
A non-linear partial least squares
based on monotonic
inner relation

Xuepeng Zheng1, Bin Nie1*, Jianqiang Du1, Yi Rao2, Huan Li1,
Jiandong Chen1, Yuwen Du1, Yuchao Zhang1 and Haike Jin1

1School of Computer, Jiangxi University of Chinese Medicine, Nanchang, China, 2National
Pharmaceutical Engineering Center for Preparation of Chinese Herbal Medicine, Jiangxi University of
Chinese Medicine, Nanchang, China

A novel regression model, monotonic inner relation-based non-linear partial
least squares (MIR-PLS), is proposed to address complex issues like limited
observations, multicollinearity, and nonlinearity in Chinese Medicine (CM)
dose-effect relationship experimental data. MIR-PLS uses a piecewise
mapping function based on monotonic cubic splines to model the non-linear
inner relations between input and output score vectors. Additionally, a new
weight updating strategy (WUS) is developed by leveraging the properties of
monotonic functions. The proposed MIR-PLS method was compared with five
well-known PLS variants: standard PLS, quadratic PLS (QPLS), error-based QPLS
(EB-QPLS), neural network PLS (NNPLS), and spline PLS (SPL-PLS), using CM
dose-effect relationship datasets and near-infrared (NIR) spectroscopy datasets.
Experimental results demonstrate that MIR-PLS exhibits general applicability,
achieving excellent predictive performances in the presence or absence of
significant non-linear relationships. Furthermore, the model is not limited to
CM dose-effect relationship research and can be applied to other
regression tasks.
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1 Introduction

Predicting the dose-effect relationship of Chinese Medicine (CM) is crucial for the
modernization of CM. To avoid costly and laborious, yet not always deterministic,
experiments for determining dose-effect relationships, novel and efficient prediction
approaches are needed. However, CM data differ significantly from other types of data.
In dose-effect relationship experiments, due to multiple active ingredients in drugs and
limited experimental trials, the data often exhibit characteristics where the number of
samples is less than the number of variables or not significantly larger than the number of
variables. Additionally, the dose-effect relationship can be both linear and non-linear.
Therefore, multicollinearity and nonlinearity may exist in the experimental data.

Partial least squares (PLS) (Wold et al., 1982) has been proven to be an effective
regression method for dealing with noise-corrupted and highly correlated data with limited
observations (Frank and Friedman, 1993) and is widely applied in various fields, including
chemometrics (Wold et al., 2001), econometrics (Korkmazoglu and Kemalbay, 2012),
bioinformatics (Nguyen and Rocke, 2002), medicine (Worsley, 1997), and pharmacology
(Bro, 1996), etc. However, while PLS can address issues like multicollinearity, it may result
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in poor predictive performance in the presence of a non-linear
relationship between X and Y. To address this limitation,
researchers have developed various non-linear PLS (NL-PLS)
modeling approaches.

One major approach for NL-PLS modeling is based on non-
linear iterative partial least squares (NIPALS) algorithm (Wold,
1975). The fundamental idea is to retain the outer model and replace
the linear inner model with a non-linear function within the
standard PLS framework. Qin and McAvoy, (1992) proposed a
neural network PLS (NNPLS) algorithm, which uses artificial neural
networks (ANN) to capture the inner relations. However, since the
weight updating strategy (WUS) of NIPALS does not consider non-
linear relationships, such modifications may lead to poor predictive
performance (Baffi et al., 2000; Searson et al., 2007). Wold et al.
(1989) developed a quadratic PLS (QPLS) algorithm, which further
modifies the NIPALS algorithm, addressing how to update the
projection coefficients (the weights w) of the input matrix while
considering the non-linear relationship. Baffi et al. (1999) presented
an error-based quadratic PLS (EB-QPLS) algorithm based on
Wold’s original work, which modifies and simplifies the WUS of
QPLS. However, EB-QPLS often encounters over-fitting when
handling multicollinear data. Subsequently, Shan et al. (2015)
introduced a nested PLS structure for further improvement. This
strategy adopts standard PLS to replace multiple linear regression
(MLR) in the WUS of EB-QPLS, effectively addressing the
multicollinearity problem. Furthermore, Wold, (1992) provided
another WUS based on the covariance criterion and proposed
the spline PLS (SPL-PLS) algorithm.

Several state-of-the-art methods for analyzing the dose-effect
relationship of CM through NL-PLS have been developed. Nie et al.
(2023) proposed a novel regression method called partial least distance
squares (PLDS), which reflects the original data information through
distance variance, measures the correlation between input and output
scores using the distance correlation coefficient, and constructs the final
regression equation using a quasi-linear regression method. Xiong et al.
(2020) utilized a deep belief network (DBN) to extract upper-level
features from the original data and applied them to the linear PLS
model. Xiong et al. (2023) proposed an analytical model that combines
deep Boltzmann machine (DBM) and PLS to address the challenge of
dose-effect relationship analysis. This method, which maps raw data to
a new representation (data space) using a non-linear function and
applies linear PLS, is another major approach in NL-PLS modeling.

For the above NL-PLS models, there are some inherent
drawbacks. For example, the method of directly using ANN to
extract non-linear features, although it can transform the features of
the original data, also leads to the over-parameterized problem (Qin
and McAvoy, 1992). The performance of NL-PLS based on the
NIPALS algorithmmainly depends on the fitting effectiveness of the
inner model and the WUS. If the approximation capability of the
inner model is very limited, it cannot provide enough flexibility to
model complex non-linear inner relations. Conversely, excessive
flexibility may lead to issues such as over-fitting and local minima
(Shan et al., 2015). Moreover, the WUS also has a large impact on
predictive performance.

