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Background: Stroke is one of the major chronic non-communicable diseases
(NCDs) with highmorbidity, disability andmortality. The key to preventing stroke
lies in controlling risk factors. However, screening risk factors and quantifying
stroke risk levels remain challenging.

Methods: A novel prediction model for stroke risk based on two-level feature
selection and deep fusion network (SRPNet) is proposed to solve the problem
mentioned above. First, the two-level feature selectionmethod is used to screen
comprehensive features related to stroke risk, enabling accurate identification of
significant risk factors while eliminating redundant information. Next, the deep
fusion network integrating Transformer and fully connected neural network
(FCN) is utilized to establish the risk predictionmodel SRPNet for stroke patients.

Results:We evaluate the performance of the SRPNet using screening data from
the China Stroke Data Center (CSDC), and further validate its effectiveness with
census data on stroke collected in affiliated hospital of Jining Medical University.
The experimental results demonstrate that the SRPNet model selects features
closely related to stroke and achieves superior risk prediction performance over
benchmark methods.

Conclusions: SRPNet can rapidly identify high-quality stroke risk factors,
improve the accuracy of stroke prediction, and provide a powerful tool for
clinical diagnosis.

KEYWORDS

stroke risk prediction, feature selection, deep fusion network, transformer, stroke risk
factors

1 Introduction

Stroke is a global public health issue, ranking as the second leading cause of death and the
third leading cause of disability worldwide (Owolabi et al., 2022). Moreover, the incidence
of stroke is increasing in recent years, and the burden of stroke poses a huge challenge
to low- and middle-income countries (Owolabi et al., 2021). However, the complexity,
suddenness, and significant differences in clinical manifestations of stroke have brought
great difficulties to treatment. It is widely acknowledged that stroke is preventable and
controllable (Johnson et al., 2019).Therefore, active intervention on risk factors of stroke and
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accurate prediction of stroke risk through early screening can
assist doctors and patients in implementing appropriate preventive
and therapeutic measures, significantly reducing the harm
caused by stroke.

So far, some studies employed traditional medical statistical
methods to predict stroke risk (Wang et al., 2022; Abraham et al.,
2021). These methods typically relied on a series of risk factors to
construct mathematical models for calculating risk scores. However,
these methods were time-consuming and labor-intensive, and
ignored the complex nonlinear relationships and interactions among
features, resulting in limited prediction performances (Obermeyer
and Emanuel, 2016). With the rapid development of artificial
intelligence, machine learning methods provide new solutions for
stroke risk prediction. The machine learning methods can process
complex screening data, and reveal patterns and associations hidden
within large-scale data, thereby enhancing the accuracy of stroke risk
prediction.

A better understanding of risk factors is critical for stroke
diagnostic evaluation and treatment decision. In fact, controlling
the risk factors (such as hypertension and diabetes) can reduce the
risk of stroke. Qi et al. (2020) used multi-variable Cox regression
analysis to obtain the features associated with the occurrence of
stroke and its subtypes in China by introducing socioeconomic
and other related factors. Abraham et al. (2019) employed elastic-
net logistic regression to screen for genetic risk factors of stroke.
Hunter and Kelleher (2023) used data from NHLBI Biologic
Specimen and cardiac studies as risk factors, and studied the
effect of age on stroke risk factors through a logistic regression
algorithm. Maalouf et al. (2023) developed the regression model to
find that negative emotions could increase stroke risk. Generally,
stroke is a complex disease, and it is difficult to predict stroke
risk via a single feature. However, having too many types of
features may lead to redundant information and increase diagnostic
costs. Furthermore, different risk factors contribute differently to
stroke occurrence. More importantly, considering the association
relationship among features is expected to be beneficial for the
early stroke screening. Therefore, there is an urgent need to develop
effective feature selection methods for predicting stroke risk.

