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Introduction: Alzheimer’s Disease (AD) is a degenerative brain disorder
characterized by cognitive and memory dysfunctions. The early detection of
AD is necessary to reduce the mortality rate through slowing down its
progression. The prevention and detection of AD is the emerging research
topic for many researchers. The structural Magnetic Resonance Imaging
(sMRI) is an extensively used imaging technique in detection of AD, because it
efficiently reflects the brain variations.

Methods:Machine learning and deep learningmodels are widely applied on sMRI
images for AD detection to accelerate the diagnosis process and to assist
clinicians for timely treatment. In this article, an effective automated
framework is implemented for early detection of AD. At first, the Region of
Interest (RoI) is segmented from the acquired sMRI images by employing Otsu
thresholding method with Tunicate Swarm Algorithm (TSA). The TSA finds the
optimal segmentation threshold value for Otsu thresholding method. Then, the
vectors are extracted from the RoI by applying Local Binary Pattern (LBP) and
Local Directional Pattern variance (LDPv) descriptors. At last, the extracted
vectors are passed to Deep Belief Networks (DBN) for image classification.

Results and Discussion: The proposed framework achieves supreme
classification accuracy of 99.80% and 99.92% on the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) and Australian Imaging, Biomarker and Lifestyle
flagship work of ageing (AIBL) datasets, which is higher than the conventional
detection models.
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1 Introduction

The brain is the most complex and significant organ of the human being with numerous
crucial functions like memory, imagination, decision-making, thinking, problem solving,
and idea formation (Basaia et al., 2019; Li et al., 2018). AD is the common degenerative
brain disorder; approximately 48 million people suffer from this disease and other types of
dementias. AD occurs due to the abnormal chemical reactions, head injuries, genetic
factors, and environmental factors (Sathiyamoorthi et al., 2021; Chui et al., 2022). The main
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symptoms of AD are behavior disruption, communication
problems, recognition problems, cognition problems, and
memory loss. AD leads to the death of brain cells, which causes
cognitive power, thinking, and loss of memory (Vaithinathan and
Parthiban, 2019). The speed of AD progression differs from patient
to patient, but it has a low diagnosis rate. The behavioral disturbance
caused by the AD impairs the social functioning of patients (Zhang
et al., 2019). The AD generally affects elderly people and even leads
to death, when it is not treated and detected at an early stage.
Therefore, it is essential to detect AD at an early stage to reduce its
progression and decrease the mortality rate (Yue et al., 2019; Ghazi
et al., 2021; Ning et al., 2021).

In recent decades, several brain-imaging techniques such as
computed tomography, sMRI, positron emission tomography,
functional MRI, etc., are used for early diagnosis of AD (Puente-
Castro et al., 2020; Chelladurai et al., 2023). Compared to other
brain-imaging techniques, sMRI images provide functional
information and complementary structural information about the
abnormal brain regions (Liu et al., 2021). The simplicity and
quickness are considered as two of its numerous advantages of
Otsu’s approach. The best threshold value to distinguish the
foreground from background portions of the processed image
which can be automatically determined, eliminating the need for
prior knowledge of the image. For automating the AD detection,
several machine-learning models such as decision tree, Support
Vector Machine (SVM), k-nearest neighbors, XGBoost, etc., are
employed, but the conventional models are prone to outliers and
overfitting risks (Alqahtani et al., 2023; Ghosh et al., 2023). On the
other hand, the deep-learning models have got more attention
among researchers and also brought dramatic advancements and
improvements in medical imaging, computer vision, image
processing, and pattern recognition applications (Venugopalan
et al., 2021; Qu et al., 2023). Deep Belief Networks (DBN)
provide certain advantages over traditional neural networks by
utilizing supervised learning and probabilistic modeling. It can
process enormous quantities of data and use hidden units to
quickly identify underlying correlations through fast training.
The above-stated information’s motivates to detect the AD with
minimum execution time by employing DBN models. The main
contributions of the present article are denoted as follows:

• TSA is integrated with the Otsu thresholding method for
precise RoI segmentation in the acquired sMRI images. The
main motivation behind the Otsu thresholding method is to
maximize the between class variance for determining the
optimal threshold value, but it consumes more time.
Therefore, in the conventional Otsu thresholding method,
the TSA is employed to select the optimal threshold value
for accurate RoI segmentation with minimal execution time.

• Then combined the LBP and LDPv descriptors for extracting
texture feature vectors from the segmented RoI. Because of high
discriminative power, the extraction of global feature vectors
from sMRI images is computationally effective and robust.

• The extracted global feature vectors are passed into the DBN
model for classifying four classes in the AIBL dataset and three
classes in the ADNI dataset. In comparison to other classification
models, the suggestedDBNmodel efficiently captures non-linear
feature vectors from the extracted feature vectors, which

improves its ability in discriminating different classes. The
performance of the Otsu-TSA method and DBN model are
validated in terms of Jaccard Similarity Coefficient (JSC), Dice
Similarity Coefficient (DSC), Pixel Accuracy (PA), specificity,
execution time, classification accuracy, and sensitivity.

