in nest
boxes placed in outdoor aviaries. The different sun exposure of the
nest boxes caused a natural temperature variation between the nest
boxes, resulting in a gradient of warm to hot nests (range: 3.15°C–6.17°C
above air temperature, Ta). Nest temperatures were measured using

temperature loggers (Maxim Integrated iButton, DS1922L-F5; or
Minnow-1.0TH, Senonics). The nest temperature was expressed as
the nest temperature above Ta (i.e., temperature differential, but
thereafter referred to as “nest temperature” for simplicity), calculated
as the average difference between the maximum daily nest temperature
and maximum daily Ta (obtained from the Australian Bureau of
Meteorology; BOM) over the nestling rearing period (i.e., hatching
to 13 days post-hatch). We only considered this temperature measure
because, compared to absolute nest temperature, the nest temperature
differential better reflects the thermal rearing environment and better
explains nestling development (Mariette and Buchanan, 2016).

2.3 Blood sampling

We collected blood samples in late winter (September; see “air
temperature” section below) and austral summer (February) across
2 years, when the birds were 3 and 4 years old. The order of winter
and summer samplings were reversed between the 2 years to prevent
confounding effects of age on seasonal variation. There were four
sampling periods: in the first year, sampling occurred on the 21-22-
23 September 2017 (N = 43 birds with readable smear) and 01-
02 February 2018 (N = 36); and in the second year, on the
08 February 2019 (N = 15) and 10 September 2019 (N = 20).
Not all individuals were sampled at each period, due to natural death
and to minimise handling time, as birds were caught in a group; and
some samples (N = 31) were unsuitable for cell count (see below). Of
the 51 birds for which we obtained data, 14 were sampled once,
17 twice, 14 three times and 6 four times, for a total of 114 blood
smears. These 51 individuals included 18 males and 15 females from
the control playback group, and 9 males and 9 females from the
heat-call playback group. For six samples from September 2017, the
exact sampling date (within the 3 days of sampling) was unknown,
so the weather on the second day of sampling (22-Sep-2017) was
used. Excluding these six samples instead did not affect the results.

For each period, birds were captured in a group, held in a
wooden box, before successive individual sampling in a random
manner. We weighed each individual, and collected blood into
heparinised capillary tube after puncturing the brachial vein with
a 26-gauge needle. Blood smears were prepared immediately by
smearing a drop of blood onto a microscope glass slide to obtain a
thin blood film (Campbell, 2015). All blood sampling occurred
within 60 min post-capture, except for 9 samples collected
within 90 min.

Following blood sampling, blood smears were air-dried and
stained with Quick Dip staining (Fronine, Australia). Specifically,
the slides were fixed in absolute methanol and successively stained
into two staining solutions (eosin-Y and methylene azure B) before
being rinsed with water, air-dried and stored in a dark container
until analysis.

2.4 Heterophil/lymphocyte ratio

Leucocyte counts were performed using a compound
microscope (Olympus), at ×1000 magnification using oil
immersion. All slides were examined by a veterinary clinical
pathologist, blind to individual identity and sampling date. For
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each slide, the first 100 leucocytes were counted, identifying
heterophils, lymphocytes, monocytes, eosinophils and basophils.
We then calculated the heterophil to lymphocyte ratio by
dividing the heterophil number by lymphocyte number (Gross
and Siegel, 1983; Davis et al., 2008). Some smears were not
readable due to poor smear quality, including staining issues,
cells damaged and smears too thick (N = 31 out of 145 slides, 21%).

2.5 Air temperature before sampling
at adulthood

We obtained daily atmospheric air temperatures (Ta) from the
Australian Bureau of Meteorology, from the Breakwater Geelong
Racecourse station, 6.7 km from the aviaries (station number 87184,
latitude: −38.1737, longitude: 144.3765, elevation above sea
level: 12.9 m).

First, we considered temperature variations broadly as seasonal
variations (i.e., categorical variable: summer or late winter). We
conservatively refer to the sampling periods in September as “late
winter” because temperatures were about 1.0°C warmer than in the
coldest winter months (July-August), and 1.8°C cooler than in early
spring (October) (BOM data for 2017 and 2019).