In the study of the dose-effect relationship of CM, the existing
NL-PLS algorithms may excel in specific scenarios but lack general
applicability. Inspired by the aforementioned NL-PLS algorithms,
we proposed a novel NL-PLS algorithm named monotonic inner

relation-based PLS (MIR-PLS). In this methodology, non-linear
relationships are iteratively modeled using monotonic cubic
spline piecewise regression, which reduces the risk of over-fitting.
Additionally, by leveraging the property that the inverse of a
monotonic function is unique, we developed a new WUS to
improve predictive performance. MIR-PLS was compared with
standard PLS, QPLS, EB-QPLS, NNPLS, and SPL-PLS on CM
dose-effect relationship datasets and two near-infrared (NIR)
spectroscopy datasets. The Wilcoxon signed rank test was
employed to determine whether the predictive performance of
MIR-PLS significantly differed from that of the other models.
The results demonstrated that our MIR-PLS algorithm has better
predictive performances than other PLS algorithms, making it a
reliable and robust regression tool in the presence or absence of
significant X-Y non-linear relationships.

2 Related works

2.1 Linear PLS algorithm

Linear PLS regression is a special algorithm that integrates MLR
analysis, canonical correlation analysis, and principal component
analysis. It can effectively deal with correlated input and limited
data. Given an input data matrix X ∈ RN×M and an output data
matrix Y ∈ RN×K, the PLS model first decomposes the matrices X
and Y into bilinear products plus residual matrices:

X � TPT + E � ∑A
h�1

thp
T
h + E (1)

Y � UQT + F � ∑A
h�1

uhq
T
h + F (2)

where A represents the number of latent variables (LVs); T �
[t1, ..., tA] ∈ RN×A and U � [u1, ..., uA] ∈ RN×A are the score
matrices of X and Y, respectively; th ∈ RN×1 and uh ∈ RN×1 are
the score vectors of X and Y, respectively; P � [p1, ..., pA] ∈ RM×A

and Q � [q1, ..., qA] ∈ RK×A are the loading matrices of X and Y,
respectively; ph ∈ RM×1 and qh ∈ RK×1 are the loading vectors of X
and Y, respectively; and E and F are the corresponding
residual matrices.

Eqs 1, 2 formulate a PLS outer model. After the outer model is
constructed, the input and output score vectors are related by a
linear inner model:

uh � bhth + eh, h � 1, 2, ..., A (3)
where bh is a regression coefficient which is determined by
minimizing the residuals eh.

A is usually determined through cross-validation. Theoretically,
if more LVs are kept, the less information is left in the residual
matrices E and F, and the better the model fits the training samples.
However, training the model in this way often leads to over-fitting.
Cross-validation avoids over-fitting and ensures the model’s
generalization to unseen data. We recommend referring to the
literature (Geladi and Kowalski, 1986; Höskuldsson, 1988;
Martens and Naes, 1992) for readers interested in the detailed
PLS algorithm.
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2.2 NL-PLS algorithms

The linear PLS is constrained by its linear inner model. Given
the prevalence of non-linear data, there is a compelling need to
develop a non-linear counterpart that retains the robust attributes of
linear PLS. Adhering to the linear PLS framework, the development
of NL-PLS models is straightforward. This involves retaining the
linear outer model while substituting the linear inner relation with a
non-linear function, resulting in a modified form of Eq. 3:

u � ϕNL t( ) + e (4)
where ϕNL(·) is the nonlinear function. In this way, there are
countless possible non-linear extensions of linear PLS. However,
the introduction of a non-linear relationship also makes the input
weights w difficult to calculate.

3 Methodology

Any iterative NL-PLS algorithm involves two major
modifications to the original NIPALS algorithm: weights (w)
updating and a non-linear model between the input and output
scores. Our proposed algorithm has two distinctive characteristics.
Firstly, it utilizes a piecewise regression function based on a
monotonic cubic spline to model the relationships between t and
u. Secondly, its WUS is based on the properties of monotonic
functions and the idea of nested PLS. The following sections
focus on predicting a single variable y from a multivariate matrix
X and provide a detailed explanation of the MIR-PLS algorithm.

3.1 Monotonic inner model

Wold, (1992) first proposed the NL-PLS method using a
regression spline to build the inner model. Splines offer flexibility
to model complex non-linear relationships, providing smooth and
continuous fits to the data. They reduce over-fitting by dividing the
data into smaller pieces and allow control over model complexity
through the number and placement of knots (Wold, 1974; Wegman
and Wright, 1983; Friedman, 1991).

Although Wold proposed using linear, quadratic, and cubic
splines to construct the inner model, in practice, cubic splines are
sufficient to approximate any continuous function. Cubic splines
can be composed of multiple pieces, where a cubic polynomial is
fitted to the data points in each piece. To ensure a smooth and
continuous curve, the polynomial pieces are connected at knots, and
continuity constraints are imposed on the function and all its
derivatives except the highest order (third order for cubic
splines), which endows the splines with high flexibility and
approximation power. The bivariate cubic polynomial with u as
the dependent variable and t as the predictor variable, denoted as
u � S(t), is expressed as:

u � b0 + b1t + b2t
2 + b3t

3 (5)

It has been demonstrated that modeling non-linear relationships
using piecewise cubic splines is a flexible and reliable regression
method (Durrleman and Simon, 1989). However, if the number of

segments used in the cubic splines is too high, the risk of over-fitting
can increase. In addition, piecewise fitting may not fully consider the
overall distribution characteristics of the data, leading to poor
predictive performances in the presence of noise or random
fluctuations. Therefore, we propose imposing monotonicity
constraints on the cubic splines, as monotonicity constraints have
been proven to reduce the risk of over-fitting (Fritsch and Carlson,
1980; Sill and Abu-Mostafa, 1996). A cubic spline imposing
monotonicity constraints can be expressed as:

u � b0 + b1t + b2t
2 + b3t

3, s.t. du/dt≥ 0 (6)

Monotonic cubic spline piecewise regression retains flexibility
while adequately considering the overall data distribution. Figure 1
shows cubic and monotonic cubic splines with two knots,
respectively.