Currently, numerous studies have been devoted to stroke risk
prediction using machine learning techniques. For example, Li et al.
(2019b) applied the Bayesian network model to estimate the
incidence of stroke, revealing the relationship between combinations
of multiple risk factors and stroke. Nwosu et al. (2019) analyzed
the electronic health records of patients using neural networks,
decision trees, and random forests to determine the impact of
risk factors on stroke prediction. Arafa et al. (2022) developed a
stroke risk prediction method for urban Japanese based on the
Cox proportional hazards model, incorporating cardiovascular risk
factors. Dritsas and Trigka (2022) designed an ensemble learning
method for long-term stroke risk prediction. Liu et al. (2019) first
adopted the random forest regression algorithm to impute missing
data, and thenused the deepneural network (DNN) to predict stroke
on imbalanced physiological data. Although the above methods
achieved promising results, the model structures they employed are
relatively disconnected between features and algorithms, and the
generalization ability of these models needs to be improved.

Here we propose a novel prediction model based on two-
level feature selection and deep fusion network, termed SRPNet,

for inferring stroke risk. In particular, two-level feature selection
can comprehensively search for significant features related to
stroke risk. We first apply multiple methods including Pearson
correlation, chi-square test, Lasso and elastic net to select risk
factors respectively, and combine the obtained risk factors as a
candidate feature set. We then traverse all candidate risk factor
combinations in the feature set by seven machine learning methods,
such as support vector machine (SVM), k-nearest neighbor (KNN),
decision tree (DT), gradient boosting decision tree (GBDT), random
forest (RF), Gaussian Naive Bayes (GaussianNB) and AdaBoost,
to identify the most important features associated with stroke.
This enables evaluating the correlations between features and
eliminating redundant information, providing reliable risk factors
for stroke screening program. Next, the proposed deep fusion
network integrates Transformer (Vaswani et al., 2017) and fully
connected neural network (FCN) (Long et al., 2015) to establish
a risk prediction model for stroke patients. This prediction model
utilizes the attention mechanism of Transformer to explore hidden
relationships among risk factors, and adopts FCN to better capture
the nonlinear relationships among features.The experimental results
indicate that SRPNet improves the accuracy and efficiency of stroke
screening, and its performance is superior to existing benchmark
methods. This work provides assistance for clinical diagnosis, and
alleviates the burden of stroke.

2 Materials and methods

2.1 Datasets

The CSDC database covers 6 provinces, 41 hospitals and
12 population cohorts in China (Yu et al., 2016). The CSDC
database facilitates stroke-related decision-making, research, and
public health services through a comprehensive system. It collects
and analyzes patient data, including risk factors, medical history,
and sociodemographic information, ensuring that each subject has
a unique record. A two-stage stratified cluster sampling method
was employed during the data screening process (Li et al., 2019a).
First, more than 200 screening areas were selected based on the
local population size and the total number of counties. Then,
urban communities and townships were used as the primary
sampling units (PSUs) according to the geographical location and
the recommendations from the local hospitals. In each PSU, all
residents aged 40 and above were surveyed using cluster sampling
during the initial screening period. Doctors assessed each patient’s
condition, categorizing them as low risk, medium risk, high risk,
transient ischemic attack (TIA), or stroke. The CSDC dataset
comprises 862,244middle-aged residents. Table 1 shows the detailed
features of the CSDC dataset.

The in-house data is sourced from the medical records of 49
patients at affiliated hospital of Jining Medical University in 2023. It
includes 14 features such as gender, age group, ethnic groups,marital
status, occupation, education level, hypertension, atrial fibrillation,
smoking, hyperlipidemia, diabetes, overweight, and family history
of stroke. Each patient has been diagnosed by a physician and
classified as either having suffered a stroke or being in good health.
The summary information for these two datasets is listed in Table 2.
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TABLE 1 Summary of specific features in the CSDC dataset.

Risk factors Statistics Abbreviation Risk factors Statistics Abbreviation

Age group 54.48 ± 11.25 AG Diabetes 49,674/812,570 Diabetes

Gender (male/female) 397,765/464,479 Gender Lack of exercise 169,500/692,744 LE

Ethnic groups (minorities/majority) 2,716/859,528 EG Overweight 148,834/713,410 Overweight

Occupation (mental/manual) 147,585/650,577 Occupation Number of Marriagesc 0.94 ± 0.23 NM

