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Myosin binding protein C (MyBPC) is a multi-domain protein with each region
having a distinct functional role in muscle contraction. The central domains of
MyBPC have often been overlooked due to their unclear roles. However, recent
research shows promise in understanding their potential structural and regulatory
functions. Understanding the central region of MyBPC is important because it
may have specialized function that can be used as drug targets or for disease-
specific therapies. In this review, we provide a brief overview of the evolution of
our understanding of the central domains of MyBPC in regard to its domain
structures, arrangement and dynamics, interaction partners, hypothesized
functions, disease-causing mutations, and post-translational modifications. We
highlight key research studies that have helped advance our understanding of the
central region. Lastly, we discuss gaps in our current understanding and potential
avenues to further research and discovery.
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Introduction

Myosin binding protein C (MyBPC) is an essential regulator of contractile function in
skeletal and cardiac muscle (Bennett et al., 1999; Oakley et al., 2004; Heling et al., 2020; Song
et al., 2023). Initially, MyBPC was visualized as an unknown thick filament structure in frog
sartorius muscle via low-angle X-ray diffraction experiments and stripes of extra mass
43 nm apart in long sections of muscle (Huxley, 1967; Huxley and Brown, 1967). MyBPC, or
“C-protein” as it was called initially, was discovered a few years later and was characterized
as a long rod-shaped, thick-filament associated protein weighing about 140 kDa with little
alpha helix content (Starr and Offer, 1971; Offer et al., 1973). Subsequent studies confirmed
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that MyBPC localized to the A band of thick filaments with
approximately 43 nm spacing (Hanson et al., 1971; Rome et al.,
1973; Pepe and Drucker, 1975). Early biochemical assays showed
that MyBPC had at least three different paralogs: slow skeletal, fast
skeletal, and cardiac (Callaway and Bechtel, 1981; Reinach et al.,
1982; Yamamoto and Moos, 1983; Kawashima et al., 1986).

With the development of modern gene sequencing and
molecular cloning techniques, it became possible to study
MyBPC in a more detailed manner. Each paralog of MyBPC was
classified as a multi-domain protein containing immunoglobulin-
like domains of the C2 type and fibronectin type 3 domains
(Einheber and Fischman, 1990; Fürst et al., 1992; Weber et al.,
1993; Gautel et al., 1995) (Figure 1A). This led to extensive domain-
specific studies of thick filament assembly and interactions with
myosin and titin involving domains C7-C10 (Okagaki et al., 1993;
Freiburg and Gautel, 1996; Gilbert et al., 1996), as well as studies of
functional and regulatory roles of the N-terminal C0-C2 domains
regarding actomyosin interactions and regulation of crossbridge
function (Gruen and Gautel, 1999; Harris et al., 2004; Razumova
et al., 2008; Risi et al., 2018). The central region of MyBPC has not
been the focus of the majority of research, and the potential
functional and regulatory roles of domains C3-C6 are
largely unknown.

The complete sequencing of the human cardiac MyBPC gene
(MYBPC3) paved the way for domain-specific studies (Carrier et al.,
1997). TheMYBPC3 gene is >21,000 base pairs in size and contains a
total of 35 exons (Carrier et al., 1997). The central domains were
translated from the following exons: exons 16–17 (C3 domain),
exons 18–19 (C4 domain), exons 21–23 (C5 domain), and exons
24–25 (C6 domain). Exon 20 encoded the C4-C5 linker
(VKIDFVPRE) and exon 22 approximately coincided with the
loop region (GNKAPARPAPDAPEDTGDSDEWVFDKK), which
are sequences specific to the fast skeletal/cardiac and cardiac muscle

paralogs, respectively (Carrier et al., 1997). Because different
paralogs were formed from different combinations of domains, it
was hypothesized from early on that these paralog-specific domains
may have a role in the function and regulation of different MyBPC
paralogs (Hartzell and Glass, 1984; Hartzell and Sale, 1985;
Schlender and Bean, 1991; Gautel et al., 1995).

In addition, MYBPC3 was found to be linked with familial
hypertrophic cardiomyopathy (HCM) (Carrier et al., 1993;
Watkins et al., 1995; Maron and Maron, 2013). HCM has
been thought to be a common cause of sudden cardiac death
(SCD) in younger individuals, but more recent studies have
shown that the rates of SCD in HCM patients are closer to
aged-matched general population (Saberi and Day, 2018;
Weissler-Snir et al., 2019). Of all of variants of the MYBPC3
gene, –64% are missense variants, –30% are synonymous
variants, –3% are frameshift and truncation variants, and 3%
are in-frame indels and splice site variants (Harris et al., 2011;
Helms et al., 2020; Desai et al., 2022). Some of these variants are
pathogenic or likely pathogenic, while others are not (Doh et al.,
2023). A query of the Sarcomeric Human Cardiomyopathy
Registry (SHaRe) showed that disease-causing mutations in
MYBPC3 are the most common cause of familial HCM
(Helms et al., 2020), with the vast majority of these variants
within the central domains (Suay-Corredera et al., 2021a). This
suggests that the central region has a function beyond that of a
spacer between the C- and the N-termini.