The free parameters in splines are the places and number of
knots. In the current modeling, the placement of knots will not be
considered as free parameters. In this study, we will make the
number of data points in each polynomial piece as equal as
possible based on the number of knots. The procedure involves
sorting the dataset based on the independent variable’s values,
determining the desired number of segments (and thus the
number of knots), and then dividing the total number of data
points by the number of segments to estimate the data points per
segment. Knots are positioned at intervals in the sorted data
corresponding to these segment boundaries. For example, with
100 data points and a goal of four segments, we would place
knots at the end of every 25th data point, resulting in segments

FIGURE 1
Cubic spline (A) and monotonic cubic spline (B) with two knots.
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of roughly equal size. This approach ensures a uniform distribution
of data points across the spline segments, enhancing the model’s
robustness and interpretability.

The flexibility of splines is influenced by the number of knots,
and increasing their number also increases the risk of over-fitting.
Some researchers have suggested that five knots should be sufficient
for modeling the most common monotonic non-linear relationships
while minimizing the risk of over-fitting (De Boor and De Boor,
1978). In practical applications, it is advisable to estimate the
number of knots using cross-validation.

While the monotonicity constraint helps reduce the over-fitting
risk, it may also decrease fitting accuracy. Thus, we introduce a novel
approach to update theX weights (w), which will be explained in the
next section.

3.2 Weight updating strategy

In many iterative NL-PLS algorithms, the weights calculation
considers the non-linear relationship. In our proposed method, the
non-linear relationship is also taken into account, but in a
more direct way.

In linear PLS, the t scores are proportional to the u scores, which
means that for any u, there is a unique corresponding t. Non-linear
models with monotonicity constraints preserve this property,
allowing fully reversible non-linear relationships:

u � ϕNL t( ), t � ϕ−1
NL u( ) (7)

This property enables more convenient incorporation of the
non-linear relationship ϕNL(·) when calculating weights w. In the
NIPALS algorithm, the loading vector q for y is calculated using the
predicted score vector û, i.e., qT � ûTy/ûTû. Then q is used to update
u scores, i.e., u � yq. At this point, the updated u scores already
encompass the non-linear relationship ϕNL(·). In MIR-PLS, the
predicted input score vector t̂ can be calculated using the updated u
and Eq. 7, i.e., t̂ � ϕ−1NL(u). Subsequently, the error e between t̂ and t
can be expressed as:

e � t̂ − t � Xŵ − Xw � XΔw (8)

According to the above equation, the weight corrections Δw can
be computed by regressing e on the input matrix X. However, in the
case of dose-effect and spectroscopic datasets, X tends to exhibit
high collinearity. The multicollinearity problem will hinder WUS
from providing precise input weights, leading to the risk of over-
fitting. To solve this problem, we draw inspiration from nested PLS
(Li et al., 2005). Specifically, we establish a regression model using
standard PLS and employ the obtained Δw as the regression
coefficients:

Δw � PLS X, e( ) (9)

For nested PLS, the number of LVs included within the inner
PLS algorithm can be determined through cross-validation.
However, built-in cross-validation may increase the training cost
of the MIR-PLS model. To strike a balance between prediction
accuracy and computational efficiency, we selected two LVs for the
internal PLS, accepting a trade-off that may not yield optimal
prediction but does enhance practicality.

The weight corrections will be utilized to update the input
weights w:

wnew � w + Δw (10)

Eqs 8 to 10 lead to a newWUS, which directly involves the non-
linear relationship ϕNL(·) in calculating the corrections Δw and
adopts the nested PLS strategy. This methodology ensures robust
and accurate input weights while reducing over-fitting risks.
Algorithm 1 provides a detailed description of the steps of the
MIR-PLS algorithm and its input weights updating process.

1. Scale X and y to zero-mean and one-variance;

2. Set A factors;

3. Let h � 1, Xh � X and yh � y;

4. while h≤A do:

5. Let uh � yh;

6. Calculate the input weight vector wT
h � uT

hXh/uT
huh and

normalize it to length 1.0;

7. Calculate the input score vector th � Xhwh;

8. Set i � 0;

9. while i<30 do:

10. Estimate ûh � ϕNL(th) by the monotonic inner relation;

11. Calculate the output loading vector qT
h � ûT

hyh/û
T
hûh

and normalize it to length 1.0;

12. Update output scores uh � yhqh;

13. Estimate t̂h � ϕ−1NL(uh) by the reversible relation;

14. Calculate the weight

corrections Δwh � PLS(Xh , t̂h − th);
15. Update the input weight vector wnew

h � wh + Δwh and

normalize it to length 1.0;

16. Update the input scores tnew
h � Xhwnew

h ;

17. if ‖tnew
h − th‖/‖th‖<10−6 then

18. break

19. end if

20. i + +
21. end while

22. Calculate the input loading vector pT
h � tT

hXh/tT
hth;

23. Update ûnew
h � ϕNL(tnew

h );
24. Calculate the residual matrices Xh+1 � Xh − thpT

h

and yh+1 � yh − ûnew
h qT

h;

25. h + +;
26. end while

Algorithm 1. The MIR-PLS Algorithm.