Second, we considered temperature variation on shorter
temporal scales than the seasons, using several “weather
variables.” From Ta data, we calculated the average daily
maximum and minimum temperatures prior to the sampling
day, over different time scales (Figure 1): i.e., for 2, 5, and 7 days
before sampling (thereafter referred to as max-Txd and min-Txd).
Longer time scales (e.g., 14 or 30 days, were not considered because
the temperature distribution across sampling dates was not suitable
for testing quadratic effects (i.e., no middle value, Figure 2). In
addition, to specifically focus on temperature variability, we defined

a predictor called “weather trend” (two-level categorical variable:
warming or cooling), indicating whether the weather in the 2 days
just before sampling was warmer or cooler than in the 5 days prior
(i.e., period from day −3 to −7).

2.6 Statistical analyses

All analyses were performed in R (version 4.0.1).
First, we tested whether the H/L ratio was affected by

developmental conditions, season (summer or late winter), and
sex. We ran linear mixed models (LMMs) including the H/L
ratio as the response variable, the prenatal playback, postnatal
nest temperature, season and sex as fixed effects, as well as the
two-way interactions between season and the playback or nest
temperature.

Second, to test for effects at shorter temporal scales than the
seasons, we used a similar approach but replacing the categorical
variable “season” by a short-term weather predictor. We ran four
separate LMMs, corresponding to the four different weather
variables: average maximal temperature over 2, 5, or 7 days
before blood sampling or “weather trend” (two-level factor, see
above). All models included the H/L ratio as the response variable,
prenatal playback, postnatal nest temperature, sex, a weather
variable (max-T2d, or max-T5d, max-T7d, or weather trend) as
main effects, as well as the two-way interactions between the
weather variable and the playback or the nest temperature. Non-
significant predictors (p > 0.060) were sequentially dropped to
obtain a reduced model. Then, we compared the Akaike
Information Criterions corrected for small sample size (AICcs) of
the three reduced models varying only by the continuous weather
predictor to identify which temporal scale(s) best explained
variation in H/L ratio, using the MuMin package (Bartoń, 2022).
Average maximum temperatures were strongly correlated to
minimum temperatures: Spearman correlation tests: T2d: rs =
0.55, p < 0.001; T5d: rs = 0.87, p < 0.001; T7d: rs = 0.82, p <
0.001. Nonetheless, to test which of the two best explain
variation in H/L ratios, we ran another three LMMs, where the
average maximum daily temperature for T2d, T5d or T7d was
replaced by the corresponding minimum temperature value in
the reduced models.

For all models, the lme4 and, lmerTest packages were used
(Kuznetsova et al., 2017; Bates et al., 2021), the H/L ratio was
log-transformed, continuous predictors were scaled (i.e., mean = 0,
std = 1) and bird-ID was included as random factor. Normality of
the residuals of full models was visually inspected. Full models are
presented in the (Supplementary Tables S1, S2). Given that the H/L
ratio does not significantly increase within 60 min of restraint time,
but may do so past 60 min (Davis, 2005; Cirule et al., 2012), we re-
ran all analyses excluding the nine samples collected >60 min post-
capture. Results were qualitatively unchanged, unless
otherwise specified.

Third, to probe whether H/L ratio could be indicative of
individual health status, quality or condition, we investigated the
relationship between body mass and H/L ratio. To obtain data
comparable across sampling periods, both the H/L ratio and body
mass were standardized (using the scale function; mean = 0,
standard deviation = 1) within each of the four sampling periods,