Since then, there has been little progress in furthering our
understanding of the central C3-C6 domains of MyBPC.
Therefore, we aim to summarize the current views and
hypotheses regarding the domain structures, arrangement and
dynamics, interaction partners, hypothesized functions, disease-
causing mutations, and post-translational modifications (PTM) in
the C3-C6 domains of MyBPC.

FIGURE 1
(A) Schematic representation of cardiacMyBPC domains. The C0 andC1 domains are connected by a proline-alanine rich (P/A) linker and the C1 and
C2 domains are connected by the MyBPCmotif (M-domain). The cardiac-specific C5 domain insert is shown. Schematics are not drawn to scale. (B) i. A
predicted model of C3-C6 domains of MyBPC using AlphaFold. ii. The cardiac C5 domain with cardiac-specific insert is shown.

Frontiers in Physiology frontiersin.org02

Doh et al. 10.3389/fphys.2024.1370539

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1370539


Structures of the central domains
of MyBPC

Cardiac MyBPC is a key regulatory sarcomeric protein in the
heart muscle, playing a critical role in cardiac muscle contraction.
MyBPC is located in the C-zone of the A-band, where it interacts with
bothmyosin and actin filaments (Heling et al., 2020).MyBPC consists
of multiple immunoglobulin (Ig) and fibronectin type-III (FnIII)
domains, which contribute to its modular or flexible structure
(Ackermann and Kontrogianni-Konstantopoulos, 2011). Notably,
the N-terminal region of cardiac MyBPC contains phosphorylation
sites that are essential for modulating cardiac function, especially
during sympathetic stimulation where it enhances heart rate and force
of contraction (Barefield and Sadayappan, 2010; Rosas et al., 2015;
Mamidi et al., 2016; Ponnam and Kampourakis, 2022). Mutations in
MYBPC3 are linked to various cardiomyopathies, underlining its
importance in cardiac physiology and clinical cardiology (Helms
et al., 2020; Tudurachi et al., 2023). The ability of cardiac MyBPC
to bind and stabilize myosin filaments, as well as its interaction with
actin, positions it as a key regulator of sarcomeric structure and,
consequently, cardiac muscle function. Key to this understanding is
the identification of specific domains that bind to either myosin, actin,
or other sarcomeric proteins.

MyBPC is a multidomain scaffolding protein and its domains
are arranged in a complex manner to facilitate muscle contraction.
The structural details of MyBPC domains are revealed by techniques
such as X-ray crystallography, nuclear magnetic resonance (NMR),
and cryo-electron microscopy (cryo-EM). The human cardiac
MyBPC C5 domain was the first domain solved using NMR in
2003 (PDB ID: 1GXE) (Idowu et al., 2003). Structural analysis of the
C5 domain revealed a beta-bulge structure at the N-terminus
facilitating the C4 and C5 domains in close proximity. A
28 amino acid “CD” strand loop was revealed to be unique to
the C5 Ig domain of cardiac MyBPC and was also absent in the non-
cardiac MyBPC paralogs. (Cecconi et al., 2008; Guardiani et al.,
2008). The increased mobility and flexibility of the C5 domain were
predicted based on sedimentation and 15N relaxation experiments
(Idowu et al., 2003).

Four solution and crystal structures of the C3 domain have been
published: human slow skeletal MyBPC (PDB ID: 1X44; NMR),
human fast skeletal MyBPC (PDB ID: 2EDK; NMR), human cardiac
MyBPC (PDB ID: 2MQ0; NMR), and human cardiac MyBPC with
the R502W substitution (PDB ID: 2MQ3; NMR) (Zhang et al.,
2014). The C4 domain structure was solved using NMR experiments
from the human slow skeletal paralog (PDB ID: 2YUZ) and mouse
fast skeletal paralog (PDB ID: 2DLT). There is no known solved
experimental structure of the C6 domain. With the recent
advancements in in silico structure prediction and modeling
programs, it is possible to predict all eleven domains of MyBPC
based on amino acid sequence using tools like AlphaFold (Jumper
et al., 2021; Zhou et al., 2022b) (Figure 1B).