4 Experiments

In the experimental studies, the performances of MIR-PLS were
first validated using the CM dose-effect relationship datasets,
characterized by the presence of linear, non-linear, and correlated
inputs, and the number of samples is not significantly larger than the
number of variables. Additionally, two NIR datasets were used to
demonstrate the generality of our proposed algorithm. The Wheat
kernel dataset is a typical non-linear dataset. In the Beer dataset, X
contains a large number of variables compared to the number of
observations.
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4.1 Dataset description

4.1.1 Dose-effect relationship datasets of
Chinese Medicine

CM datasets with dose-effect relationships were used to evaluate
the performances of different models. These datasets include three
sets of data on Maxingshigan Decoction (MXSGD) in the treatment
of cough, asthma, and fever. They are called anti-tussive (AT) model
data, anti-asthmatic (AA) model data, and anti-febrile (AF) model
data, respectively. They were obtained from two subjects, including
Study on Dose-effect Relationship of Traditional Chinese Medicine
(TCM) Prescription based on Pharmacodynamic Substances
(Subject No.2010CB530602) and Study on Dose-effect
Relationship of TCM Prescription based on Pharmacodynamics
(Subject No. 2010CB530603).

In the experimental study of the dose-effect relationship of
MXSGD in the treatment of cough, 12 different ratios of the
formula were prepared. Each ratio was used to treat ten diseased
rats, and then plasma concentration and pharmacological
indicators were measured for each rat and averaged to obtain
a sample. The concentrations of drug components (including
Ephedrine, Pseudo-ephedrine, Methylephedrine, Amygdalin
hydrate, Prunasin, Liquiritin, Liquiritigenin, and
Glycyrrhetinic acid) in blood represent predictor variables,
and the pharmacological indicator (the frequency of coughs)
represents response variable. Therefore, in the AT dataset, the
number of samples N = 12, the dimension of the input vector
M = 8, and the dimension of the output vector K = 1.

In the AA dataset, 13 different ratios were prepared. The
predictor variables are the same as the AT dataset, and the
response variables are the incubation period (s) and the duration
(min) of asthma. Therefore, the number of samples N = 13, the
dimension of the input vector M = 8, and the dimension of the
output vector K = 2.

In the AF dataset, 13 different ratios were prepared. The
predictor variables are the same as the AT dataset, and the
response variables are PGE2, TRI temperature index, and 6-h
fever inhibition rate. Therefore, the number of samples N = 13,
the dimension of the input vector M = 8, and the dimension of the
output vector K = 3.

The data analysis task in this project is to establish a model
between plasma concentration and pharmacological indicators
to predict the effect of drug concentration in the blood on
pharmacological actions. These three datasets are typical
examples where the number of samples is not significantly
larger than the number of variables. Further descriptions
and modeling based on these datasets can be found in
References (Xiong et al., 2020; Nie et al., 2023; Xiong et al.,

2023). The specific descriptions of the three datasets are shown
in Table 1.

4.1.2 Wheat kernel dataset
The Wheat Kernel dataset is related to the NIR transmittance

spectra of the wheat kernel. The nonlinearity of this dataset partly
came from the light scatter effect. The calibration set has N =
415 samples of M = 100 wavelengths (850–1,050 nm at intervals of
2 nm). One response variable yields the protein concentration. The
test set is composed of 108 spectra of wheat kernels. Further
descriptions and modeling based on this dataset can be found in
References (Helland, 2001; Shan et al., 2015).

4.1.3 Beer Dataset
This dataset (Beer Data) contains N = 80 samples of M =

576 wavelengths (1,100–2,250 nm with a 2 nm interval) published
by Norgaard et al. (2000). One response variable is the measured
“original extract concentration.” This is an important quality
parameter in the brewing industry, indicating the substrate
potential for the yeast to ferment, giving rise to higher alcoholic
content. The dataset is split into two sets, taking every third sample
(i.e., 0, 3, . . . , 78) as a test set and the remaining samples as the
calibration set.

4.2 Evaluation metrics

To evaluate the predictive performances of different calibration
models, the root mean square error (RMSE), the mean absolute
percentage error (MAPE), and the coefficient of determination (R2)
were utilized and defined as

RMSE �
����������������
ŷ − y( )T ŷ − y( )/N√

(11)

MAPE � 1
N

× ∑N
i�1

yi − ŷi( )/yi

∣∣∣∣ ∣∣∣∣ × 100% (12)

R2 � 1 − ∑N
i�1 yi − ŷi( )2∑N
i�1 yi − �y( )2 (13)

where y is the vector of the response variable, ŷ is the vector of the
predicted response variable, and N is the number of samples. yi and
ŷi are the i th elements of y and ŷ, respectively. �y denotes the mean
of the response variable.

For each dose-effect relationship dataset, it was not divided into
a train set and test set due to the limited number of samples.
Therefore, we used leave-one-out cross-validation (LOO-CV)
(Stone, 1974; Oner et al., 2021) for parameter tuning and
calculated the RMSE, the MAPE, and the R2 to estimate the

TABLE 1 The specific descriptions of dose-effect relationship datasets.