Education statusa 1.79 ± 0.93 ES Marital status 783,723/78,521 MS

Family history of
stroke/hypertension/coronary heart

diseaseb

60,320/801,924 FHS/HYP/CHD Marriage_other 3,537/858,707 MO

History of stroke 16,862/845,382 HS Provincial GDP 39.12 ± 15.88 PGDP

Hypertension 182,800/679,444 HYP Province longitude 112.94 ± 6.61 PLO

Atrial fibrillation 23,445/838,799 AF Province latitude 35.18 ± 2.96 PLA

Low-Density Lipoprotein Cholesterol 270,313/591,931 LDL-C Province precipitation 721.27 ± 202.66 PP

Province’s highest temperature 26.83 ± 2.08 PHT Province’s highest humidity 78.60 ± 4.67 PHH

Province’s lowest temperature −0.09 ± 3.32 PLT Province’s lowest humidity 55.36 ± 12.80 PLH

Smoking 155,982/706,262 Smoking Categoryd 384,272/477,972 Category

aThe education status is divided into five levels, where 0 indicates illiteracy, 1 represents primary education, 2 represents secondary education, 3 represents higher education, and 4 represents
postgraduate education.
bThe counts of subjects with and without family history of stroke/hypertension/coronary heart disease.
cThe number of marriages represents the number of times a subject has been married, with 0 for single, 1 for once married, and 2 for remarried.
dThe variable category represents the categories of random grouping.

TABLE 2 The detailed information of datasets.

Datasets # of samples # of features Phenotypes of samples

CSDC 862,244 26 Low risk (612,819), Medium risk (124,103), High risk (85,155), TIA (23,305), Stroke (16,862)

In-house data 49 14 Health (24), Stroke (25)

2.2 Overview of SRPNet

The SRPNet model mainly consists of two modules:
two-level feature selection, and deep fusion network. The
overall framework is illustrated in Figure 1. Since the dataset
contains text information, the SRPNet firstly performs data
preprocessing, which involves digitizing the textual information
and normalizing the data. To eliminate low-correlation and
redundant features, the two-level feature selection method is
employed to identify comprehensive features associated with
stroke. Finally, the deep fusion network, which adaptively fuse
Transformer and FCN by attention mechanism, takes the obtained
significant features as input to provide accurate stroke risk
prediction results for stroke patients.

2.3 Data preprocessing

Based on the stroke risk researches (Tian et al., 2019; Guan et al.,
2019), we used text information digitization to convert non-numeric
features into numeric vectors suitable for machine learning or deep
learning methods. Occupations are divided into mental workers
and manual workers. For the marital status, we characterize it
by whether the respondent is currently married and the number
of marriage times. Based on the location information of the
respondents, we convert it to the local climate, such as maximum
temperature, minimum temperature, precipitation, humidity, etc.
All of which are closely related to stroke. For the remaining features,
we also use similar knowledge-based feature engineering for feature
representation. Data normalization (Park et al., 2022) is used to
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FIGURE 1
The entire framework of SRPNet. (A) Preprocess the input data. (B) Select significant features using the two-level feature selection. (C) Predict stroke
risk based on the deep fusion network. (D) Output the stroke prediction results.

scale data elements to the (0,1) interval, which helps improve the
effectiveness and reliability of model training. The normalization
formula is defined as follows Equation 1:

x′ =
x−min (x)

max (x) −min (x)
. (1)

2.4 Two-level feature selection

In this section, the two-level feature selection method that
contains two-step feature selection processes will be introduced.
The first step of feature selection involves four distinct methods,
which are Pearson correlation, chi-square test, Lasso, and elastic
net. The union of selected features from each method forms a
set of candidate features. In the second step, based on the seven
machine learning models, such as SVM, KNN, GBDT, RF, DT,
AdaBoost andGaussianNB, we evaluate all possible combinations of
candidate features via grid search. Each combination is scored based
on its performance in the given models. It allows us to determine
the optimal combination of features that are most predictive of
stroke risk.

The two-step approach provides a rigorous feature selection
process bymultiplemachine learningmethods.Thefirst step reduces
the number of features based on statistical tests of relevance. The
second step further refines the features by evaluating prediction
performance in representative machine learning models. This
ensures that the most informative and generalizable features have
been selected for predicting stroke risk.

