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Long-duration spaceflight poses a variety of health risks to astronauts, largely
resulting from extended exposure to microgravity and radiation. Here, we
assessed the prevalence and incidence of cerebral microbleeds in sixteen
astronauts before and after a typical 6-month mission on board the
International Space Station Cerebral microbleeds are microhemorrhages in
the brain, which are typically interpreted as early evidence of small vessel
disease and have been associated with cognitive impairment. We identified
evidence of higher-than-expected microbleed prevalence in astronauts with
prior spaceflight experience. However, we did not identify a statistically
significant increase in microbleed burden up to 7 months after spaceflight.
Altogether, these preliminary findings suggest that spaceflight exposure may
increasemicrobleed burden, but this influencemay be indirect or occur over time
courses that exceed 1 year. For health monitoring purposes, it may be valuable to
acquire neuroimaging data that are able to detect the occurrence of microbleeds
in astronauts following their spaceflight missions.
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Introduction

Forthcoming manned lunar missions, as well as prospective manned missions to Mars,
underscore the importance of a deep understanding of both the short and long-term effects
of spaceflight on astronauts’s health and wellbeing. Two salient environmental features
present in spaceflight, microgravity and radiation exposure, are both known to produce
medically-relevant changes to astronaut health. For instance, microgravity-induced bone
density losses (Stavnichuk et al., 2020), muscle atrophy (Comfort et al., 2021), neuro-
ophthalmic damage (Lee et al., 2020), and radiation-related cancer risks (Azzam et al., 2012)
are all well-known health risks astronauts face during and following a spaceflight.

In addition to these risks, both prolonged microgravity exposure and increased
exposure to ionizing radiation can produce a suite of changes to cardiovascular
structure and function. Microgravity produces a cephalic fluid shift, diminished
postflight orthostatic tolerance, cardiac arrhythmias (Anzai et al., 2014), arterial
stiffening (Hughson et al., 2016), and potentially increases in intracranial pressure
(Lawley et al., 2017), among other effects (Demontis et al., 2017). Increased exposure to
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ionizing radiation has also been shown to increase the risk of
cardiovascular disease, by exacerbating atherosclerotic processes
(Koutroumpakis et al., 2022), producing structural damage to
blood vessels (Kuzichkin et al., 2022) and exacerbating
microgravity-related thrombosis risks (Marshall-Goebel
et al., 2019).

More recently, researchers have identified cerebral microbleeds
(CMBs) as potential indicators of damage resulting from the
cerebrovascular risks associated with spaceflight (Hähnel, 2020;
Miller et al., 2022). Cerebral microbleeds are microhemorrhages
(<10 mm in diameter) in the brain, producing covert lesions, and are
visible as small hypointense foci on T2*-weighted gradient-recalled
echo (GRE) and similar MRI sequences (Puy et al., 2021). Cerebral
microbleeds represent powerful markers to identify the type and
magnitude of small vessel disease, and are associated with an
increased risk of cognitive impairment (Poels et al., 2012), stroke
(Akoudad et al., 2015), and mortality (Akoudad et al., 2013).
Importantly, they are considered early disease markers, often
appearing in otherwise asymptomatic individuals before evidence
of more serious morbidity (Igase et al., 2009).

Scientific investigation of small vessel disease typically focuses
on the presence, quantity, and spatial location of cerebral
microbleeds. With respect to location, cerebral microbleeds are
typically localised as either “lobar” or “non-lobar” (Gregoire
et al., 2009). Lobar microbleeds are located in one of the lobes of
the cerebral cortex itself, including both the cortical grey matter as
well as the adjacent subcortical white matter. Non-lobar microbleeds
include both “deep” cerebral microbleeds (located in subcortical
grey matter, i.e., the thalamus and basal ganglia, along with nearby
white matter structures, e.g., the internal and external capsules and
the corpus callosum) as well as “infratentorial” microbleeds located
in the brainstem and cerebellum. Clinically, lobar and non-lobar
cerebral microbleeds have been shown to have different primary
underlying causes, with lobar microbleeds more related to Cerebral
Amyloid Angiopathy (CAA), and non-lobar microbleeds more
associated with hypertension and arteriosclerosis (Puy et al.,
2021). There is also evidence that exposure to ionizing radiation,
as present in many radiation therapies, such as those for cancer
treatment, facilitates the development of cerebral microbleeds
(Morrison et al., 2019).

Given the variety of risk factors present in spaceflight
environments that may produce cerebrovascular damage, and the
utility of cerebral microbleeds as early indicators of such damage, we
set out to evaluate the presence of these biomarkers in a sample of
astronauts before and after a typical mission onboard the
International Space Station (ISS). In particular, we investigated if
astronauts exhibit more cerebral microbleeds after spaceflight as
compared to before spaceflight, and determined whether or not
previous spaceflight exposure was associated with the presence of
cerebral microbleeds cross-sectionally.