Datasets Number of predictor variables Number of response variables Number of samples

AT 8 1 12

AA 8 2 13

AF 8 3 13
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prediction accuracy for each model. To demonstrate the RMSE
improvement of MIR-PLS better, a parameter from Reference (Shan
et al., 2015) was introduced as

k � 1 − RMSEMIR−PLS
RMSEother

( ) × 100%. (14)

For the two NIR datasets, the calibration set was utilized for model
building, involving both training models and performing 5-fold cross-

validation for parameter tuning. RMSE of calibration (RMSEC), RMSE
of cross-validation (RMSECV), and MAPE of cross-validation
(MAPECV) were calculated in these steps. Subsequently, the test set
was employed to calculate the RMSE of prediction (RMSEP) and R2 to
assess the predictive performances of the trained model. The k value of
RMSEP improvement was calculated as

k � 1 − RMSEPMIR−PLS
RMSEPother

( ) × 100%. (15)

TABLE 2 Experimental results for the dose-effect relationship datasets.

Dataset Criteria PLS QPLS EB-QPLS NNPLS SPL-PLS MIR-PLS

AT RMSE 3.54 3.63 5.38 3.81 3.50 3.36

MAPE 8.09 8.59 13.18 9.73 8.52 7.45

R2 0.43 0.41 0.20 0.35 0.45 0.51

LVs 1 1 1 2 1 1

Othersa (2, 1)b 1c

AA (y1) RMSE 15.67 22.02 52.56 12.65 13.67 14.89

MAPE 18.20 19.50 39.66 15.13 16.61 18.27

R2 −1.02 −2.98 −21.69 −0.31 −0.54 −0.82

LVs 1 3 1 2 1 2

Othersa (1, 5)b 1c

AA (y2) RMSE 0.77 0.70 1.96 0.73 0.77 0.70

MAPE 7.31 7.39 16.95 7.35 7.94 6.91

R2 0.36 0.66 0.09 0.51 0.36 0.67

LVs 1 1 2 1 1 1

Othersa (3, 1)b 4c

AF (y1) RMSE 1.00 0.97 1.48 0.99 0.94 0.93

MAPE 29.09 26.47 50.99 32.30 23.32 20.27

R2 0.53 0.56 0.13 0.54 0.59 0.60

LVs 2 3 1 4 2 2

Othersa (1, 2)b 1c

AF (y2) RMSE 0.88 1.02 3.90 1.03 0.82 1.06

MAPE 9.68 12.35 47.53 12.18 9.47 12.43

R2 0.48 0.30 −1.07 0.29 0.54 0.25

LVs 2 1 1 1 3 1

Othersa (1, 1)b 3c

AF (y3) RMSE 12.07 12.46 35.43 12.06 11.30 11.37

MAPE 31.63 27.24 94.38 29.91 27.79 28.92

R2 0.32 0.28 −3.49 0.32 0.40 0.40

LVs 3 2 1 5 2 1

Othersa (1, 4)b 1c

The bold value means the best performance among different models.
aOther parameters in the model.
b(L, J) used in SPL-PLS, L denotes the degree of polynomial, and J represents the number of knots.
cNumber of knots used in MIR-PLS.
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FIGURE 2
The first LV of the six algorithms on the AA (y2) dataset. (A) PLS, (B) NNPLS, (C) SPL-PLS, (D) QPLS, (E) EB-QPLS, and (F) MIR-PLS.

FIGURE 3
The first LV of the six algorithms on the AF (y2) dataset. (A) PLS, (B) NNPLS, (C) SPL-PLS, (D) QPLS, (E) EB-QPLS, and (F) MIR-PLS.
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The Wilcoxon signed rank test (Wilcoxon, 1992) was employed
at a 95% confidence level to determine whether a statistically
significant difference exists between the two competing models.
This evaluation was conducted by comparing the prediction errors
of the two different models.

4.3 Parameter tuning

The predictive performances of PLS, QPLS, EB-QPLS, NNPLS,
SPL-PLS, and MIR-PLS rely on the tuning of model parameters.
Using cross-validation to select model parameters can help alleviate

TABLE 3 RMSECV improvements and the Wilcoxon signed rank test results.

MIR-PLS

At AA (y1) AA (y2) AF (y1) AF (y2) AF (y3)

PLS k (%) 5.00 4.95 9.09 7.62 −20.25 5.73

p 0.850 0.588 0.273 0.480 0.168 0.094

QPLS k (%) 7.36 32.36 −0.45 4.00 −3.91 8.73

p 0.092 0.542 0.583 0.497 0.787 0.305

EB-QPLS k (%) 37.45 71.66 64.23 37.55 72.82 67.89

p 0.092 0.016 0.048 0.017 0.013 0.068

NNPLS k (%) 11.65 −17.74 3.72 6.45 −2.93 5.65

p 0.064 0.191 0.542 0.787 0.839 0.735

SPL-PLS k (%) 3.82 −8.96 9.03 1.51 −28.50 −0.65

p 0.204 0.542 0.033 0.787 0.008 0.244

FIGURE 4
Observed vs. fitted values of response variables for CM datasets as determined by (A) PLS, (B) NNPLS, (C) SPL-PLS, (D) QPLS, (E) EB-QPLS and (F)
MIR-PLS.
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over-fitting and improve the generalization ability of the trained
model (Wold, 1978; Osten, 1988). In this paper, we selected
parameters based on the minimum RMSECV value. The optimal
number of LVs, an essential parameter in each model, was estimated
within the range of [1,15].

For the NNPLS method, an additional vital parameter is the
optimal number of hidden units for each LV. This parameter was
automatically determined by the formula defined as

τ � 1
N

× ∑N
i�1

ûi nn + 1( ) − ûi nn( )| | (16)

where nn represents the number of hidden layer neurons at the
current LV and ûi(nn) is the i th element of the predicted output
score vector. When the τ value is less than the predefined threshold
(0.01), it indicates that adding a new hidden unit does not
significantly reduce the fitting error and should be discarded.
Conversely, the procedure for adding a hidden unit will continue.