FIGURE 1
Average maximum and minimum past temperatures before
sampling day. Panels show the average of daily temperatures over the
2 (T2d), 5 (T5d) and 7 (T7d) days before sampling. Within panels, upper
and lower solid symbols represent average daily maximum and
minimum temperatures respectively, and colours indicate the two
seasons (purple: late winter, orange: summer). The symbols show the
different sampling dates in September 2017 (diamond: 21st, square:
22nd, triangle: 23rd) and February 2018 (diamond: 01st, triangle: 02nd).
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following (Ochs and Dawson, 2008). We ran a LMM fitting the H/L
ratio as response and body mass as predictor. In addition, we
evaluated the overall repeatability (across all sampling periods) of
individual body mass and H/L ratio by calculating intra-class
correlations (ICCs) using the rptR package and a Gaussian
distribution (Stoffel et al., 2017). Specifically, the scaled body
mass or the H/L ratio was fitted as the response variable, and
bird identity (“bird-ID”) as the random factor. The 95%
confidence intervals were determined by 1000 bootstrap
iterations and p-values obtained from likelihood ratio tests
(LRTs). To test whether repeatability remained after controlling
for individual-specific traits and other (significant) fixed effects, we
assess “adjusted repeatability” (sensu Nakagawa and Schielzeth,
2010), using the same test but controlling for playback, sex and
max-T5d as fixed effects. Further, to test specifically whether the
trade-off between hot and cold weather tolerance affected heat-call
individuals more than control-call individuals, we tested the within-
individual repeatability in H/L ratio across seasons (i.e., winter vs.
summer: Sept vs. Feb) using one Pearson’s correlation test per
playback group.

3 Results

Individuals’ prenatal acoustic experience affected their H/L ratio
at adulthood, three to 4 years later. Specifically, the H/L ratio was
significantly lower in birds that were prenatally exposed to heat-
calls, compared to those exposed to control-calls (Table 1;

Figure 3A). This was the case in summer, as predicted, but also
in late winter (i.e., no interaction playback x season, Supplementary
Table S1), and H/L ratios did not differ overall between seasons. By
contrast to prenatal playback, nest temperature experienced
postnatally had no effect on H/L ratios at adulthood, in either
season (Supplementary Table S1). Lastly, the H/L ratio also differed
between the sexes, being significantly higher in males than females
(Table 1; Figure 3B).

Unlike at the seasonal scale, the weather experienced in the
week prior to blood sampling did affect H/L ratios. H/L ratios
were higher at the colder and hotter extremes, compared to
milder temperatures (i.e., quadratic effect, Table 2). When
comparing time scales, max-T5d and max-T7d were equivalent
(△AIC <1, Table 3), and better explained variation in H/L ratio
than did max-T2d (△AIC >3, Table 3), in agreement with max-
T2d having only a marginal quadratic effect on H/L ratios
(whereas max-T5d and max-T7d had a significant effect). In
addition, average maximum temperature had similar model
fits than average minimum temperature (AICcs: T2d: max <
min, △AICcs = 0.30; T5d: min < max, △AICcs = 1.15; T7d:
max < min, △AICcs = 1.99). However, even on shorter time
scales than the season, the effect of prenatal playback on H/L
ratio did not vary with the temperature in the previous days, or
temperature trend (i.e., no interaction between playback and any
of the four weather variables). Nonetheless, adding weather
predictors in the model (Table 2) slightly weakened the effect
of playback (becoming marginal: 0.059 < p < 0.069), which
suggests that responses to weather conditions may partly

FIGURE 2
Heterophil to lymphocyte (H/L) ratio (untransformed) across past average maximum temperatures: (A) over the 2 days (T2d), (B) 5 days (T5d) or (C)
7 days (T7d) before sampling day. Colours display the prenatal playback (black = control-calls, red = heat-calls) and symbols the season (cross = late
winter, circle = summer). Heat-call bird response to short term weather variation did not differ from control. Overall regression lines are shown with the
95% CI. N = 114 samples from 51 birds.

TABLE 1 Reduced linear mixed modela fitting the heterophil to lymphocyte ratio (log-transformed) as a response to developmental conditions, sex and
season. Est. = estimates, SE = standard error. N = 114 samples from 51 individuals. When excluding the nine samples collected >60 min post-capture, the
effect of playback was marginal (LMM: estimate = −0.19, se = 0.10, t = −1.94, p = 0.058).

Predictor Est SE t value p-value

Intercept −0.56 0.07 −7.52 <0.001

playback (heat-call) −0.20 0.09 2.14 0.037

sex (male) 0.21 0.09 2.42 0.019

aFull model: H/L ratio ~ playback + nest temperature + sex + season + playback x season + nest temperature x season + (1|bird-ID).

Bold values indicate significant effects.
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explain some differences between playback groups. Finally, the
temperature individuals had experienced during postnatal
development also did not explain responses of H/L ratios to

weather fluctuations at adulthood (i.e., no interaction between
postnatal nest temperature and weather variables;
Supplementary Table S2).