2.4.1 The first step of feature selection
We employ four feature selection methods, including chi-

square test, Pearson correlation, Lasso and elastic net, to assess
the correlation between features and disease risk from different
perspectives. The chi-square test and Pearson correlation prefer to
filter out features, which have the advantage of high computational

efficiency while not being prone to overfitting. However, their over-
reliance on filter thresholds may overlook many important features.
On the other hand, Lasso and elastic net are embedded feature
selection methods that select salient features while accounting for
feature correlations by calculating feature weights. Therefore, we
combined the filter and embedded methods to comprehensively
screen for the important features related to stroke risk factors. For
details, we provide brief introductions to the chi-square test, Pearson
correlation, Lasso, elastic net.

Chi-square test (Sharpe, 2015). The chi-square test is used
to check the correlation of the independent variable with the
dependent variable. We use the chi-square test to delete the
features with small changes. The formula of chi-square test is
described as Equation 2:

χ2 =∑
(A−E)2

E
, (2)

where A is the observed value of the feature, and E is the expected
value of the feature.The assumption of chi-square test is that features
are independent. The larger result of the chi-square test means the
higher correlation between features.

Pearson correlation (Cohen et al., 2009). We use Pearson
correlation coefficient to measure the linear correlation between
features and disease risk. When all the features have been scaled
to (0,1), the most important feature should have the highest
coefficient, and the irrelevant feature should have a coefficient whose
value is close to zero. The Pearson correlation coefficient can be
determined by Equation 3:

ρx1,x2
=

cov(x1,x2)
σx1σx2

=
E(x1x2) −E(x1)E(x2)

√E(x1
2) −E2(x1)√E(x2

2) −E2(x2)
, (3)

where x1 and x2 represent the different feature, respectively.
cov(x1,x2) denotes the covariance of x1 and x2. σx1 denotes
the standard deviation of x1, and σx2 denotes the standard
deviation of x2.
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Lasso (Nusinovici et al., 2020). Lasso built upon logistic
regression analysis techniques, serves to select the most crucial
features while reducing model complexity through the shrinkage of
feature weights. Specifically, lasso introduces L1 regularization into
the loss function of a linear regression model, minimizing the mean
squared error between predicted values and actual observations.The
Lasso loss function is given by Equation 4:

minθ{ 1
2n

n

∑
i=1
(yi − θ0 −

p

∑
j=1

xijθj)
2

+ λ
p

∑
j=1
|θj|}, (4)

where θ = (θ0,θ1, ...,θp) denote coefficients that we need to compute.
yi is the label that takes a value of 0 or 1. λ is a positive tuning
parameter used to balance the loss term and penalty term. xij
represents the value of the j-th feature of the i-th sample.

Elastic net (Zhang et al., 2017). Since Lasso regression
sometimes performs poorly in inter-correlated features, the
elastic net was proposed to overcome this limitation. Elastic net
regularization combines L1 penalty with L2 penalty together to
select better relevant features simultaneously. The elastic net is
defined as Equation 5:

minθ{ 1
2n

n

∑
i=1
(yi − θ0 −

p

∑
j=1

xijθj)
2

+ λ
p

∑
j=1
|θj| + (1− λ)

p

∑
j=1

θ2
j}, (5)

where λ ∈ [0,1] used to balance the L1 penalty and L2 penalty. The

L2 penalty of regularization term is defined as φ(θ;λ) = (1− λ)
p
∑
j=1

θ2
j ,

which is known as Ridge regression.

2.4.2 The second step of feature selection
Although we have selected the important risk factors at the first

step feature selection, the filter and embedded methods have the
shortcomings of excessive threshold reliance and simply correlation
consideration. To capture the deep correlation between features, we
use seven machine learning methods to conduct the second step
feature selection, which traverse all candidate features combinations
based on the result of first step feature selection.

The candidate feature combinations consist of all possible
permutations of the features selected during the process of
feature selection. Assume there are n features that are selected.
Then totally there are 2n − 1 candidate feature combinations.
Next, we traverse all candidate combinations using seven
machine learning methods and select the optimal feature
combination based on the classification performance of these
seven different classifiers. As we know, machine learning
methods are based on specific theoretical assumptions. Therefore,
employing different machine learning methods can increase
the diversity of feature selection. Brief introductions of the
seven machine learning methods are presented in Table 3. These
algorithms have their own advantages and disadvantages, allowing
us to thoroughly consider different scenarios in the feature
selection process.