Arrangement and dynamics of the
central domains of MyBPC

Early in vitro binding assays showed that the C-terminal end of
MyBPC is bound to the myosin thick filament and interacts with

titin (Starr and Offer, 1978; Okagaki et al., 1993; Freiburg and
Gautel, 1996; Gruen and Gautel, 1999). However, the exact
configuration of MyBPC on the thick filament remains unclear.
There have been many theories regarding the arrangement of
MyBPC on the myosin filaments, reviewed in detail elsewhere
(Bennett et al., 1999). Some of the proposed configurations of
MyBPC on the thick filament have included 1) axial
arrangements of myosin and MyBPC in a vernier mechanism
(Huxley and Brown, 1967), 2) repeats of three molecules of
MyBPC wrapping themselves around the thick filament to form
a “trimeric collar” (Swan and Fischman, 1986; Flashman et al.,
2008), or 3) MyBPC molecules forming lateral or radial projections
from the thick to the thin filaments (Moos et al., 1978; Squire
et al., 2003).

Several EM and X-ray fiber diffraction studies generated low-
resolution 3D structures of the human cardiac filaments-uncovering
the positioning and potential function of cardiac MyBPC in relation
to the thick (Zoghbi et al., 2008; AL-Khayat et al., 2013; Nag et al.,
2017; Tamborrini et al., 2023) and thin filaments (Luther et al., 2011;
Mun et al., 2011; 2014; Risi et al., 2018; Tamborrini et al., 2023). An
immuno-EM study showed that antibodies specific to the central
domains (C5-C7) labeled the same nine axial positions within the
A-band, suggesting that both the N-terminus and central domains of
MyBPC run approximately transversely to the thick filament and are
oriented radially to the sarcomere (Lee et al., 2015). In 2011, an
electron tomography (ET) study showed that MyBPC binds to actin
and that it may be in a radial orientation with a bend at the
C5 domain (Luther et al., 2011). More recently, the C3-C6
domains were predicted to form a bridge from the thick to the
thin filament using AlphaFold generated domains as models in the
low-resolution −18 Å cryo-ET composite reconstructions, with high
angular distribution relative to the thick filament Z-axis, supporting
the prior experimental observation (Tamborrini et al., 2023).
Additionally, a recent cryo-EM study, at a resolution of 6–10 Å,
showed that the central domains and the cardiac-specific 28 amino
acid loop insert in the C5 domain have important interactions with
various locations on the interacting-heads motif (IHM) of myosin
(Dutta et al., 2023). Mavacamten, a small molecule cardiac myosin
inhibitor that stabilizes the folded state of myosin, was utilized in
these recent studies (Dutta et al., 2023; Tamborrini et al., 2023).
While these structural studies are valuable and provide some initial
insights into the domain structure and arrangements in the presence
of mavacamten in the C-zone, a high-resolution and unambiguous
reconstruction of the domains is needed for accurate analysis of
inter-domain and inter-molecular interactions.

Additionally, early research involving rotary shadowing
techniques showed that fast skeletal and cardiac MyBPC paralogs
(containing the elongated C4-C5 linker) adopted various
conformations including bent V or U shapes (Hartzell and Sale,
1985; Swan and Fischman, 1986). This ability of MyBPC to bend at
domain junctions was reinforced by an EM study showing that
MyBPC indeed had internal hinges in the molecule, with one in the
M domain and one near the C4 and C5 central domains (Previs et al.,
2016). Several studies have shown that MyBPC is a dynamic
molecule with internal hinges that permit a wide range of motion
(Colson et al., 2016; Previs et al., 2016). Although the N-terminal
domains primarily have been shown to influence actin binding and
rotational dynamics, it is hypothesized that the central domains’
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internal hinge (C4-C5) may also contribute to this action (Colson
et al., 2016; Nadvi et al., 2016; Doh et al., 2022a). More recently, a
“hinge-and-latch” mechanism was proposed to explain the
biophysical properties of this region through molecular dynamics
simulations (Doh et al., 2022a). By creating constructs with deletions
in the linker and loop regions, the authors showed that the C4-C5
linker aids in reducing the C4 and C5 interdomain angles (acting as a
“hinge”), while the C5 loop region helps form sustained interdomain
interactions in the presence of the linker region (acting as the
“latch”). It is hypothesized that the “hinge-and-latch” mechanism
is unique to the cardiac MyBPC paralog, which may contribute to an
paralog-specific mechanism (Doh et al., 2022a).