The structure of this research is organized as follows; The recent
research papers on the topic AD detection are reviewed in Section 2.
The details about the proposed methods (Otsu-TSA method and
DBN model), and its mathematical equations are described in
Section 3; The results analysis and comparisons of the proposed
method are demonstrated in Section 4; finally, the conclusion of this
research is stated in Section 5.

2 Related works

Xiao et al. (2017) performed scaling correction, intensity based
non-uniformity correction, B1 non-uniformity correction, and
gradient warping for enhancing the quality of sMRI images.
Further, the textural and morphometric vectors were extracted
from the pre-processed sMRI images. Then, the discriminative
optimal vectors were selected by applying a recursive feature
elimination technique, which were further passed to the SVM
classifier for AD detection. The developed framework was only
appropriate in the binary-class classification.

Ebrahimi-Ghahnavieh et al. (2019) performed transfer learning
on MRI images for precise detection of AD. In this study, various
pre-trained CNNs were applied on the datasets with multi-view and
single-view modes. Initially, the vectors were extracted from the
MRI images by employing CNN model, and the extracted vectors
were passed to the Recurrent Neural Network (RNN) for image
classification. The RNN faces concerns like gradient vanishing or
exploding, and the computation of the neural network was too slow
in image classification.

Lian et al. (2020) presented a hierarchical based Fully-CNN
model for determining the discriminative local regions and patches
in the MRI images for early detection of AD. Additionally, Bi et al.
(2020) implemented a stacked CNN model for AD diagnosis. The
presented CNN models achieved significant performance in AD
detection on the ADNI datasets, but showed high time complexity.
Furthermore, Hu et al. (2020) used the GANmodel for AD detection
by addressing class imbalance problems. In the context of image
classification, training the GAN model was time consuming and
computationally intensive.

Zhu et al. (2021) developed a Dual Attention Multi Instance
Deep Learning (DA-MIDL) model for AD and Mild Cognitive
Impairment (MCI) detection in the sMRI images. The developed
DA-MIDL model had three major processes; (i) incorporate
numerous spatial attention blocks in the Patch-Net model to
extract discriminative vectors, (ii) perform pooling operation to
balance every sMRI patch, and (iii) use a global attention aware
classification model for making classification decisions. The results
demonstrate that the developed DA-MIDL model achieved better
classification performance by precisely identifying the pathological
locations. The generalizability and classification accuracy were
better than traditional methods. However, overfitting and lack of
interpretability were the major concerns in the DA-MIDL model.
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Mehmood et al. (2021) performed the tissue segmentation and
classification using Layer Wise Transfer Learning (LWTL) for early
detection of AD. Here, the LWTL was carried-out in the Visual
Geometry Group (VGG) model for segregating Normal Controls
(NC), AD, Late MCI (LMCI), and Early MCI (EMCI).

Ashraf et al. (2021) used 2nd and 3rd generation neural
networks for AD classification. Additionally, several image
augmentation techniques were utilized for improving feature
extraction in the MRI images. Around 13 deep learning models
were fine-tuned and trained on the ImageNet datasets. Among the
trained models, the DenseNet model was more impressive in the AD
classification than other models. Janghel and Rathore (2021) initially
resized the collected images, and further, the VGG-16 model was
employed for discriminative feature extraction. Lastly, the image
classification was carried out utilizing decision tree, k-means
clustering, and SVM. The results indicated that the developed
model had better classification accuracy, but the execution time
was high on the ADNI datasets.

Kang et al. (2021) presented an effective ensemble learning
system based on CNN model for precise AD detection. The
presented system included two phases: a majority voting was
carried out in the first phase for disease prediction, and in the
second phase, ResNet50 and VGG-16 models were integrated for
constructing an ensemble learning classifier. Here, two transfer-
learning strategies (task adaptation transfer and domain transfer)
were utilized to manage the biomedical classification problems. The
results represented that the presented ensemble learning system
achieved better classification results than the single classifiers, but it
exhibited high time complexity.

Fan et al. (2021) implemented a U-Net model for precise
classification of AD. The U-Net model was effective in both image
segmentation and classification tasks, while the skip-connections in
the U-Net model efficiently improved the classification performance.
While working with smaller datasets, the skip-connections in the
U-Net model were prone to overfitting problems.

Liu et al. (2021) presented an effective framework for AD
classification based on the CNNs. Initially, the brain images were
portioned into dissimilar regions, and then the K-means clustering
technique was employed for grouping the similar patches from every
region. Finally, the features were learned from the grouped regions
by employing the DenseNet model for image classification. In the
DenseNet model, excessive parameters that led to overfitting
problems were processed.

