AUTHOR=Zhao Di , Li Yating , Cui Jianzhong TITLE=The factors associated with the modified Fisher grade in patients with aneurysmal subarachnoid hemorrhage JOURNAL=Frontiers in Physiology VOLUME=Volume 15 - 2024 YEAR=2024 URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2024.1373925 DOI=10.3389/fphys.2024.1373925 ISSN=1664-042X ABSTRACT=Background: Aneurysmal subarachnoid hemorrhage (aSAH) is a life-threatening medical condition with a high fatality and morbidity rate. There was a substantial link between the modified Fisher grade of aSAH and the neurological function deficit.This study aimed to analyze the factors associated with the modified Fisher grade of aSAH using a machine learning approach.: A multi-center observational study was conducted. The patients with aSAH were recruited from five tertiary hospitals in China. The volume of hemorrhage in aSAH was measured using the modified Fisher grade scale. The risk factors responsible for the modified Fisher grade of aSAH were analyzed, which include sociodemographic factors, clinical factors, blood index, and ruptured aneurysm characteristics. We built several tree-based machine learning models (XGBoost, CatBoost, LightGBM) for prediction and used grid search to optimize model parameters. To comprehensively evaluate the model, we used Accuracy, Precision, Area Under the Receiver Operating Characteristic Curve (AUROC), Area Under the Precision-Recall Curve (AUPRC), and Brier as evaluation indicators to assess the model performance and select the best model.aneurysm rupture, so as to improve patient outcomes.