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Background: The telomere has long been regarded as a dependable biomarker
for cellular senescence. The lung function can reflect the function and status of
the lungs. As individuals age beyond adulthood, there is a gradual decline in lung
function. However, the existence of a associated between leukocyte telomere
length (LTL) and lung function remains uncertain.

Methods: A two-sample Mendelian randomization (MR) analysis was used.
The Single-nucleotide polymorphisms (SNPs) of LTL from the genome-wide
association (GWAS) study were used as exposure instruments variable, and
the lung function indicator including Forced expiratory volume in 1-s (FEV1),
FEV1 Best measure, FEV1 predicted and Forced vital capacity (FVC) from the
Neale Lab and MRC-IEU were used as outcomes. The associated between the
exposures and outcomes was assessed using inverse-variance weighted (IVW),
MR-Egger, and weighted median methods. Sensitivity analysis was conducted
using Cochran’s Q-test, MR-Egger intercept test, MR-PRESSO, leave-one-out
analysis, and Steriger test.

Results:Using the IVWmethod, a significant association was identified between
genetically determined telomere length extension and enhanced lung function
in FEV1, with ukb-a-336 (P = 0.127, OR = 1.028,95CI% = 1.003–1.042) and ukb-
b-19657 (P = 7.26E-05, OR = 1.051,95CI% = 1.025–1.077),in FEV1 predicted,
ukb-a-234 (P = 0.013, OR = 1.029,95CI% = 1.003–1.042), ukb-b-8428 (P =
0.001, OR = 1.032,95CI% = 1.012–1.052), in FEV1 best measure, ukb-a-231
(P = 7.24E-05, OR = 1.050,95CI% = 1.025–1.075), ukb-b-11141 (P = 1.40E-
09, OR = 1.067,95CI% = 1.045–1.090).The sensitivity analysis did not reveal
heterogeneity or horizontal pleiotropy.Meanwhile, the Steriger test results also
indicate that the directionality between exposure and outcome is correct.
Therefore, the results indicated robustness.
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Conclusion: There is a correlation between longer LTL and better lung function
in the European dataset.
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Introduction

The telomere, which is a segment located at the terminal end of a
chromosome, plays a crucial role in safeguarding genes from harm,
thereby ensuring the stability of chromosomes and the integrity
of cells (Blackburn, 2001). Telomeres possess significant biological
functions, including the stabilization of chromosome functioning,
prevention of degradation and fusion at the terminus, protection
of chromosome DNA, and regulation of normal cellular processes
(Blackburn, 1991). For quite some time, telomeres have been
regarded as a dependable biomarker for cellular senescence (López-
Otín et al., 2013). In recent years, aside from their correlation
with certain age-related diseases (Sanford et al., 2020; Armanios
and Blackburn, 2012), telomere shortening has also been linked
to an elevated risk of diabetes (Zee et al., 2010) and tumor
development (Rode et al., 2016).

The assessment of pulmonary function can serve as an indicator
of the respiratory system’s condition in patients. By conducting
lung function examinations, healthcare professionals can not only
assess the severity of lung diseases and develop targeted treatment
strategies but also aid in the early detection of lung and respiratory
diseases. A corresponding study has indicated a correlation
between prematurely shortened LTL and the presence of idiopathic
pulmonary fibrosis (IPF) and chronic obstructive pulmonary
disease (COPD) (Dai et al., 2015). The decline of lung function
is intricately linked to various lung diseases such as COPD, IPF, and
emphysema. Recent studies have indicated a connection between
telomere biology and the development of several lung diseases,
including IPF and COPD (Alder et al., 2008; Duckworth et al.,
2021). However, there is currently a lack of research
investigating the potential involvement of LTL in the
progression of lung-related diseases through their impact on
lung function.

Mendelian randomization (MR) serves as a viable approach
to address the common issues of unmeasured confounding and
reverse correlation encountered in conventional observational
epidemiology (Smith and Ebrahim, 2003). In the present
investigation, we employed a dual sample MR design to assess the
plausible correlation between LTL and lung function.