Methods

Participants

We collected MRI data from 16 astronauts (seven female, aged
M(SD) 45.72 (5.70) years old at first assessment), of which six had

previous spaceflight experience (with mission durations of M(SD)
113.13 (74.38) days). Of these six individuals with previous
spaceflight experience, their previous missions occurred M(SD)
2812 (822) days (i.e., averaging over 7 years) before our initial
data collection. Data were collected at three time points, one
before and two after typical missions onboard the ISS (lasting
M(SD) 200.31 (44.01) days): the first data collection was
performed about 7 months prior launch (M(SD) 213.63 (118.35)
days), the second “early postflight” was performed about 2 weeks
after landing (M(SD) 12.44 (1.82) days), and the third “late post
flight” on 14 of the 16 subjects was performed about 7 months after
landing (M(SD) 221.07 (44.58) days). This study was approved by
the institutional review boards of NASA’s Johnson Space Center and
the University of Calgary. All participants provided written
informed consent, and NASA has reviewed this manuscript and
ensured it is compliant with the privacy standards of the NASA
Astronaut Office.

MRI data collection

At each of the three time points, we collected susceptibility-
weighted images (SWI) using a 32-channel head coil on a 3T
Siemens Verio MRI (running Syngo B19). SWI sequences are
commonly used to identity cerebral microbleeds, and are more
sensitive than T2*-weighted acquisitions (Shams et al., 2015).
This gradient echo sequence had a 20.9 ms echo time, 2.9 ms
repetition time, 20° flip angle, a pixel bandwidth of 121 Hz, and
an in-plane acceleration factor of 3. Derived Siemens SWI images
were produced by the acquisition software. Derived SWI slices had
an axial-plane resolution of 0.625 × 0.625 mm and a left-right FOV
of 288 voxels, and an anterior-posterior FOV of 384 voxels, with
72 slices spaced 2 mm apart.

Microbleed identification

To identify microbleeds from the SWI images, we utilized
heterogeneous methods and three raters with varying degrees of
proficiency. Our expert rater, MW, has 10 years of experience as a
board certified neuroradiologist in clinical and academic practice.
Student raters, PT and AY were naive to microbleed identification
prior to this project. FB ensured that raters were blinded to any data
identifiers and administered a two-step CMB identification
procedure. The first step was intended to have raters identify
candidate CMBs across the entire dataset, and the second step
was to generate explicit confirmation on the absence or presence
of deduplicated and unified candidates across different timepoints
and all raters. For the first step, the expert rater performed
microbleed identification utilizing exhaustive manual
identification. Student raters utilized a semi automated approach
(Bian et al., 2013; Morrison et al., 2018) in which CMB candidates
are identified automatically, and each student rater then manually
pruned candidates to remove what they believed were false positive
identifications.

After the first step was completed, FB deduplicated microbleeds
identified by the raters, and unified identified microbleeds across
different timepoints. This required moving the collected SWI
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volumes at different time points into alignment with one another
using a rigid body registration in antspyx version 0.3.8. To ensure the
appearance or disappearance of microbleeds from time point to time
point was not due to rater error, FB then presented each unique
microbleed candidate identified by any rater alongside the same
volume in other timepoints from the same subject, and asked raters
to identify the presence or absence of the microbleed candidate at
each timepoint. Candidates were presented to raters in axial 64 ×
64 patches, and raters were able to view three slices above and below
the candidate centroid. At this stage, raters were presented with
21 unique candidates across three timepoints, requiring them to
explicitly affirm or deny the presence of a microbleed in 63 images.
Expert rater MW and student rater PT positively flagged the same
51 candidates and negatively flagged the remaining 12, resulting in a
Cohen’s Kappa of 1. Student rater AY positively flagged the same
51 candidates, as well as an additional 2, resulting in a Cohen’s
Kappa of 0.89 between AY and the other raters. Reported results are
majority consensus, which are equivalent to the expert
rater’s judgement.

Analyses

We used paired-samples t-tests to compare microbleed
counts, as well as microbleed presence (a boolean version of
the microbleed count) between each adjacent time point. Other
factors of interest that may influence the presence or quantity of
microbleeds, i.e., previous spaceflight experience and age at time
of preflight testing, were assessed with independent samples
t-tests and bivariate correlation, respectively. For context,
literature-derived microbleed incidences were compared
against our sample incidences utilizing binomial tests. Due to
the well-known sensitivity differences between different MRI
field strength (Stehling et al., 2008; Conijn et al., 2011) and
acquisition parameters (i.e., T2* GRE vs. SWI) (Goos et al.,
2011; Shams et al., 2015), we restricted our literature
comparisons to the studies using similar acquisition paradigms
(Yates et al., 2014), i.e., SWI data collected at 3T, and did not
include comparisons with literature values derived from larger
studies with different acquisition paradigms (Poels et al., 2010).