Interaction partners of the central
domains of MyBPC

Initially, MyBPC was found to interact with the myosin rod,
light and heavy meromyosin, and myosin subfragment 2 (Moos
et al., 1975; 1978; Starr and Offer, 1978; Okagaki et al., 1993; Gruen
and Gautel, 1999; Flashman et al., 2007). Further studies revealed
that MyBPC also had interactions with titin (Tonino et al., 2019),
regulatory light chain (Ratti et al., 2011), actin (Moos et al., 1978;
Whitten et al., 2008; Kensler et al., 2011; Luther et al., 2011; Mun
et al., 2011; Orlova et al., 2011; Belknap et al., 2014; Risi et al., 2018),
calmodulin (Lu et al., 2012), formin homology 2 domain-containing
3 protein (Fhod3) (Matsuyama et al., 2018), and four and a half LIM
protein 1 (Fhl1) (McGrath et al., 2006a). Unfortunately, most of
these interaction studies utilized the whole or large fragments of
MyBPC (McGrath et al., 2006b; Ackermann and Kontrogianni-
Konstantopoulos, 2011; McNamara and Sadayappan, 2018).

To determine specific domains that could be interacting with key
myofilament proteins, studies using isolated domains were
conducted. Early studies using yeast two-hybrid (Y2H) assays
showed that domain C5 had a strong affinity for domain C8,
confirmed by surface plasmon resonance (Moolman-Smook et al.,
2002). Based on their data, the authors hypothesized that MyBPC
may form a trimeric collar around the thick filament that would be
dynamically formed and released, affecting cross-bridge formation.
A follow-up study revealed that this interaction between C5 and
C8 is also present in fast skeletal but not slow skeletal paralogs
(Flashman et al., 2008). It has also been speculated but never
confirmed, that the C5 domain’s cardiac-specific loop may
function as a scaffold for various signal transduction molecules
containing SRC (short for sarcoma) homology 3 domains (Gautel
et al., 1995).

Experiments involving truncated recombinant proteins
generated through the baculovirus/insect cell system showed that
C5-C9 domains were required for binding to beta-myosin heavy
chain (Flavigny et al., 2003). Although this study did not clarify
which exact region had a role in myosin binding, it narrowed down
the potential interacting domains. A more recent microscale
thermophoresis (MST) experiment showed that the highest
affinity sites on MyBPC for myosin S1 are not located in the
N-terminus, as previously thought, but within the central regions
(Ponnam and Kampourakis, 2022). They showed that C2-C4 and
C5-C7 segments compete for the same binding site on myosin S1,
suggesting that MyBPC crosslinks to S1 and S2 of a single myosin

molecule, resulting in increased stabilization of myosin in the folded
state (Ponnam and Kampourakis, 2022). They also showed that
these peptides interacted with mini-HMM fragments (a
combination of myosin S1 and S2 fragment neck region) and the
bare S2 tail (Ponnam and Kampourakis, 2022). Interestingly, the
positioning of the central domains in recent cryo-EM studies is
ambiguous in the mavacamten treated thick filaments (Dutta et al.,
2023; Tamborrini et al., 2023). The cryo-EM study showed the C5-
C10 domains in their reconstructions, and proposed that C5, C8,
and C10 domains interacted with the IHM. Specifically, it predicted
that the 28 amino acids in the cardiac paralog-specific insert of the
C5 domain may interact with CrH (crown containing horizontal
IHM), and the central domains may also interact with TaH and TaT
(tails originating from tilted and disordered IHM) in the folded-back
state (Dutta et al., 2023) (Figure 2A). However, the cryo-ET study
showed the C7-C10 domains in their reconstructions, and they
showed that the C8 and C10 domains interacted with IHM, but the
C5-C6 domains were not resolved (Tamborrini et al., 2023)
(Figure 2B). The common feature between these structures was
that the C8 and C10 domains interacted with the IHM.

While these studies advanced our understanding of thick
filaments with mavacamten, the heterogeneity of MyBPC
interactions remains apparent. For instance, it is ambiguous
whether the MyBPC hinge is near the C7 domain or the
C5 domain based on the cryo-EM/cryo-ET reconstructions
(Dutta et al., 2023; Tamborrini et al., 2023). In addition, more
studies are necessary to determine how the central region interacts
with myosin filaments when some of the myosin heads form IHM
structures and others do not form, much like in the native thick
filaments (Nag and Trivedi, 2021; Walklate et al., 2022).

The hypothesized function of the
central domains of MyBPC

Despite early studies that establishedMyBPC’s functional role in
actin-activated ATPase activity and contractile function of skeletal
and cardiac myosin (Offer et al., 1973; Moos and Feng, 1980;
Hartzell, 1985; Hofmann et al., 1991; Weisberg and Winegrad,
1996), the role of the central domains in contractile function and
regulation has only been of recent interest. Although there were
hints of the central domain’s role in regulating contractile function,
there were no clear explanations for many years (Heling et al., 2020).