FIGURE 3
Heterophil to lymphocyte (H/L) ratio across (A) prenatal playbacks (black: control-calls, N = 79 samples from33 birds; red: heat-calls, N = 35 samples
from 18 birds) and (B) sex (pink: females, N = 43 samples from 24 birds; blue: males, N = 71 samples from 27 birds). Small circles (open or solid) show raw
individual data, and larger solid circles show means (±SE). When excluding the nine samples collected >60 min post-capture (small solid circles), the
effect of playback felt just below significance (LMM: estimate = −0.19, se = 0.10, t = −1.94, p = 0.058). *p < 0.05.

TABLE 2 Reduced linear mixed modelsa fitting adult heterophil to lymphocyte ratio (log-transformed) as response to developmental conditions, sex and
past average maximum temperatures over two, or five, or 7 days prior to blood sampling. Est. = estimates, SE = standard error. N = 114 samples from
51 individuals. Results remain similar when excluding the nine samples collected more than 60 min post-capture, except for (max-T2d)

2 in model
1 becoming significant (p = 0.035).

Model Predictor Est SE t value p-value

1. Max-T2

Intercept 0.52 0.53 0.99 0.326

playback (heat-call) −0.18 0.09 −1.93 0.059

sex (male) 0.20 0.09 2.21 0.032

max-T2d −0.10 0.05 −2.00 0.049

(max-T2d)
2 0.00 0.00 1.88 0.064

2. Max-T5

Intercept 1.63 0.87 1.88 0.064

playback (heat-call) −0.17 0.09 −1.86 0.069

sex (male) 0.20 0.09 2.28 0.027

max-T5d −0.21 0.08 −2.49 0.015

(max-T5d)
2 0.00 0.00 2.43 0.017

3. Max-T7

Intercept 3.24 1.53 2.11 0.037

playback (heat-call) −0.18 0.09 −1.92 0.060

sex (male) 0.19 0.09 2.20 0.033

max-T7d −0.36 0.15 −2.46 0.016

(max-T7d)
2 0.01 0.00 2.43 0.017

aFull models: H/L ratio ~ playback + nest temperature + sex + max-Txd + (max-Txd)2 + playback x max-Txd + nest temperature x max-Txd + (1|bird-ID).

Bold values indicate significant effects.
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When evaluating H/L ratio as an individual trait, we found that
the H/L ratio was negatively correlated to body mass, as expected
(LMM; estimate = −0.26, se = 0.10, t = −2.70, p = 0.008; Figure 4). In
addition, both H/L ratio and body mass were significantly repeatable
within individuals across all sampling periods together (ICC; H/L
ratio: R = 0.29, se = 0.11, CI = [0.059, 0.504], p = 0.003; body mass:
R = 0.63, se = 0.08, CI = [0.450, 0.765], p < 0.001; Figures 5A,C), even
when individuals attributes (sex and playback groups) and weather
were accounted for (estimates and significance nearly identical for
“adjusted repeatability”; Supplementary Table S3). However, when
only considering repeatability across seasons, to identify potential
trade-off between responses to hot and cold weather, individual H/L
ratios for heat-call birds were negatively correlated in winter vs.
summer (Pearson’s correlation: r = −0.76, p = 0.028, N = 8 birds).
Control-call birds, by contrast, showed no such trade-off, having a
significant positive correlation between winter and summer H/L
ratio values (r = 0.51, p = 0.007, N = 26 birds; Figure 5B). These
differences in H/L ratio were not reflected in corresponding changes
in bodymass, since, in both playback groups, bodymass in winter vs.

summer was positively correlated within individuals (control-calls:
r = 0.77, p < 0.001; heat-calls: r = 0.81, p = 0.014; Figure 5D).