For the MIR-PLS method, two crucial parameters were
considered: the number of LVs and the number of knots. To
optimize these parameters, a grid search with cross-validation
was employed. Specifically, the number of LVs varied within the
range of [1,15], and the number of nodes was explored in the interval
[0,5]. For each combination of these parameters, cross-validation
results were computed, and the set of parameters yielding the
smallest RMSECV was identified as the optimal configuration.

As for the SPL-PLS method, there are three parameters to
determine: the degree of the polynomial (L), the number of knots
(J), and the number of LVs. This paper will use a linear, quadratic, or

cubic spline to model the inner relation of SPL-PLS. First, L was
fixed, and then the optimal number of LVs and J was determined
using grid search with cross-validation. Finally, repeated the process
with a different L.

5 Results and discussion

5.1 Performances on Chinese
Medicine datasets

The experimental results of the six algorithms on the dose-effect
relationship datasets are shown in Table 2. In the table, RMSE,
MAPE, and R2 are used to compare the performances of each model.
LVs represent the optimal number of latent variables for eachmodel.
Others display other optimal parameters used in models. It is worth
noting that for NNPLS, the specific number of hidden units for each
LV is not provided. This is because NNPLS selects different hidden
units for each data subset.

In terms of RMSE andMAPE, the proposed MIR-PLS algorithm
outperforms the other five comparison algorithms on three datasets
(AT, AA (y2), AF (y1)). On the AA (y2) and AF (y1) data sets, the
predictive performance of the non-linear PLS models is better than
that of the linear PLS. NNPLS achieves the best predictive results on
the AA (y1) dataset. It is worth noting that the performance of linear
PLS and linear kernel SPL-PLS algorithms on the AF (y2) and AF
(y3) datasets is superior to other non-linear PLS algorithms,
indicating the weaker non-linear relations on these two datasets.
In terms of R2, MIR-PLS performs best on the AT, AA (y2), and AF

TABLE 4 Experimental results for the Wheat Kernel dataset.

Criteria PLS QPLS EB-QPLS NNPLS SPL-PLS MIR-PLS

RMSEC 0.505 0.502 0.446 0.520 0.492 0.503

RMSEP 0.629 0.577 0.610 0.604 0.620 0.556

R2 0.869 0.890 0.856 0.880 0.873 0.898

RMSECV 0.560 0.558 0.620 0.572 0.549 0.548

MAPECV 4.334 4.332 5.008 4.539 4.379 4.305

LVs 12 12 2 10 12 12

Othersa 10d (1, 1)b 2c

The bold value means the best performance among different models.
aOther parameters in the model.
b(L, J) used in SPL-PLS, L denotes the degree of polynomial, and J represents the number of knots.
cNumber of knots used in MIR-PLS.
dThe number of hidden units used in NNPLS.

TABLE 5 The number of hidden units used in each LV (NNPLS).

Dataset Number of hidden units

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

LV LV LV LV LV LV LV LV LV LV

Wheat Kernel 1 1 1 1 1 1 1 1 1 1

Beer 5 5 1 1 1 1 1
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(y1) datasets, with R2 values all exceeding 0.5, indicating that the
model can explain more than half of the data variance. Linear
models outperform non-linear models on the AF (y2) and AF (y3)
datasets. It is worth mentioning that the R2 values of all models on
the AA (y1) dataset are negative, indicating poor model fitting and
possibly unsuitability for data interpretation or mismatch between
the model and the data.

To further analyze the characteristics of the dose-effect
relationship datasets and the differences between these models,
the individual inner models of all algorithms at the first LV on
the AA (y2) and AF (y2) datasets were plotted in Figure 2, 3,
respectively. According to the characteristics of the scatter plots,
these six models can be divided into two groups. The first group
includes PLS, NNPLS, and SPL-PLS, with almost identical input
scores. The second group includes QPLS, EB-QPLS, and MIR-PLS,
with a much smaller range of t.

From Figure 2, it can be observed that our proposed MIR-PLS
algorithm presents much better predictive performance on the AA
(y2) dataset. In Figure 2F, the input scores t obtained by the MIR-
PLS projection have a smaller distribution range, and the observed
values (blue dots) are close to the non-linear relationship (red dotted
line). This indicates that MIR-PLS can better capture the inner
relations. Figures 2A–D demonstrate that PLS, NNPLS, SPL-PLS,
and QPLS have comparable predictive performances. It is worth
noting that EB-QPLS exhibits good flexibility in capturing non-
linear inner relations (Figure 2E). However, in terms of predictive
metrics, its predictive performance is not ideal, indicating that the
extra flexibility may lead to over-fitting. Additionally, the R2 values
of EB-QPLS are poor across all datasets, with three datasets even

showing negative values. This suggests poor model fitting, possibly
only predicting the mean of the target variable.

From Figure 3, it can be seen that the linear models seem to
perform well. On the AF (y2) dataset, the inner relations (red dotted
line) calculated by all algorithms are linear across almost the entire
domain. This also confirms that the dataset exhibits linear
characteristics. Although MIR-PLS shows slightly lower predictive
performance than PLS and SPL-PLS, the statistical test results
(Table 3) show no significant difference between them.
Furthermore, from Figures 3C, F, it can be observed that the
piecewise mapping functions are more flexible in fitting the inner
relations compared to single mapping functions.