Given the relatively high conservation of amino acid sequence
across various regions of the central domains, they may have
evolutionarily important regulatory or functional roles across
species (Oakley et al., 2004; Karsai et al., 2013; Doh et al.,
2022a). One study aimed to clarify the role of central domains in
calcium-activated force generation. Isolated skinned rat cardiac
trabeculae were incubated with C5, C2-C5, or C2-C4 to interfere
with interactions of the endogenous C5 domain (McClellan et al.,
2004). C5 and C2-C5 peptide fragments at concentrations ranging
from 2–16 µM reversibly reduced Ca2+ sensitivity compared to the
control C2-C4 fragments, indicating a C5-specific effect on calcium
sensitivity (McClellan et al., 2004). The authors also noted an
irreversible reduction in Fmax (Ca2+-activated maximal force
measured at pCa 4.5) observed at >10 µM of C5 with a
coincident increase in the loss of MyBPC, indicating that the
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endogenous action of C5 may be to help stabilize and maintain
MyBPC on the thick filament (McClellan et al., 2004).

It has been known that myosin S1 interacts with the proximal
S2 tail of the same myosin, termed the IHM (Wendt et al., 2001;
Heissler et al., 2021). However, it wasn’t until 2017, when a
homology model based on a previous low resolution EM map
showed that the central and C-terminal domains may help
myosin form a sequestered-complex termed the “blocked head,”
supported by ATPase assays and MST experiments (Winkelmann
et al., 2015; Nag et al., 2017). Specifically, the authors suggested that
there may be interactions between the C5 and C7 domains with the
mesa of the blocked head and proximal S2 tail (Nag et al., 2017).
From these experiments, it is plausible that the central domains of
MyBPC help keep the sarcomere in a sequestered state to modulate
force generation and contractility. By extension, various alterations
such as truncation mutations leading to haploinsufficiency,
mutations leading to altered surface interactions, or PTMs
changing interaction strength may cause a shift in the IHM to a
more active “open head” conformation, resulting in
hypercontractility.

The folded back, sequestered IHM structural motif has been
ascribed to the super-relaxed state (SRX) physiologically (Stewart
et al., 2010; Hooijman et al., 2011; Alamo et al., 2016; Nogara et al.,
2016; Anderson et al., 2018a), although more recent single ATP
turnover experiences showed that IHMmay not be necessary for the
SRX state (Anderson et al., 2018b; Rohde et al., 2018; Gollapudi
et al., 2021). Nevertheless, the central domain of MyBPC seem to
have a role in the SRX state. First, it was shown that the complete

ablation of MyBPC destabilized and reduced the proportion of
myosin heads in the SRX state (McNamara et al., 2017). An MST
binding assay between 25-hep HMM and C0-C7 peptides clarified
that the N-terminal and central domains led to an increase in the
population of SRX with a resultant decrease in basal ATP turnover
rate (Sarkar et al., 2020). When the N-terminal fragment of MyBPC
was deleted, there was no impact on the SRX state (Lynch et al.,
2021), implying that the central domain may play a role in
stabilizing the SRX. Interestingly, super-resolution fluorescence
microscopy and stochastic optical reconstruction microscopy
imaging results showed that the stabilization of IHM may result
frommyosin’s interactions with themore internal domains (C4-C6),
given the low number of N-termini bound to the myosin filament
surface in the SRX state (Rahmanseresht et al., 2021). The high
affinity binding between the central domains of MyBPC and myosin
S1 (Ponnam and Kampourakis, 2022) thus indicated that the central
domains could have had a significant role in shifting the myosin
population to the SRX state and modulating the N-terminal
dynamics. Finally, recent mechanical experiments on
myocardium isolated from hearts of cardiac MyBPC ablated mice
following viral transduction of the C3-C10 construct showed
improvements in systolic cardiac function compared to sham
controls likely modulated by the reduction in the rate of
crossbridge recruitment (kdf) (Merkulov et al., 2012; Li et al.,
2020; Dominic et al., 2023), which is dependent on the ratio of
myosin heads in SRX vs. disordered-relaxed states (DRX). The
structural interactions between the central domains and myosin
in the SRX state may underlie these observations.

FIGURE 2
MyBPC central region positioning in thick filament structures. (A)Cryo-EM structure (PDB ID: 8G4L) shows the positioning of the C5 to C10 domains
of MyBPC in the thick filament. In this model, the C5, C8, and C10 domains of MyBPC interact with IHM. (B) Cryo-ET structure (PDB ID: 8Q6T) shows a
mouse thick filament structure with the rigid body docked, AlphaFold predicted C7-C10 domains of MyBPC. i. The C8 domain interacts with one of the
crowns and ii. the C10 domain of MyBPC interacts with another crown. For clarity of visualization, we only showed three crowns of thick filament in
both structures.
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Although the precise role of the central domain still needs to be
confirmed by additional experiments, there is now more evidence of
its importance in the structural, dynamic, and functional influence
over the contractile apparatus.