4 Discussion

Our study shows for the first time in any species that prenatal
acoustic experience translates into mildly different levels of a
biomarker of chronic stress three to 4 years later at adulthood.
Specifically, embryonic exposure to heat-calls led to a consistently
lower H/L ratio in adult zebra finches, and so in both summer and
winter. Nonetheless, H/L ratios did vary with current weather
conditions, but only over short-term (five and 7 days), and not
between seasons, which likely reflects the acclimatisation capacity of
individuals to seasonal fluctuations. Lastly, H/L ratios varied
between the sexes, being higher in males than females, and were
slightly higher in lighter individuals. Repeatability of H/L ratios
within individuals was low although significant, as also found in
other avian studies (Norte et al., 2008; Ochs and Dawson, 2008).
Altogether, our findings show that prenatal heat-call exposure
coincides with lower H/L ratios at adulthood, most likely through
carry-over rather than direct effects. This result is consistent with the
previously reported positive effect of heat-call exposure on later
reproductive success (Mariette and Buchanan, 2016), and points
towards a higher resilience to thermal fluctuations in heat-call birds.
In any case, our results suggest that heat-call exposure did not make
individuals more susceptible to winter conditions over the long-
term. This, added to nest temperatures during development having
no effect on H/L ratios at adulthood, indicates that early-life
experience may not necessarily constrain weather tolerance
later in life.

Prenatal acoustic experience affected H/L ratios in adult zebra
finches, even though that effect fell just below significance (p =
0.058), when nine individuals sampled after 60 min were excluded.
H/L ratios levels were lower in both summer and late winter in birds
that were prenatally exposed to heat-calls, compared to those
exposed to control-calls. Since (short-term) weather conditions
did affect H/L ratios, our results may indicate that heat-call
exposed birds are less challenged by temperature fluctuations,
even towards colder extremes. A lesser impact of high
temperatures on heat-call birds is consistent with previous
studies showing that heat-call birds have hotter thermal
preferences at adulthood and higher heat tolerance (Mariette and
Buchanan, 2016; Pessato et al., 2022). However, the lack of any
impact of cold conditions on heat-call birds was not necessarily
expected. It is possible that late winter temperatures were not low
enough to negatively affect heat-call birds, but our study nonetheless
unequivocally shows that heat-call bird advantage is not restricted to
hot summer conditions. Therefore, it might be that, in addition to
preparing individuals for heat, heat-call exposure prepares them for
more variable conditions (since in their natural environment,
summer rain (accompanied by a cold snap) is often preceded by
a heat-wave; M. Mariette, Pers. obs). This may occur via greater
physiological flexibility, including of mitochondrial functions, which
(in the heat) are more responsive to current thermal environment in
heat-call nestlings than in controls (Udino et al., 2021). In addition,
heat-call birds could conceivably achieve higher tolerance to
temperature fluctuations through a better behavioural

TABLE 3 Comparison of AICcs from reduced models (Table 2) testing the
effect of past average maximum temperatures on the heterophil to
lymphocyte ratio. N = 114 samples from 51 individuals.

Model Log-likelihood AICc △AICc Weight

3. Max-T7 −68.9 152.9 0.00 0.565

2. Max-T5 −69.4 153.8 0.93 0.356

1. Max-T2 −70.9 156.8 3.92 0.079

FIGURE 4
Heterophil to lymphocyte ratio along body mass in individuals
prenatally exposed to control calls (black circles) or heat-calls (red
triangles). Open and solid symbols represent scaled individual
measurements collected within or after 60 min of waiting time
post-capture, respectively. The regression line is shown with the 95%
CI. N = 114measurements from 51 individuals. The regression remains
significant when excluding the nine samples collected >60 min (LMM:
estimate = −0.22, se = 0.10, t = −2.31, p = 0.023).
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thermoregulatory response, as we previously reported in hot weather
(Udino and Mariette, 2022). While their thermoregulatory
behavioural adjustments to cold conditions (e.g., warm microsite
use, huddling behaviour: Chaplin, 1982; Marsh and Dawson, 1989;
McKechnie and Lovegrove, 2001) remain to be tested, persistent
differences in feeding behaviour at adulthood after exposure to
prenatal heat-calls have been demonstrated (Katsis et al., 2021).
Alternatively, if H/L ratio reflects individual “quality”/condition
(Moreno et al., 2002; Pfaff et al., 2007; Davis et al., 2008), our
results support the hypothesis that heat-call exposed individuals had
a better somatic state overall at adulthood (Mariette, 2020), possibly
underlying their higher reproductive success previously reported
(Mariette and Buchanan, 2016). Indeed, it has been hypothesised
(but not tested), that, by reducing growth in hot weather, heat-call
exposure may reduce oxidative damage during development, leading
to higher condition later in life (Mariette and Buchanan, 2016;
Mariette, 2020). Consistent with this hypothesis, mitochondrial
function of heat-call nestlings shifted towards higher LEAK