2.5 Deep fusion network

The complexity and diversity of stroke data require predicting
stroke risk frommultiple perspectives to enhancemodel robustness.

Common predictive models, such as the Transformer, exhibit
complex structures and excel at adapting to high-dimensional
data, thus improving prediction performance. However, it often
suffers from overfitting issues when dealing with small-scale
datasets. In contrast, the FCN model has a simple structure and
fast training speed, yielding exceptional performance on small-
scale datasets. We utilize the advantages of both above predictive
models and propose a deep fusion network method that can
provide accurate the stroke risk prediction. As shown in Figure 2,
deep fusion network integrates the Transform and the FCN,
in which the dependencies between stroke risk factors are
captured by the attention mechanism of the Transformer, and the
complex nonlinear relationship is fitted by deep network structure
of the FCN.

Transformer (Vaswani et al., 2017). Due to the powerful
representation ability, Transformer can realize the outstanding
performance in prediction tasks which is based on the self-attention
mechanism. As observed in Figure 2, given an inputX ∈ ℝn×c, where
n represents the number of patients (or patches) and c represents
the embedded feature dimension for every patient.The self-attention
mechanism can be defined as Equation 6:

Attention(Q,K,V) = softmax(QK
T

√dk
)V, (6)

where dk is the input matrix embedding dimension. The matrix Q,
K,V can be computed by the input matrix and linear transformation
matrix WQ, WK, WV, respectively. Then, we can get the value of Q,
K, and V by computing Q = XWQ, K = XWK, and V = XWV, where
WQ ∈ ℝc×q, WK ∈ ℝc×q, WV ∈ ℝc×q, q denotes the linear mapping
dimension.

Fully connected neural network. The FCN, also known as
a Multilayer Perceptron (MLP), is a widely used artificial neural
network structure in medical data analysis. It offers the advantages
of fast training speed and robust modeling capabilities as the
network depth increases. The stroke risk prediction model we
designed includes one input layer, one hidden layer and one
output layer. The calculation formula of each layer of network is
defined by Equation 7:

y = σ(Wx+ b), (7)

where σ denotes the ReLU activation function. x is the input
of the neuronal node, y is the output of the neuronal node. W
and b denote weight and bias, respectively, which are learnable
parameters.

Attention mechanism. In the stroke risk prediction task, the
Transformer and the FCN extract clinical features at different
levels and make distinct contributions to the prediction. Therefore,
we introduce an attention mechanism to adaptively learn the
importance of latent embeddings. Specifically, for the feature Ht
extracted by Transformer, we apply a non-linear transformation
and employ the shared attention vector Wt to obtain the attention
coefficient at, namely, Equation 8:

at = softmax(Wt ⋅ σ(WHt + b)), (8)

where σ denotes the tanh activation, W denotes a trainable weight
matrix, and b denotes a bias vector. Similarly, we can calculate

Frontiers in Physiology 05 frontiersin.org

https://doi.org/10.3389/fphys.2024.1357123
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Zhang et al. 10.3389/fphys.2024.1357123

TABLE 3 The overview of seven machine learning methods.

Methods Theory Advantages Disadvantages

SVM (Noble, 2006) Find the optimal hyperplane Handling the interaction of nonlinear
features

Difficulty in selecting the kernel function

KNN (Cunningham and Delany, 2021) Find the k nearest neighbors No assumptions, insensitive to outliers Cannot handle imbalanced data

DT (Al Snousy et al., 2011) Divides feature subspaces Handle Boolean and numeric data
simultaneously

Prone to overfitting

GBDT (Zhou et al., 2020) Iteratively train decision trees Strong interpretability Difficulty tuning parameters

RF (Cutler et al., 2012) Integrate several DTs Strong generalization ability Poor interpretability

AdaBoost (Schapire, 2013) Integrated learning strategy Prevent overfitting Sensitive to outlier

GaussianNB (Liu et al., 2023) Based on independence assumption No need to tune parameters Not suitable for high-dimensional data

FIGURE 2
The structure of the proposed deep fusion network.

attention coefficients ac for the features Hc extracted by the FCN.
We combine these embeddings to obtain the final embedding
H, Equation 9:

H = L(at ⋅Ht + ac ⋅Hc), (9)

where L denotes the single linear layer.