Disease-causing mutations located in
the central domains of MyBPC

Most HCM-causing mutations within MYBPC3 are missense
mutations that are expected to incorporate into the sarcomere,
suggesting that these domains have a direct effect on regulatory
function (Flashman et al., 2004; Helms et al., 2020; Thompson et al.,
2021). Surprisingly, the central domains C3, C5, and C6 are among
the most highly mutated regions in MYBPC3 and are hotspots for
pathogenic HCM variants (Desai et al., 2022). Truncating mutations
(nonsense variants, indels, and splicing) or aberrations in nonsense-
mediated mRNA decay can also cause disease through mechanisms
of haploinsufficiency or poison-peptides; however, these complex
changes are reviewed elsewhere (Carrier et al., 2010; Glazier et al.,
2019; Suay-Corredera and Alegre-Cebollada, 2022). Since there are
hundreds of articles identifying novel substitutions in cardiac
MyBPC, it is not possible to mention all in this brief review;
instead, we highlight a few examples of missense mutations that
offer mechanistic insights into the central domain’s overall function
and regulation.

Since most missense mutations lead to stably incorporated full
length proteins, the alterations in structure through amino acid
substitutions directly affect ligand binding or function. An NMR
study of the C3 domain with an HCM-causing R502W substitution
showed altered electrostatic properties without structural or
functional abnormalities, suspected to cause disease through
disruptions in interactions between sarcomeric partners (Zhang
et al., 2014). Other HCM-causing pathogenic substitutions
(R654H and N755K in the C5 domain) were shown to influence
its affinity with the C8 domain via Y2H assays (Moolman-Smook
et al., 2002). Denaturation experiments of R654H and N755K
substitutions showed that they induced only partial unfolding of
the C5 domains, which is thought to mainly affect ligand
interactions through altered surface charges leading to the HCM
phenotype (Idowu et al., 2003). An MST study showed that C5-C7
peptides containing N755K and R820Q substitutions had a strongly
reduced affinity for myosin S2Δ and mildly altered interactions with
myosin S1, compared to control (Ponnam and Kampourakis, 2022).
Lastly, a recent study of recombinant proteins with HCM-associated
variants (E542Q, G596R, N755K and R820Q) spread over domains
C3-C6 showed that the first two variants E542Q and G596R
increased the affinity for myosin S1 and ATPase activity, with
decreased ability to interact with F-actin (Pearce et al., 2023).
This study supports prior hypotheses that missense mutations
that do not affect structure or degradation can still directly alter
ligand bindings and activity.

Additionally, missense mutations can also manifest disease
through a degradative mechanism (loss-of-function), rather than
an aberrant gain-of-function mechanism. The HCM-causing
W792R substitution in the C6 domain caused abnormal
contractile velocity and twitch force in murine engineered cardiac
tissue (mECT) that was not statistically different from MyBPC-

deficient mECTs (Smelter et al., 2018). The full length MyBPC with
W792R also underwent rapid cytosolic degradation, leading to
decreased expression (Smelter et al., 2018). Taken together, the
W792R substitution likely causes disease through a direct functional
disturbance combined with haploinsufficiency. A well-conserved
HCM-causing variant in the C6 domain of MyBPC in ragdoll cats
(R820W) has also been identified and was predicted to cause
disruptions in the secondary structures and increased
hydrophobicity of C6 (Meurs et al., 2007). The R820W
substitution has since been found in a patient with HCM and LV
non-compaction in 2010 (Ripoll Vera et al., 2010), and shown to
have an impact on calcium sensitivity (Messer et al., 2017).

There is also emerging evidence that pathogenic variants that do
not alter structure or stability may perturb the nanomechanical
features of MyBPC. Single-molecule atomic force spectroscopy
experiments showed that polyproteins containing R495W and
R502Q substitutions in the C3 domain were mechanically weaker
and unfolded faster than other nonpathogenic variants (Suay-
Corredera et al., 2021b). It is likely that the C3 domain imposes
an internal load to actomyosin sliding, but the R495W and R502Q
substitutions may cause a defect in the braking function of MyBPC,
leading to accelerated crossbridge cycling and eventual
hypercontractility (Suay-Corredera and Alegre-Cebollada, 2022).