Results

Microbleeds identified by majority consensus across our dataset
are reported in Figure 1 and depicted in the Appendix Figure A1.We
did not detect any microbleeds in the majority (i.e. 62.5%) of our
participants at preflight timepoints. However we did detect
15 microbleeds in the remaining six (out of 16) participants at
preflight, with individual counts ranging from a single to six
microbleeds. At the early postflight time point, approximately
2 weeks after landing, we detected 17 microbleeds: three new
microbleeds appearing in one participant and one microbleed in
a different participant resolving. Finally, at our final time point,
approximately 7 months after landing, we identified a total of
19 unique microbleeds, with novel microbleeds appearing in two
subjects. All microbleeds identified in our dataset were lobar cerebral
microbleeds; neither deep nor infratentorial microbleeds were

detected. These lobar microbleeds were located most commonly
in the frontal (60%) and temporal lobes (35%), with a single
microbleed identified in the parietal lobe.

Generally, we did not detect any statistically significant increase
in the presence or count of microbleeds after a typical stay onboard
the ISS. Total microbleed count nominally increased from preflight
to early postflight (Δ = 2, t15 = 0.620, p = .544, d = 0.155), and from
early postflight to late postflight (Δ = 2, t15 = 1.472, p = .165, d =
0.393). We did not identify any instances of astronauts developing
their first microbleed after spaceflight, and all novel microbleed
identification was in individuals who exhibited microbleeds at our
preflight assessment.

Astronauts with previous spaceflight experience demonstrated a
nonsignificant trend towards being more likely to have a higher total
microbleed count (t14 = 1.945, p = .072, d = 1.004), but no significant
difference in simple microbleed presence (t14 = 0.764, p = .458, d =
0.524). However, astronauts with previous spaceflight experience
were older than astronauts without previous experience (MD =
9.01 years, t14 = 4.827, p < .001, d = 2.493). Age is a known factor
associated with an increased prevalence of cerebral microbleeds
(Poels et al., 2010). In our dataset, astronaut age was not significantly
associated with the presence (r = .304, p = .253) or amount (r = .297,
p = .264) of microbleeds, but these effects trended in the directions
expected by the previous literature. Reference prevalence estimates
in healthy individuals using similar acquisition paradigms is limited.
However, Yates and others (Yates et al., 2014) enumerated three
studies that collected data in healthy controls utilizing SWI at 3T.
These studies reported microbleed prevalences of 8.7% (Gao et al.,
2008), 14% (Haller et al., 2010), and 19% (Yates et al., 2011) in
samples of 23, 35, and 84 individuals, respectively. Mean group ages
in these studies ranged from 63.7 to 74.6 years old, making them
notably older than our astronaut group at a mean age of 45.72 years.
Microbleed prevalence at our preflight time point in all sixteen
astronaut participants, at 37.5%, trends higher than these three
estimates (p = .002, p = .017, and p = .101, respectively). In the six
astronauts with previous spaceflight experience (aged M(SD) 51.35
(2.089) years), microbleed prevalence at preflight timepoints was
quite high, at 50%, trending above the literature estimates in older
healthy samples (p = .011, p = .039, p = .087, respectively). The
astronauts without previous spaceflight experience showed much
lower prevalence, at 30%, a difference that did not significantly differ
from literature values at this sample size (p = .050, p = .151, p = .414,
respectively).

Discussion

Astronauts are exposed to a variety of health threats during
spaceflight. Here, we investigated the prevalence and incidence of
cerebral microbleeds, small microhemorrhages indicative of
cerebrovascular damage. We did not find strong evidence that
spaceflight produced an increase in the incidence of cerebral
microbleeds up to approximately 7 months after a typical mission
onboard the ISS. We did, however, identify an increased prevalence
of cerebral microbleeds in astronauts as compared to the non-
astronauts samples reported in the literature, particularly in those
astronauts with previous spaceflight experience. Interestingly, all
20 unique microbleeds that we identified were lobar grey and white
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matter bleeds, and we did not identify any deep or infratentorial
microbleeds.

Strictly lobar microbleeds are a radiological feature typically
associated with cerebral amyloid angiopathy (CAA), a
cerebrovascular disease characterized by amyloid-β peptide
deposition (Jung et al., 2020). CAA can be caused by the same
amyloid protein that is associated with Alzheimer’s disease, but can
also be present in individuals without a history of dementia (Cozza
et al., 2023). The presence and quantity of cerebral microbleeds we
have detected here is not direct and conclusive evidence of CAA, as
conclusive diagnoses are typically done via autopsy (Charidimou
et al., 2022). However, other research by Zu Eulenburg and others
(Zu Eulenburg et al., 2021) in cosmonauts following typical missions
onboard the ISS has identified increased levels of a handful of blood-

based biomarkers of brain injury and neurodegeneration. These
findings highlighted varying increases in levels of neurofilament
light chain, tau, and Amyloid β 40 and 42 proteins at different points
up to 3 weeks after cosmonauts returned from their missions. Zu
Elenburg and others interpreted these findings as evidence of
postflight reparatory processes following spaceflight-related
brain injury.