Methods

Date source

Thesummary of LTLGWAS results was obtained in the genome-
wide meta-analysis, which included 472174 European populations,
including 45.8% of males and 54.2% of females (Codd et al.,
2021). In the relevant evaluation indicators of lung function,

FEV1, FEV1 Best measure, FEV1 predicted and FVCwere selected
as the evaluation indicators. For each indicator was driven by
two different research consortiums, Neale Lab and MRC-IEU.
The dataset ukb-b-19657 of FEV1 includes 421986 cases, and
ukb-a-337 includes 307638 cases In FEV1 Best measure, ukb-b-
11141 contains 345665 cases, ukb-a-231 contains 255492 cases,
ukb-b-8428 in FEV1 predicted contains 148653 cases, ukb-a-234
contains 110423 cases, and in FVC, ukb-a-336 contains 307638
cases., Ukb-b-7953 contains 421986 cases, all of which are from
European men and women.

In our meta-regression analysis, we utilized publicly
accessible summary data derived from the open GWAS database
pertaining to telomere length and lung function datasets. It is
worth noting that moral voting was not deemed relevant or
applicable to our study.

Selection of instrumental variables

To be selected as instrumental variables for screening LTL
genetic variants, SNPs had to meet three key assumptions: 1)
strong association with exposure factors, 2) no association with any
confounders of exposure factor-outcome associations (horizontal
pleiotropy), and 3) the genetic variant only affects the outcome
through exposure factors and not through other pathways.In the
process of instrumental variables (IV) selection, the initial criterion
employed is whole genome significance (p < 5 × 10−8). Additionally,
to eliminate the presence of Linkage disequilibrium, R2 < 0.001 and
a window size of 10000 kb are set. Consequently, a total of 154 SNPs
are ultimately identified as IVs for telomere length. It is noteworthy
that the F-statistic for all these genetic variations surpasses the
threshold of 10.

Mendelian randomization analysis

In the course of the analysis, the IVW method served as the
primary approach for assessing the correlation between LTL and
lung function. Additionally, the MR Egger, Weighted median,
Simple mode, and Weighted mode methods were employed
for validation purposes. The evaluation of IVs’ heterogeneity
was conducted through the utilization of MR Egger regression
(MR Egger intercept test) and IVW in Cochran’s Q statistic
(Greco et al., 2015). A significance level of p > 0.05 was employed to
determine the absence of heterogeneity or horizontal pleiotropy.
Simultaneously, we employed the Mendelian randomization
Randomized Multivalidity Residual and Outlier (MR-PRESSO)
test to detect and eliminate outliers at the level (Verbanck et al.,
2018). Throughout this process, we utilized retention analysis to
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TABLE 1 Genetic prediction of telomere length (TL) and its association with lung function indicators (FEV1,FEV1 predicted,FEV1 best measure and FVC.