2.6 Evaluation metrics

Here we employ four evaluation metrics to assess the
predictive performance of the model, including micro
precision, micro F1-score, macro precision, and Cohen’s Kappa
coefficient (Younas et al., 2023). The definitions of these metrics are
given as follows.

The micro average approach amalgamates performance
measures across all samples. Specifically, for each class gi within

the set G = {1, ...,K}, where K denotes the total number of classes, a
dedicated confusion matrix is constructed. In this context, the i-th
matrix designates the gi class as the positive class, while considering
the remaining classes gj with j ≠ i as the negative classes. The micro
precision and micro F1-score are computed by Equations 10 and 11:

Pmicro =
∑|G|

i=1
TPi

∑|G|
i=1

TPi + FPi
, (10)

F1micro =
2∑|G|

i=1
TPi

2∑|G|
i=1

TPi +∑
|G|
i=1

FPi +∑
|G|
i=1

FNi

, (11)

where TP represents the number of positive samples correctly
predicted to be positive samples, FP represents the number of
negative samples incorrectly predicted to be positive samples, FN
represents the number of positive samples incorrectly predicted to
be negative samples.
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FIGURE 3
Feature selection results with different parameters in four feature selection methods. (A) Lasso. (B) Elastic net. (C) Chi-square test. (D) Pearson
correlation.

TABLE 4 Feature selection results of four methods.

Methods Features

Lasso AG, Gender, Occupation, HS, HYP, AF, Smoking, LDL-C, Diabetes, LE, Overweight, FHS/HYP/CHD

Elastic net AG, Gender, Occupation, ES, HS, HYP, AF, Smoking, LDL-C, Diabetes, LE, Overweight, FHS/HYP/CHD, PLT, PLH

Chi-square Test HS, HYP, AF, LDL-C, Diabetes, LE, Overweight, FHS/HYP/CHD

Pearson correlation AG, ES, HS, HYP, AF, Smoking, LDL-C, Diabetes, LE, Overweight, FHS/HYP/CHD, MS

Micro average tends to provide misleading results in the
case of imbalanced data, as it doesn’t take the predictive
performance of each specific class into account. In contrast,
macro average computes averages through the individual
performance of each class. The macro precision is defined
as Equation 12:

Pmacro =
1
|G|
∑|G|

i=1

TPi
TPi + FPi

. (12)

Cohen’s Kappa Coefficient is employed for assessing
performance in situations of imbalanced class distribution, which is
denoted by Equation 13:

kappa(k) =
po − pe
1− pe
, (13)

where po denotes the overall model accuracy, and pe denotes the
agreement expected by chance between the model’s predictions and
the actual class values (McHugh, 2012).
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FIGURE 4
ROC curves corresponding to the feature sets selected by the four methods and the candidate feature set. (A) Lasso. (B) Elastic net. (C) Chi-square test.
(D) Pearson correlation. (E) The robust candidate feature set.

FIGURE 5
The prediction performance micro precision in seven machine
learning methods with different number of features.

2.7 Implementation details

The stroke risk prediction model was built and trained
using the PyTorch. Experiments were conducted on a PC with
Intel(R) Xeon(R) Gold 6258R CPU @ 2.70 GHz and NVIDIA
QuADro GV100 GPU. We trained the model with the Adam
optimizer (Kingma and Ba, 2014) with default parameters and a
fixed learning rate of 0.001. And we randomly select 80% of the

samples from whole dataset for training, and the remaining 20% for
testing. The maximum number of epochs employed for training is
100. The datasets and source codes are publicly available on GitHub:
https://github.com/zhangdaoliang/SRPNet.

3 Results and discussion

3.1 Two-level feature selection results

We utilized a dataset from the CSDC database, consisting of
862,244 samples, with each sample originally having 26 distinct
features. The proposed two-level feature selection method was used
to screen out significant stroke features, which has a positive effect on
improving the performance of the prediction model. In the first step
of feature selection, we employed Lasso, elastic net, chi-square test
and Pearson correlation methods for the initial screening of stroke-
related factors. Here, we consider using α = 0.5 for the elastic net.
Figure 3 shows that the impact of different parameters contained in
these methods on the feature selection results. We can observe in
Figures 3A, B the paths of regression coefficient changes based on
Lasso and elastic net, with each curve corresponding to one feature
variable. Figures 3C, D demonstrate the correlation of each feature
with stroke. It is worth noting that we tend to select features with
higher scores and p ≤ 0.05 in the chi-square test (Pandis, 2016).
According to Figure 3, Lasso, elastic net, chi-square test and Pearson
correlation methods select 13, 15, 8 and 12 features, respectively.