An additional neurological feature associated with small vessel
disease is the volume of perivascular spaces (PVS) - small fluid-filled
regions adjacent to cerebral vasculature that facilitate fluid drainage
and waste exchange (Wardlaw et al., 2020). Much like the presence
of CMBs, enlarged PVS are considered markers of small vessel
disease (Gyanwali et al., 2019). Recent studies in astronauts have
identified that ISS missions were associated with an increase in PVS

FIGURE 1
Cerebral microbleed counts and examples in a sample of 16 astronauts before and after a typical spaceflight mission. Exemplar (A) depicts a cerebral
microbleed that remains present across preflight and postflight time points. (B) depicts amicrobleed that manifested between the preflight and postflight
time points. (C) depicts the only microbleed that appeared to resolve between preflight and postflight time points.
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(Barisano et al., 2022), but astronauts with prior spaceflight
experience appeared to be resilient to this effect (Hupfeld et al.,
2022). In contrast to the observed pattern of cerebral microbleed
prevalences, changes in PVS appear to be affected by spaceflight in a
more acute manner, and most saliently in novice astronauts
(Hupfeld et al., 2022). It is possible that both enlarged PVS and
cerebral microbleeds are caused by a common feature of spaceflight,
with PVS changes more acutely sensitive and the microbleeds
manifesting later.

However, our findings did not reveal salient increases in the
number of microbleeds between preflight and postflight in our
sample, undermining the interpretation that spaceflight plays a
causal role in increasing microbleed prevalence. It is possible that
the postflight time frame of approximately 7 months was of
insufficient duration for microbleeds to manifest after spaceflight
exposure. For instance, a study investigating the time course of
cerebral microbleed burden after radiation therapy found that
microbleed count increased by 18% per year following treatment
(Morrison et al., 2019). The highest microbleed burden reported in
this study in an individual approximately 15 years after radiation
therapy, suggesting the most salient microbleed burden should not
be expected to follow immediately after radiation exposure, as an
example of a mechanism that may be driving the effect we have
observed. In our sample, astronauts with prior spaceflight
experience landed from their last mission an average of over
7 years prior to testing, giving ample time for microbleeds to
manifest. This process may not explain the presence of
microbleeds in our participants without previous spaceflight
experience, as their cumulative radiation exposure is likely lower
than that of the astronauts with such experience. However, CMB
incidence has been seen following exposure to other “extreme
environments”, such as following high altitude cerebral edema
(Kallenberg et al., 2008), and related markers of neurological
damage may be present in air force pilots (Lim et al., 2012), all
reinforcing the possibility that multiple causal factors may be driving
these effects.

In conclusion, our study did not provide evidence of increased
incidence of cerebral microbleeds up to 7 months following a low
earth orbit spaceflight. However, we have identified preliminary
evidence that prior spaceflight experience is associated with
abnormally high cerebral microbleed prevalence. This is
particularly concerning for astronaut health considering the fact
that astronauts typically display strong “healthy participant” effects,
and are generally expected to show lower morbidity and mortality
than the general population (Reynolds and Day, 2019; Reynolds
et al., 2021). It does, however, support previous researchers’
suggestions that spaceflight may produce neurological damage
(Zu Eulenburg et al., 2021), and parallels the “rapid aging”
paradigms supported by astronaut musculoskeletal degeneration
(Vernikos and Schneider, 2010), as we observed microbleed
burdens in otherwise healthy astronauts that met or exceeded
those in healthy controls decades their senior. Future research
will need to more clearly establish the prevalence, mechanisms,
and time course of this potential cerebral microbleed burden in
astronauts. As with many studies in astronaut populations, our
sample size is small, and larger studies are needed to validate the
effects we have reported to ensure they are not spurious or
misattributed. Future work will also need to ensure that

astronaut and comparison samples have similar ages, as
spaceflight veterancy was confounded with age in our sample,
preventing us from asserting a causal association between prior
spaceflight experience and microbleed incidence. Unfortunately,
NASA’s current Lifetime Surveillance of Astronaut Health
Program MRI protocol does not include sequences appropriate
for microbleed identification. Inclusion of an SWI (or
manufacturer-equivalent), Quantitative Susceptibility Mapping
(QSM), or a more innovative sequence (Sun et al., 2020) may be
important to implement to monitor astronaut health and properly
evaluate the cerebrovascular risk associated with spaceflight.
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Appendix

FIGURE A1
All positively identified microbleeds. Subject numbers correspond to those presented in Figure 1.
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