Eposure Otcome method nsnp OR (95%CI) pval

leukocyte telomere
length

FEV1

ukb-b-19657

MR Egger

51

1.062 (1.016–1.109) 0.010

Weighted median 1.058 (1.021–1.097) 0.002

Inverse variance
weighted

1.051 (1.025–1.077) 7.26E-05

Simple mode 0.984 (0.907–1.068) 0.706

Weighted mode 1.064 (1.025–1.104) 0.002

ukb-a-337

MR Egger

115

1.035 (0.976–1.097) 0.257

Weighted median 1.051 (1.019–1.083) 0.002

Inverse variance
weighted

1.056 (1.020–1.093) 0.002

Simple mode 1.037 (0.981–1.096) 0.199

Weighted mode 1.047 (1.017–1.077) 0.002

FEV1 predicted

ukb-b-8428

MR Egger

108

1.032 (0.999–1.067) 0.061

Weighted median 1.03 (0.998–1.063) 0.068

Inverse variance
weighted

1.032 (1.012–1.052) 0.001

Simple mode 1.06 (0.998–1.126) 0.061

Weighted mode 1.031 (1–1.062) 0.052

ukb-a-234

MR Egger

111

1.051 (1.012–1.092) 0.012

Weighted median 1.042 (1.005–1.082) 0.027

Inverse variance
weighted

1.029 (1.006–1.052) 0.013

Simple mode 1.049 (0.967–1.137) 0.252

Weighted mode 1.039 (0.998–1.081) 0.064

FEV1 best measure

ukb-b-11141

MR Egger

69

1.072 (1.033–1.111) 0.000

Weighted median 1.068 (1.037–1.1) 1.45E-05

Inverse variance
weighted

1.067 (1.045–1.09) 1.40E-09

Simple mode 1.063 (1–1.131) 0.056

Weighted mode 1.071 (1.039–1.103) 3.79E-05

ukb-a-231

MR Egger

76

1.047 (1.005–1.091) 0.030

Weighted median 1.036 (0.997–1.077) 0.070

Inverse variance
weighted

1.05 (1.025–1.075) 7.24E-05

Simple mode 1.077 (0.995–1.166) 0.072

Weighted mode 1.046 (1–1.093) 0.053

(Continued on the following page)
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TABLE 1 (Continued) Genetic prediction of telomere length (TL) and its association with lung function indicators (FEV1,FEV1 predicted,FEV1 best
measure and FVC.

Eposure Otcome method nsnp OR (95%CI) pval

FVC

ukb-b-7953

MR Egger

89

1.025 (0.996–1.055) 0.100

Weighted median 1.043 (1.017–1.07) 0.001

Inverse variance weighted 1.018 (1.001–1.036) 0.038

Simple mode 1.023 (0.965–1.084) 0.446

Weighted mode 1.045 (1.019–1.072) 0.001

ukb-a-336

MR Egger

94

1.034 (1.001–1.068) 0.046

Weighted median 1.052 (1.02–1.084) 0.001

Inverse variance weighted 1.022 (1.003–1.042) 0.024

Simple mode 1.028 (0.953–1.11) 0.477

Weighted mode 1.06 (1.024–1.097) 0.001

FEV1, Forced expiratory volume in 1-s; FVC, Forced vital capacity; SNPs, single nucleotide polymorphisms; IVW, inverse variance weighted (random-effects model); IVW, inverse variance
weighted (fixed-effects model); MR-Egger, Mendelian randomization-Egger; OR, odds ratio; CI, confidence interval.

mitigate the potential influence of a single SNP on the overall
findings. Furthermore, we employed the Steiger test to compute
the variance explained by the instrumental variables estimation
on both the exposure and outcome variables, and to determine
if the outcome’s variance (c) is indeed lower than that of the
exposure. If this condition is met, the direction is deemed accurate
(Hemani et al., 2017).

In this study, statistical analyses were performed using R
code (version 4.2.2). MR analyses were conducted using the
“TwoSampleMR” package (version 0.5.6) (Hemani et al., 2018)and
the “MR-PRESSO” package (version 0.5.6).

Results

Based on the results of the MR analysis, a potential correlation
was observed between extended LTL and better lung function
indicators, FEV1, predicted FEV1, the best measure of FEV1,
and FVC. Employing the IVW method, a significant correlation
was identified between genetically determined LTL extension and
enhanced lung function in FEV1, with ukb-a-336 (P = 0.127, OR
= 1.028,95CI% = 1.003–1.042) and ukb-b-19657 (P = 7.26E-05, OR
= 1.051,95CI% = 1.025–1.077), in FEV1 predicted, ukb-a-234 (P =
0.013,OR=1.029,95CI%=1.003–1.042), ukb-b-8428 (P= 0.001,OR
= 1.032,95CI% = 1.012–1.052), in FEV1 best measure, ukb-a-231 (P
= 7.24E-05, OR = 1.050,95CI% = 1.025–1.075), ukb-b-11141 (P =
1.40E-09, OR = 1.067,95CI% = 1.045–1.090), in FVC, ukb-a-336 (P
= 0.024, OR = 1.022,95CI% = 1.003–1.042), ukb-b-7953 (P = 0.038,
OR = 1.018,95CI% = 1.001–1.036) (Table 1).