The correlation between the observed and fitted values is plotted
in Figure 4. From the figure, it can be observed that all algorithms do
not perform well on the AA (y1) dataset. When dealing with non-
linear datasets AT, AA (y2), and AF (y1), the non-linear models
exhibit lower predictive errors, whereas linear models show
relatively higher. Conversely, on the linear datasets AF (y2) and
AF (y3), linear models outperform non-linear models. Although
MIR-PLS is not as effective as linear PLS algorithms in handling
linear relationships, it still achieves lower predictive errors on the AF
(y2) dataset and maintains a good distribution of scatter points near
the diagonal line, demonstrating its potential in capturing and
predicting linear relationships.

Table 3 presents the improvement of MIR-PLS in terms of
RMSE (k values). From the table, it can be observed that MIR-PLS
enhances the predictive performances on the dose-effect
relationship datasets. In addition, the proposed MIR-PLS
algorithm requires the fewest LVs on the six datasets. This

FIGURE 5
The first LV of the six algorithms on the Wheat Kernel dataset. (A) PLS, (B) NNPLS, (C) SPL-PLS, (D) QPLS, (E) EB-QPLS, and (F) MIR-PLS.
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reflects its ability to capture the latent relationships in the data, and
the extracted LVs can effectively interpret the original data. In
contrast, other algorithms may require multiple LVs to achieve
good predictive performances. However, the Wilcoxon signed rank

test indicates that the differences between MIR-PLS and other
models are not as significant (except for EB-QPLS). One possible
reason is that the sample size is too small to evaluate the differences
between the PLS models effectively. Further testing on the NIR
datasets will be conducted to examine the differences between
PLS models.

In summary, analyzing dose-effect relationship data of Chinese
medicine poses significant challenges. No single model can fit all
datasets well. In fact, employing single LOO-CV for small datasets
may lead to biased estimates of prediction accuracy, as the minimum
CV error may not always reflect the lowest test error. In future
studies, we aim to employ more rigorous validation techniques, such
as double CV, to ensure a more reliable estimate of the predictive
performance of our proposed method.

5.2 Performances on wheat kernel dataset

Table 4 summarizes the modeling results of the six approaches
over the Wheat Kernel dataset. Based on the RMSEP values, the five
NL-PLS models outperform the linear PLS model, indicating the
inadequacy of linear PLS for this non-linear dataset. In calibration,
EB-QPLS achieves the best RMSEC value of 0.446. However, its
generalization metrics do not yield the best results. QPLS delivers
the second-best RMSEP value, while SPL-PLS presents slightly

FIGURE 6
Observed vs. predicted values of protein concentration for Wheat Kernel dataset as determined by (A) PLS, (B)NNPLS, (C) SPL-PLS, (D)QPLS, (E) EB-
QPLS and (F) MIR-PLS.

TABLE 6 RMSEP improvements and the Wilcoxon signed rank test results.

MIR-PLS

Wheat kernel Beer

PLS k (%) 11.61 11.54

p 0.000 0.594

QPLS k (%) 3.68 28.03

p 0.000 0.141

EB-QPLS k (%) 8.82 70.11

p 0.003 0.485

NNPLS k (%) 7.94 53.51

p 8.1E-15 0.750

SPL-PLS k (%) 10.34 27.43

p 0.554 0.170
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higher RMSECV and MAPECV compared to MIR-PLS, yet is still
competitive. NNPLS, while offering better RMSEP than PLS, does
not show better calibration and cross-validation performances.
Table 5 shows the number of hidden units used by NNPLS in
each LV. Despite not achieving the best calibration performance,
MIR-PLS attains the lowest RMSECV and MAPECV values among
the six models. MIR-PLS also achieves the best predictive
performance, with the lowest RMSEP of 0.556 among the
models, further reinforcing its effectiveness in dealing with non-
linear datasets. Additionally, MIR-PLS shows the highest R2 value at

0.898, suggesting that it not only predicts well but also captures a
significant portion of the data’s variability.

Figure 5 presents the inner relations of all algorithms at the first
LV. These plots can easily observe the significant nonlinearity of
protein concentration. From Figures 5B, C, it can be seen that
NNPLS and SPL-PLS exhibit similar calibration performance.
Furthermore, these two models also demonstrate comparable
generalization ability. QPLS and EB-QPLS appear to capture the
inner relation more effectively (Figures 5D, E). However, EB-QPLS
performs slightly better than PLS in terms of RMSEP, indicating

TABLE 7 Experimental results for the Beer dataset.

Criteria PLS QPLS EB-QPLS NNPLS SPL-PLS MIR-PLS

RMSEC 0.064 0.030 1.4E-06 0.050 0.019 0.002

RMSEP 0.297 0.366 0.880 0.566 0.363 0.263

R2 0.988 0.981 0.892 0.955 0.982 0.990

RMSECV 0.577 0.678 0.632 0.976 0.674 0.654

MAPECV 4.113 4.958 5.131 7.001 4.942 4.634

LVs 4 6 6 7 6 1

Othersa 15d (2, 5)b 0c

The bold value means the best performance among different models.
aOther parameters in the model.
b(L, J) used in SPL-PLS, L denotes the degree of polynomial, and J represents the number of knots.
cNumber of knots used in MIR-PLS.
dThe number of hidden units used in NNPLS.

FIGURE 7
The first LV of the six algorithms on the Beer dataset. (A) PLS, (B) NNPLS, (C) SPL-PLS, (D) QPLS, (E) EB-QPLS, and (F) MIR-PLS.
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potential over-fitting of the inner relation, which hampers further
improvement in prediction performance. Conversely, MIR-PLS
demonstrates good calibration performance (Figure 5F) while
exhibiting excellent generalization performance.