The specific feature selection results of each method are
shown in Table 4. Subsequently, we took the union of features
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TABLE 5 Comparison of stroke risk prediction results for the seven methods.

Methods Selected features All features

Micro
F1-score

Micro
precision

Macro
precision

Cohen’s
Kappa

coefficient

Micro
F1-score

Micro
precision

Macro
precision

Cohen’s
Kappa

coefficient

C5.0 0.9470 0.9470 0.7369 0.8828 0.9149 0.9149 0.7288 0.8068

RF 0.9478 0.9478 0.7672 0.8853 0.9167 0.9167 0.7170 0.8172

FCN 0.9257 0.9257 0.7119 0.8335 0.8906 0.8906 0.6811 0.7449

CNN 0.9421 0.9422 0.7316 0.8716 0.9371 0.9371 0.7310 0.8591

LSTM 0.9424 0.9424 0.8144 0.8723 0.9399 0.9399 0.7328 0.8654

Transformer 0.9480 0.9480 0.7449 0.8846 0.9198 0.9198 0.7396 0.8176

SRPNet 0.9618 0.9618 0.8642 0.9165 0.9511 0.9511 0.8126 0.8920

Note: The best experimental results are highlighted in bold.

TABLE 6 Prediction results based on our in-house dataset.

Methods Micro F1-score Micro precision Macro precision Cohen’s Kappa coefficient

C5.0 0.9000 0.9000 0.8750 0.7826

RF 0.9000 0.9000 0.9285 0.7826

FCN 0.9953 0.9953 0.9933 0.9917

CNN 0.8000 0.8000 0.8571 0.6000

LSTM 0.8000 0.8000 0.8000 0.6000

Transformer 0.9000 0.9000 0.9283 0.7826

SRPNet 0.9978 0.9978 0.9954 0.9929

Note: The best experimental results are highlighted in bold.

selected by the four methods as the robust candidate feature
set, which includes 16 features, i.e., AG, Gender, Smoking,
MS, Occupation, ES, HS, HYP, AF, LDL-C, Diabetes, LE,
Overweight, FHS/HYP/CHD, PLT, and PLH.The receiver operating
characteristic (ROC) curves (Fan et al., 2006) corresponding to
different feature sets are shown in Figure 4. We find that using
the candidate feature set achieves better prediction results than
features selected by individual methods. It illustrates that the first
step of feature selection is of great significance for stroke risk
diagnosis.

In the second step of feature selection, we eliminate risk
factors with strong correlation between features. Based on the
results of the first step of feature selection, we iterate through
all candidate feature combinations. All feature combinations are
evaluated under different machine learning methods as classifiers.
The optimal feature combinations for different number of features
are determined with respect to the evaluation results. Figure 5
shows the performance of the method with different numbers of
feature variables. We see that as the number of features increases,

the micro precision of most machine learning methods gradually
improves and tends to stabilize. However, the performance of
the DT and AdaBoost methods decreases significantly when the
number of features is 9 and 15 respectively. When the number
of features reaches 12, all seven machine learning methods
overall achieve the best performance. Finally, we obtained risk
factors that are highly relevant to stroke patients and have
no redundant information among features, including Smoking,
Occupation, ES, HS, HYP, AF, LDL-C, Diabetes, LE, Overweight,
FHS/HYP/CHD, and PLT. It is worth noting that traditional
methods consider age and gender to be strongly correlated with
stroke risk (Howard et al., 2023; Ospel et al., 2023). However, two-
level feature selection has removed them due to their redundancy
with occupation and other risk factors. In contrast, the PLT
features reflecting the climate of the patient’s location are preserved,
and it has been confirmed that low temperatures are associated
with an increased risk of stroke (Chen et al., 2013). This
indicates that SRPNet could provide new insights for future risk
screening.
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FIGURE 6
The confusion matrices for the six methods on the CSDC dataset. (A) C5.0. (B) FCN. (C) CNN. (D) LSTM. (E) Transformer. (F) SRPNet.