Furthermore, we employed variousmethods to assess the results
obtained from the IVW method, all of which yielded consistent
directions and similar effects (Figure 1). Our analysis of FVC
outcomes using Cochran’s Q test andMREgger test revealed varying

degrees of heterogeneity (Table 2). Additionally, we conducted
statistical analysis using the intercept term egger of MR egger_
intercept, which yielded a p-value greater than 0.05, indicating the
absence of pleiotropy (Table 2). However, we conducted a retest of
pleiotropy levels using MR-PRESSO and identified the presence of
pleiotropy in FVC-related outcomes (ukb-a-336, P = 0.031, ukb-b-
7953, P = 0.0016).

In the context of sensitivity analysis, the exclusion of a single
SNP does not significantly alter the correlation estimation of
genetic predicted LTL on lung function (Figure 2). This implies
that the removal of any specific SNP does not fundamentally
impact the results, thereby ensuring the stability of our dual
sample MR analysis. Additionally, the Steriger test reveals that
the variance explained by instrumental variables estimation in
the outcome is lower than that in the exposure. This suggests
that the instrumental variables estimation influences the outcome
primarily through its effect on the exposure, as supported by the data
presented in Supplementary Table S1.

Discussion

In this randomized study utilizing a two-sample MR approach,
our findings indicate a positive association between longer
LTL and improved lung function indicators, encompassing
FEV1, predicted FEV1, and the most accurate measure of
FEV1. Consequently, acquiring an in-depth comprehension
of the interplay between LTL and lung function holds
immense importance in the realm of lung disease prevention
and treatment.

LTL functions as a crucial indicator reflecting the cellular
biological condition and overall health status. The shortening
of LTL is associated with an augmented risk of cardiovascular
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FIGURE 1
Scatter plot of the association between the telomere length (TL) and lung function indicators (FEV1,FEV1 predicted,FEV1 best measure and FVC).

diseases, diabetes, and certain cancers (Pauleck et al., 2023;

Haycock et al., 2014; Ahmed and Lingner, 2018). Relevant studies

have demonstrated that neutrophils induce telomere dysfunction

through reactive oxygen species (ROS) dependence (Lagnado et al.,

2021). Simultaneously, LTL is prone to ROS-induced impairment,

and oxidation can result in telomere shortening (Ahmed and

Frontiers in Physiology 05 frontiersin.org

https://doi.org/10.3389/fphys.2024.1373064
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Zhu et al. 10.3389/fphys.2024.1373064

TABLE 2 Heterogenity test and Horizontal pleiotropy test of telomere length (TL) and its association with lung function indicators (FEV1,FEV1
predicted,FEV1 best measure and FVC.