respiration in extreme heat (Udino et al., 2021), which is
expected to minimise oxidative damage associated with reactive
oxygen species production (uncoupling to survive hypothesis;
Brand, 2000). Lastly, the prenatal acoustic experience affected the
H/L ratio repeatability across seasons, with the H/L ratio being
positively correlated in control-call birds but negatively correlated in
heat-call birds. This may indicate that while control birds did not
show an apparent trade-off in their response to seasonal
temperature variation, heat-call individuals did. Within heat-call
individuals, those least affected by heat (i.e., with a higher H/L ratio
in summer) were most affected by the cold (i.e., had a lower H/L
ratio in winter). However, this result should be confirmed with a
larger sample size in future studies.

In contrast to prenatal acoustic experience, the postnatal nest
temperature did not affect H/L ratios at adulthood. To date, the
long-term effects of early thermal experience on later-life
thermoregulation have been surprisingly understudied in
endotherms, unlike in ectotherms (Refsnider et al., 2019; Nord

FIGURE 5
Within-individual repeatability in H/L ratio (top row) and body mass (bottom row), overall across all 4 sampling periods (left column) or across
different seasons only (right column). The overall plots (A andC) show the repeatability of consecutivemeasures (i.e., first vs. secondmeasures, second vs.
third, and third vs. fourth) and are displayed only for illustration purposes (since some measures are represented twice here, but were considered only
once in the ICC analysis). Across seasons (B and D), consecutive sampling dates are compared in winter versus summer (Sep-17 vs. Feb-18 + Sep-19
vs. Feb-19). Black circles and red triangles represent individual data from control-call and heat-call playback groups, respectively. Open symbols
correspond to paired samples both collected below 60 min post-capture; solid symbols are depicted when at least one of the paired samples was
collected after 60 min. Data are shown as scaled values. The regression lines are shown with the 95% CI, and dashed lines are for illustration only.
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and Giroud, 2020; Pottier et al., 2022). Nonetheless, prenatal
heat-calls, signalling hot conditions, improved heat tolerance in
adult zebra finches (Pessato et al., 2022). In our previous study,
nestlings reared in hot nests were then more likely to pant during
summer days at adulthood, than those reared in cool nests,
although the adaptive value of this effect remains unknown
(Udino and Mariette, 2022). In poultry, manipulation of
incubation temperatures in chicken (Gallus domesticus; 1.7°C
above optimum (control) temperature), although detrimental to
hatching success, can improve tolerance to a heat-challenge in
juveniles (Piestun et al., 2008a; 2008b) but only in some cases
(e.g., Collin et al., 2007). As for post-hatch thermal environment,
warm rearing conditions (30°C) led to higher bill surface
temperatures in 3-month old quail (Coturnix japonica)
compared to those reared under cold conditions (15°C;
Burness et al., 2013).

Surprisingly, despite the well-recognised seasonal modulations
of the immune system (Nelson et al., 2002), the effects of seasonal
temperature fluctuations on H/L ratio has rarely been investigated
(Skwarska, 2019). Yet, our study shows that H/L ratio varied with
average daily maximum temperatures in the days prior to
measurement. In particular, past temperatures over the five or
7 days before sampling better explained variation in H/L ratio than
temperatures over the 2 days before sampling. This could be
caused by the cumulative exposure to challenging temperatures
over multiple days, resulting in greater impacts on chronic stress
levels. Although we could not test the impact of temperature over
the past 14 or 30 days in our study, such cumulative exposure was
also observed in first-year adult female great tits (Parus major),
which showed a more pronounced increase of H/L ratio after
2 weeks of cold spell than 1 week (Krams et al., 2011). By contrast,
long-term temperature in our study, considered as seasonal
variation (as a categorical predictor), did not affect chronic
stress levels. This may reflect individual acclimatisation
capacity, which reduces sensitivity to long-term climatic
variations (Hart, 1962; Somero, 2010; Beaman et al., 2016).
Nonetheless, wild zebra finches were recently found to
acclimatize their thermoregulation capacities to current weather
conditions surprisingly rapidly, adjusting within just 1 day of
temperature shift (at least in summer; Pessato et al., 2023). The
impact of short-term weather variation on H/L ratio documented
here might thus reflect a cost of such plasticity, or stem from rapid
acclimatisation being incomplete compared to seasonal
acclimatisation. Overall, our study demonstrates the usefulness
of H/L ratio for assessing how individuals are coping with
temperature fluctuations, which could be particularly relevant
for conservation purposes.