In more recent times, it has been possible to study variants of
MyBPC with uncertain significance (VUS) and characterize how
those variants may impact MyBPC function. Using bioinformatic
prediction tools and functional studies (RNA splicing, circular
dichroism, and differential scanning calorimetry), it is possible to
clarify or even reclassify VUS as pathogenic vs. benign. For example,
I603M VUS in domain C4 was shown to cause structural instability
which likely impacts function (Pricolo et al., 2020). Although it is
necessary to conduct further studies to determine whether this
variant has a direct impact on MyBPC function, the authors
argue that the reclassification of the I603M substitution as
pathogenic may be warranted (Pricolo et al., 2020). As described
above, the central domain seems to contain many pathogenic and
potentially pathogenic substitutions that impact MyBPC function in
diverse ways.

Post-translational modifications in the
central domains of MyBPC

Soon after the discovery ofMyBPC, there has beenmuch interest
in phosphorylation and its effects on contractility (Jeacocke and
England, 1980; Hartzell, 1984; 1985; Hartzell and Glass, 1984; Lim
et al., 1985; Weisberg and Winegrad, 1996). Since then, an extensive
number of PTMs, including phosphorylation, acetylation,
citrullination, S-glutathionylation, S-nitrosylation, and
carbonylation, were discovered and are reviewed in many articles
(Sadayappan and de Tombe, 2014; Carrier et al., 2015; Main et al.,
2020). Here, we provide an overview of PTMs specifically located in
the central domains that may have functional importance.

A liquid chromatography-tandem mass spectrometry (LC-MS/
MS) study found that cardiac MyBPC residues T601 and T606 in the
C4 domain and S707 in the C5 domain were significantly less
phosphorylated in failing human hearts compared to healthy
controls (Kooij et al., 2013). Another study showed that mice
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treated with beta-adrenergic receptor antagonists had hyper-
phosphorylated MyBPC residues, some within the central domain
(Lundby et al., 2013). In a targeted in vitro MS study of the C4-C5
domains, ten additional phosphorylation sites were identified within
the C4 and C5 domains, including in the C5 28 amino acid loop
region (Doh et al., 2022b). These PKA and PKG1 targets within C4-
C5 domains were hypothesized by the authors to play a role in intra-
and inter-molecular interactions within the sarcomere or implicated
in regulation (Doh et al., 2022a; Doh et al., 2022b). Other studies have
also identified various phosphorylation sites in the central domains
C3-C6 (Schumacher et al., 2007; Huttlin et al., 2010; Hornbeck et al.,
2012). Interestingly, the SRX state has been shown to be affected by
the phosphorylation status of the N-terminal of MyBPC, but it is
unknown whether the phosphorylation of the central domains is also
involved (McNamara et al., 2019).

Myofibrils treated with S-nitrosocysteine and/or
S-nitrosoglutathione resulted in decreased Ca2+ sensitivity due to
increased levels of nitrosylation on cysteine residues of several
sarcomeric proteins, including C715 in the central domain of
MyBPC (Figueiredo-Freitas et al., 2015). Ca2+-desensitization from
S-nitrosylation significantly decreased maximal force development
and an overall reduction in the rate of relaxation (Figueiredo-Freitas
et al., 2015). Although many proteins contain nitrosylation sites, the
authors suggested that nitrosylation ofmyofilament proteins generally
prevents irreversible protein oxidation, which has downstream
cardioprotective effects (Figueiredo-Freitas et al., 2015).

Another oxidative modification, S-glutathionylation, was
discovered in MyBPC (Brennan et al., 2006; Lovelock et al., 2012).
Tandem mass spectrometry on myofibrils treated with oxidized
glutathione showed that MyBPC was S-glutathionylated exclusively
in the central domain at residues C479 (C3 domain), and C627
(C4 domain), and C655 (C5 domain) (Patel et al., 2013). They
found that S-glutathionylation had a reversible increase in Ca2+

sensitivity and ATPase rate, potentially from the maintenance of
longitudinal rigidity interactions with cross-bridge constituents (Patel
et al., 2013). S-glutathionylation was also associated with in vivo
diastolic dysfunction, possibly because it prevents radial disposition
of MyBPC in order to enter the cross-bridge cycle or alters N-terminal
interactions with myosin or actin (Jeong et al., 2013). No matter what
the precise mechanism of action, it is clear that the central domain is a
hot spot for S-glutathionylation in MyBPC and likely has a prominent
effect on function (Jeong et al., 2013; Liu et al., 2021). More recently, it
has even been proposed that S-glutathionylated MyBPC could be a
potential biomarker for diastolic dysfunction (Zhou et al., 2022a). Full
length cardiac MyBPC was immunoprecipitated from blood samples
taken from humans, African green monkeys, and mice with confirmed
diastolic dysfunction. Circulating levels of S-glutathionylated cardiac
MyBPCwere positively correlated with diastolic dysfunction in humans
and significantly increased in the animalmodels of diastolic dysfunction
compared to disease-free controls (Zhou et al., 2022a). This implicates
the clinical relevance of the central domains of MyBPC and its potential
for detecting the early stages of heart failure with preserved ejection
fraction (HFpEF) and disease stratification (Rosas and Solaro, 2022).