Exposure Outcome Heterogenity test Horizontal pleiotropy test

Method Q Q_df Q_pval Egger_
Intercept

se Pval Mrpresso

leukocyte telomere
length

ukb-a-337
FEV1

MR Egger 81.883 68 0.120
−2.60E-04 5.98E-04 0.665 0.121

IVW 82.111 69 0.134

ukb-b-19657
FEV1

MR Egger 66.393 49 0.050
−3.64E-04 6.55E-04 0.581 0.063

IVW 66.811 50 0.056

ukb-a-234
FEV1 predicted

MR Egger 104.985 109 0.591
−7.92E-04 5.78E-04 0.173 0.577

IVW 106.863 110 0.567

ukb-b-8428
FEV1 predicted

MR Egger 98.632 106 0.682
−6.47E-06 4.95E-04 0.990 0.725

IVW 98.632 107 0.706

ukb-a-231
FEV1 Best measure

MR Egger 85.817 74 0.164
7.87E-05 6.17E-04 0.899 0.186

IVW 85.836 75 0.184

ukb-b-11141
FEV1 Best measure

MR Egger 87.407 67 0.048
−1.50E-04 5.84E-04 0.797 0.071

IVW 87.494 68 0.056

ukb-a-336
FVC

MR Egger 115.995 92 0.046
−4.17E-04 4.89E-04 0.396 0.031

IVW 116.911 93 0.047

ukb-b-7953
FVC

MR Egger 125.922 87 0.004
−2.45E-04 4.56E-04 0.592 0.0016

IVW 126.340 88 0.005

Lingner, 2018). Nevertheless, the length of LTL can be maintained
via the UFMylation of MRE11 (Lee et al., 2021). The regulatory
mechanism of LTL encompassesmultiple aspects such as telomerase
activity, oxidative stress, inflammatory response, and genetic factors,
yet the specific one remains ambiguous. LTL is a vital regulator
of Cellular senescence and genome stability. The deterioration of
lung function indicates the aging process. Research indicates that
individuals aged 25 to 40 with decreased lung function (FEV<80%
predicted) in early adulthood have a higher risk of developing
respiratory and cardiovascular diseases, as well as a greater all-
cause mortality rate (Agustí et al., 2017).Numerous studies have
verified the correlation between LTL and the lung disease. Some
research disclosed that individuals with shorter telomere length
presented reduced lung function and an elevated risk of developing
COPD (Rode et al., 2013; Savale et al., 2009). At the same time,
forced expiratory volume (FEV) decreased significantly more
in smokers with shorter LTL than in smokers with longer LTL
(Andujar et al., 2018). Alder et al. conducted research on the role
of telomere length as a genetic predisposing factor for Emphysema
by inducing a chronic cigarette smoke model (Alder et al., 2011).
Both LTL and lung function decline with age. At the same time,
there was a moderate correlation between shorter telomere length

in middle-aged people and compromised airflow parameters,
although there was no significant correlation with FVC, which is
consistent with our own findings (Nguyen et al., 2019). Studies
have shown that telomere shortening has been identified as a
characteristic of idiopathic interstitial pneumonia and may lead
to idiopathic sexual organ failure, which is clinically manifested
by lung and liver problems (Alder et al., 2008; Duckworth et al.,
2021). Additionally, it has been observed that individuals with
shorter telomere length have an increased risk of death and a
poorer prognosis among lung cancer patients (Zhang et al., 2015;
Jang et al., 2008; Doherty et al., 2018;
Astuti et al., 2017).

It should be emphasized that telomere length can be affected by
various genetic and environmental factors, including age, lifestyle
choices, psychological factors, and the existence of other disease
conditions. Numerous studies have indicated that although there is
currently a lack of direct evidence to prove that exercise can prolong
LTL, a significant difference in LTL is observed between regular
exercisers and non-exercisers, as demonstrated by comparative
analyses of exercise and non-exercise groups (Cherkas et al.,
2008; Venturelli et al., 2014; Borghini et al., 2015; Silva et al., 2016).
Hence, adopting a healthier lifestyle and avoiding smoking may
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FIGURE 2
Leave‐one‐out analyses to evaluate whether any single instrumental variable was driving the correlation effect.

contribute to maintaining longer telomere length and optimal
lung function.

In this study, there are indeed certain limitations. Our
investigation was solely centered on the relationship between

LTL and lung function. While we recognize that other factors
such as genetic variations and environmental influences may
also play a role in lung function. Additionally, it should be
noted that our study only included individuals of European
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descent. Hence, future data from other populations are
required to verify this result.

Conclusion

Our research findings indicate a correlation between
increased LTL and enhanced lung function. Integrating LTL
measurement into clinical practice holds promise for valuable
insights into individual risk assessment, disease prognosis,
and potential treatment approaches. Further investigation is
warranted to elucidate the underlying mechanisms and assess
the potential of LTL-related interventions in ameliorating lung
function and health.
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