3.2 Stroke risk prediction results

In this section, we validate the effectiveness of the SRPNetmodel
on the CSDC dataset. Decision tree C5.0 (C5.0) (Ahmadi et al.,
2018), random forests (RF) (Breiman, 2001),FCN, one-dimensional
convolutional neural network (CNN), long short-term memory
network (LSTM) and Transformer are used as comparison methods
to predict stroke risk. Table 5 shows the prediction performance of
the seven methods on the original CSDC data (all features) and the
data after two-level feature selection (selected features). We can find
that SRPNetmodel obtains the best prediction results in terms of the
four evaluationmetrics.The performance of all predictors after two-
level feature selection is significantly better than their performance
when using all features. This demonstrates that the two-level feature
selection can effectively filter weak and redundant information,
thus improving the results of all predictors. On the selected feature
data, SRPNet outperformes FCN and Transformer by approximately
1.4%, 1.4%, 12% and 3.2% on metrics micro F1-score, micro
precision, macro precision, Cohen’s Kappa coefficient. This reflects
that deep fusion network can better explore potential relationships
between risk factors. In summary, the proposed SRPNet model is
reasonable and effective for predicting stroke risk.

Furthermore, tomake the results more convincing, we evaluated
six predictors on in-house data from affiliated hospital of Jining
Medical University.The experimental results are recorded in Table 6.

We candraw the similar conclusion that the proposed SRPNetmodel
is an ideal and effective prediction tool of stroke risk. To explore
the features that play a dominant role in precise classification,
we removed each feature and obtained the prediction results
for stroke risk. We found that after removing the hypertension
(HYP) feature resulted in micro F1-score, micro precision, macro
precision, and Cohen’s Kappa coefficient of 0.7, 0.7, 0.83, and 0.28
respectively, which had the greatest impact on stroke prediction
performance. Secondly, gender and age also significantly influenced
stroke classification, while they are identified as redundant features
in the CSDC dataset. The reason is that the analysis conducted on
the CSDC dataset involves complex stroke risk prediction, focusing
on differences between multiple risk levels, whereas the in-house
dataset only focuses on whether someone has a stroke, conducting
a simple stroke prediction analysis. Understanding these risk factors
can assist doctors in making quick and accurate stroke diagnoses.

To further evaluate the superiority of SRPNet, we visualize the
confusion matrices obtained by the six methods on the CSDC
dataset and the in-house dataset in Figures 6, 7, where the columns
and rows are the predicted labels and true labels, respectively.
It shows that compared to other methods, The SRPNet method
wins in all categories in terms of prediction accuracy. Additionally,
we discover that the history of stroke (HS) feature and the
hypertension (HYP) feature significantly enhance the ability of
almost all algorithms in Figure 6 to detect stroke effectively.
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FIGURE 7
The confusion matrices for the six methods on the in-house dataset. (A) C5.0. (B) FCN. (C) CNN. (D) LSTM. (E) Transformer. (F) SRPNet.

4 Conclusion

In this paper, a novel prediction model based on two-
level feature selection and deep fusion network is proposed for
stroke risk prediction. Compared with traditional feature selection
methods, the proposed two-level feature selection method not
only focuses on the importance of individual these features,
but also eliminates redundant information among important
features. Furthermore, the proposed deep fusion network harnesses
Transformer and fully connected networks to capture feature
dependencies and model the non-linear relationships among
features, respectively. Experimental results on the CSDC database
and in-house dataset demonstrate that our proposed prediction
model outperforms other representative methods. This prediction
model can rapidly identify high-quality stroke risk factors and
improve the accuracy of stroke prediction for patients, thereby
effectively assisting doctors in formulating rational diagnosis and
treatment plans.

The features included in the CSDC database and in-
house dataset are limited. In the future, we will collect
more clinical indicator features related to stroke for model
training and testing. And we will also work on applying the
proposed model to predict other diseases, demonstrating its
generalizability. It's worth noting that researchers have the
flexibility to substitute the feature selection method used in
SRPNet with other methods that are frequently applied in
the context of medical information, tailored to their specific
requirements.
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