Likewise, the repeatability of the H/L ratio has been rarely
documented. Here, the H/L ratio was overall weakly although
significantly repeatable within individuals kept in outdoor
aviaries in non-breeding conditions (prior or during sampling
periods). However, H/L ratios were correlated across seasons in
opposite directions between the playback groups, suggesting that
early-life experience can affect the H/L ratio repeatability at
adulthood. Such effects of early-life experience could therefore
contribute to the H/L ratio variability among studies, but also to
a low repeatability overall. No repeatability in H/L ratios was
found across breeding seasons in wild tree swallows

(Tachycineta bicolor), or within and across years in wild great
tits (Norte et al., 2008; Ochs and Dawson, 2008), although it was
repeatable over periods of 45 days (Norte et al., 2008). By
contrast, the H/L ratio was repeatable over both the short-
(4–8 days) and long-term (>4 months) in captive greenfinches
(Carduelis chloris) housed indoor, under constant conditions
(Hõrak et al., 2002). It therefore appears from these studies, that
the sensitivity of H/L ratio to environmental conditions can
mask intrinsic differences in H/L ratio between individuals. In
addition, it is likely that, unlike for traits such as mass,
measurement error in H/L ratios also contribute to lower
repeatability across measurements.

Finally, we found that H/L ratio is sex-dependent, being
higher in males than females. This is despite the two sexes
being of similar size in zebra finches, and male zebra finches
having higher acclimatisation capacities than females in response
to rapid weather fluctuations (Pessato et al., 2022). Sex
differences in immune function have often been reported,
even though there are no clear explanations for such
differences (Forbes, 2007; Hasselquist, 2007). With regard to
the H/L ratio, sex differences have sometimes been found,
depending on the breeding status of individuals (reviewed in
Skwarska, 2019). For instance, the H/L ratio was higher in great
tit males during pre-breeding periods, whereas it was higher in
females during breeding (Skwarska, 2019). In addition, a recent
meta-analysis integrating 41 wild avian species showed that
greater elevation of the H/L ratio occurs in males than females
between non-breeding and breeding status (Valdebenito et al.,
2021). Even though birds were not breeding in our study, as an
opportunistic breeder (breeding when conditions become
favourable), the zebra finch can remain in a reproductive state
in non-breeding periods (Zann, 1996; Perfito et al., 2007).
Nonetheless, sex differences in H/L ratio have also been
reported among non-breeding birds, including in chicken
(greater in males: Campo and Davila, 2002), Pekin ducks
(Anas platyrhynchos domesticus; greater reactivity to
glucocorticoid release in females Tetel et al., 2022) and in
great-tits (greater reactivity to social stress in females: Meer
and Oers, 2015). Furthermore, the immune system also
responds to social stress in humans and other animals
(Snyder-Mackler et al., 2020). In great tits, the H/L ratio
response to social stress was higher in females, which also
experienced more agonistic interactions than males (Meer and
Oers, 2015). Zebra finches, nonetheless, are colonial and do not
establish group hierarchy (Zann, 1996).

To conclude, our study shows that, in contrast to early thermal
experience, prenatal acoustic experience leads to subtle but
detectable long-lasting changes on a chronic stress index at
adulthood. Individuals exposed to heat-calls prenatally had
consistently lower H/L ratios across the natural thermal range
tested, and H/L ratio was moderately repeatable within
individuals, and correlated to body mass. Furthermore, our
results identified that, in contrast to seasons, temperatures
experienced over short-term scales affected the H/L ratio.
Overall, our findings bring a better understanding of the role of
developmental programming and phenotypic plasticity on the
impact of weather on population health and of the consequences
of prenatal sounds on adult physiology.
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