To further compare the predictive performances of different
models, the correlation between the observed and predicted values is
plotted in Figure 6. From Figure 6A, it can be observed that the
correlation is rather poor and the modeling error is relatively high
for linear PLS, indicating its inadequacy in handling nonlinearities.
The subsequent plots, Figures 6B–E, illustrate improvements in
prediction results for NNPLS, SPL-PLS, QPLS, and EB-QPLS, but
still deemed unsatisfactory. In contrast, as shown in Figure 6F, MIR-
PLS makes the data points align more tightly along the diagonal. The
k value in Table 6 indicates the enhanced predictive performances of
MIR-PLS. Furthermore, the Wilcoxon signed rank test results
(Table 6) reveal that the RMSEP value of MIR-PLS significantly
differs from other models except for SPL-PLS (p = 0.554), further
affirming the better prediction performance of MIR-PLS.

5.3 Performances on Beer Dataset

In the Beer dataset, the number of predictors (M = 576)
significantly exceeds the number of samples (N = 80). This high
dimensionality introduces collinearity problems among the

predictors. Building predictive models with algorithms that
account for collinearity among predictors considerably
reduces the risks of over-fitting. Hence, the Beer dataset
presents unique challenges that need to be addressed to
ensure accurate modeling and interpretation of the results.
Table 7 presents calibration, cross-validation, and prediction
performances calculated using different algorithms for the
Beer dataset.

EB-QPLS yields the best calibration performance on both
Wheat Kernel and Beer datasets. However, it exhibits the poorest
RMSEP and R2 values on the Beer dataset, indicating that its
capacity to generalize is inferior compared to the other models.
Figure 7E illustrates that EB-QPLS perfectly fits the inner
relation, which is further supported by its observed/predicted
plot (Figure 8E) for calibration and test sets. Nevertheless, a
closer examination of the test set reveals significant deviations in
data points, indicating clear signs of over-fitting. As mentioned
earlier, EB-QPLS updates the weights w based on MLR, which
explains why it yields very poor validation results, as reported in
the literature (Lavoie et al., 2019).

From Table 7, it is evident that NNPLS outperforms PLS in
terms of calibration performance. Figure 7B illustrates that a
neural network with a single hidden layer can better model inner
relations. Surprisingly, however, the generalization performance
of NNPLS does not surpass PLS. On the contrary, NNPLS

FIGURE 8
Observed vs. predicted values of original extract concentration for Beer dataset as determined by (A) PLS, (B) NNPLS, (C) SPL-PLS, (D)QPLS, (E) EB-
QPLS and (F) MIR-PLS.

Frontiers in Physiology frontiersin.org13

Zheng et al. 10.3389/fphys.2024.1369165

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1369165


exhibits even poorer, as shown in Figure 8B. Poor performances
of NNPLS could be ascribed to the small size of the Beer dataset,
comprising only 53 samples compared with the Wheat Kernel
dataset (415 calibration samples). This limited sample size may
have hindered the construction of a more robust calibration
model, as ANNs typically manifest their advantages with a
sufficient number of samples.

SPL-PLS demonstrates optimal performances when
employing quadratic polynomial function to construct the
inner model. Interestingly, the QPLS exhibits performances
comparable to SPL-PLS, as can be seen in Figures 7, 8C.
These two approaches rank second only to PLS and MIR-PLS
in terms of overall performance. However, it is worth
highlighting that SPL-PLS and QPLS require 6 LVs to achieve
good calibration performance. In contrast, our proposed MIR-
PLS approach achieves similar or superior performance using
only 1 LV.

The different performances between PLS and our proposed
MIR-PLS can be largely explained by the presence or absence of
non-linear relationships between X and y. On the Beer dataset, the
calculated non-linear relationship is weak (Figure 7), which explains
why the prediction performance of PLS with 4 LVs is close to that of
MIR-PLS. However, since linear PLS solely relies on X-y
relationships, it requires more LVs to approximate MIR-PLS in
terms of predictive performance. Figures 7, 8F also demonstrate that
MIR-PLS enhances predictive performances for both calibration and
test sets, indicating that MIR-PLS has better inner relation fitting
capability and calibration performance than the other five models.
Compared with EB-QPLS, MIR-PLS is less prone to over-fitting. It
yields desirable predictive performance while maintaining excellent
calibration performance. However, the Wilcoxon signed rank test
(Table 6) shows that the differences between MIR-PLS and other
models are not as statistically significant as in the Wheat
Kernel dataset.

6 Conclusion

This paper aims to propose a new predictive model to deal
with complex dose-effect relationship data of CM. Although
standard PLS has certain advantages in solving problems such as
limited observations and correlated inputs in CM data, it may
exhibit poor performances when modeling non-linear
relationships. Based on existing methodologies, we proposed a
novel NL-PLS based on monotonic inner relations, namely,
MIR-PLS. This algorithm employs a piecewise non-linear
mapping function to establish non-linear relationships.
Moreover, a new WUS is designed to improve predictive
performance further. The performance of MIR-PLS was
evaluated with three different types of datasets and compared
with five well-known PLS variants. On the CM dose-effect
relationship datasets, MIR-PLS exhibited outstanding
performances in handling non-linear relationships and also
performed well with linear relationships. On the NIR
datasets, MIR-PLS did not yield the best calibration
performances. Nevertheless, in terms of predictive
performances, our MIR-PLS algorithm outperformed the
others. Even in the presence of multicollinear variables in X,

this method effectively reduced the risk of over-fitting,
demonstrating its reliability and robustness.
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