Acetylation, typically regulated by histone acetyltransferase and
deacetylase, was first observed inMyBPC near the N-terminal region
(Ge et al., 2009; Govindan et al., 2012). Later on, an in vitroMS study
identified six additional sites of acetylation in the central C4-C5
domains (Doh et al., 2022b). The role of acetylation in MyBPC is

thus still unknown but a change from positively to neutrally charged
moiety is likely to lead to alterations of surface electrostatic charges
and changes in protein interactions.

The only known citrullination in MyBPC was first observed to
occur on residue R696 in domain C5 of MyBPC in both healthy and
diseased hearts (Fert-Bober and Sokolove, 2014; Fert-Bober et al.,
2015). Because citrullination results in loss of charge, similar to
acetylation, the authors noted that this change likely causes
alterations in protein structure, interactions, proteolytic
susceptibility, and intracellular signaling (Fert-Bober et al., 2015).
However, additional mutagenesis experiments or in vivo studies are
necessary to confirm the role of citrullination in MyBPC physiology.

Ubiquitination in the central domains of MyBPC has also been
reported, so it can be hypothesized that the central domain is likely
targeted for ubiquitination mediated MyBPC degradation
(Hornbeck et al., 2012; Wagner et al., 2012; Doh et al., 2022b). A
general overview of the mechanisms of ubiquitination in cardiac
disease is reviewed elsewhere (Mearini et al., 2008).

Although the roles of many PTMs in the central domains of
MyBPC are unknown, these PTMs are likely functionally and
clinically significant based on the current review of the literature.
In addition, many of the PTM seem to engage in a combinatorial
“PTM crosstalk” (Parker et al., 2014; Irie et al., 2015; Stathopoulou
et al., 2016; Chakouri et al., 2018; Habibian and Ferguson, 2018;
Leutert et al., 2021). As such, future efforts to uncover the ways
PTMs influence MyBPC should consider the contributions and
actions of simultaneously occurring PTMs.

Discussion

In this review, we provided a brief overview of the evolution in
our understanding of the central domains (C3-C6) of MyBPC. The
central domain contains unique structural and dynamic aspects that
allow for the formation of IHM via myosin S1 and proximal S2.
Thus, the central domains likely impact the SRX state, calcium-
activated force generation, contractility, crossbridge recruitment,
and in vivo function. The above theorized roles of the central
domains are further modulated by various potential protein
interactions as well as PTMs that may affect IHM formation or
the SRX state. Finally, the mutations affecting the central domains’
surface characteristics, folding, or interactions may lead to HCM
and contribute to its pathophysiology.

Despite the limited resolution, recent studies employing cryo-
EM and cryo-ET have revealed distinct myosin crown arrangements
in the relaxed state of myosin filaments, facilitated by the use of
mavacamten. These findings mark a substantial leap forward in our
comprehension of myosin filament structure, particularly the global
positioning of MyBPC with respect to the C-zone. It should be
highlighted, though, that in these investigations, the myosin heads
are uniformly observed in a folded-back configuration. Future
research must investigate the prevalence of this conformation
and assess whether all myosin proteins consistently adopt this
state or if some exhibit intermediate forms within the relaxed
thick filament. Uncovering this will contribute to a deeper and
clearer understanding of MyBPC domain positioning within thick
filaments. Additionally, delineating the conformations of MyBPC in
its native state across different muscle functional states is crucial.
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There are many potential avenues for continued research that
may help better our knowledge of the central region of MyBPC.
Although isolated domain structures can now be readily predicted
using in silico programs, we still lack a three-dimensional
understanding of how the central domain interacts with myosin.
Thus, there is an urgent need for high-resolution structures of full-
length human cardiac MyBPC. This knowledge is crucial for
understanding the molecular mechanisms underlying various
cardiac diseases and for developing targeted therapeutic
strategies. Finally, the continually expanding and evolving
landscape of mutations and PTMs offers a glimpse into the
function and regulation of the central domains of MyBPC.
Specifically, it is unclear whether PTMs of central domains
modulate SRX states or other cross-bridge kinetic parameters.
Further research in these areas may help formulate a more
complete and comprehensive understanding of the role of
MyBPC in cardiac physiology and pathophysiology.
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