Naz et al. (2022) used convolutional networks with freeze-
features for classifying AD, NC, and MCI in MRI scans. The
presented framework had limited computational complexity and
underwent fast training in relation to the conventional methods.
AlSaeed and Omar (2022) utilized the ResNet50 and stacked
Convolutional Neural Network (CNN) models for effective AD
detection. The efficacy of the presented model was compared
with traditional methods by using various evaluation measures,
including accuracy. Here, the performance of the convolutional
networks completely depends on the image quality.

Alhassan (2022) initially performed image pre-processing using
skull stripping, linear registration, and geometry correction
techniques. Then, the region segmentation was carried out by
integrating the Otsu thresholding method with the Enhanced
Fuzzy Elephant Herding Optimization (EFEHO) algorithm. The

EFEHO algorithm quickly selected the optimal threshold value in
the Otsu thresholding method for precise segmentation. Finally, the
DA-MIDL model was implemented for AD classification, and the
model’s efficacy was analyzed in the light of specificity, accuracy, and
sensitivity. As a result, the DA-MIDL model had problems such as
lack of interpretability and overfitting.

Rani Kaka and Prasad (2022) used region growing and adaptive
histogram equalization techniques for removing the skull region and
improving contrast of the MRI images. Then, the interested regions
were segmented using the fuzzy c means technique, and further, the
vectors were extracted using a local directional pattern and Gabor
features. Finally, the feature selection and classification were carried-
out by implementing a correlation/ensemble-based feature selection
technique and a Multi-class SVM (MSVM) classifier. However, the
MSVM classifier was inappropriate in the larger datasets when the
target classes were overlapped.

Yu et al. (2022) introduced a multi-directional perception based
Generative Adversarial Network (GAN) model for determining the
severity of AD. The presented model efficiently captures salient
global features and learns class discriminative maps for dissimilar
classes by integrating L1 penalty, cycle consistency loss, classification
loss, adversarial loss, and multi-directional mapping process in the
conventional GANmodel. Wang et al. (2022) developed a consistent
perception-based GAN for precise segmentation of stroke lesions.
The suggested method has been used for solving the imbalance
problems, but it was time consuming and computationally intensive.

Shukla et al. (2024a) has demonstrated Structural biomarker-
basedADdetection via ensemble learning approaches. This work used
ensemble learning and standard machine learning models to detect
AD and its subtypes. The relative impact scores of the different AD
cortical and subcortical areas and their subtypes were also determined.
Binary and multiclass classification are the two levels used in the
experimental investigation. The parahippocampal and entorhinal
areas of the right hemisphere were found to be the most
significant in the cortical-subcortical study. In the left hemisphere,
the inferior temporal and isthmus cingulate regions also had a notable
impact. However, more study remains required to develop sustainable
methods for detecting AD and its stages.

Shukla et al. (2024b) analyzed a subcortical structure in AD
using ensemble learning approaches. The combination of MRI and
PET modalities is shown in this work, which could boost result
visualization. Second, we analyzed the various subcortical structures
using the Ensemble Model (EM) and further machine learning (ML)
techniques to ascertain which region is more crucial for AD
identification than other subtypes. The findings showed that the
best regions for identifying AD, Mild Cognitive Impairment (MCI),
And Cognitive Normal (CN) were the hippocampal, neuroregion,
and the amygdala in the left and right hemispheres. Still, further data
may be required to properly categorize AD and its stages.

Shukla et al. (2023) has presented AD detection from fused PET
and MRI modalities with the help of an ensemble classifier. The
multimodal approach is used in this paper to extensively explore the
prediction of AD and its stages. Through the affine registration
method, two modalities (MRI and PET) can be combined with the
use of an automatic pipeline method called Free Surfer. The entire
method makes use of pixel-level fusion. Following that, feature
extraction is performed once more on both the fused and non-
fused results. the traits that were taken from several cortical and
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subcortical brain regions, such as the putamen, amygdala, and
hippocampus. The optimal qualities for categorization are
retained after superimposing the fused features of both modalities
and eliminating extraneous aspects. The promise of image- and
feature-level fusion approaches as features for ensemble
classification models was demonstrated, and these models exhibit
sustained performance in Binary and Multi Class classification. On
the other hand, accuracy for Multi Class is also respectable, however

it can still be improved upon when compared to the Binary findings.
Table 1 provides the tabulation form for the summary of AD
classification papers focused on ADNI and AIBL datasets.

By reviewing the previous studies, deep learning models gained
more attention among the researchers for AD detection. In the
image segmentation and classification tasks, the majority of the deep
learning models often lack interpretability. Furthermore, brain
image data results in higher dimensional feature spaces. Effective

TABLE 1 Summary of Literature review of AD classification using ADNI and AIBL dataset.

Year Author Methodology and advantages Limitations

2017 Xiao et al. Support Vector Machine (SVM) enhanced the quality of sMRI images Only appropriate in the binary-class classification

2019 Ebrahimi-
Ghahnavieh et al.

Recurrent Neural Network (RNN) provided the precise detection. Computation of the neural network was too slow in image
classification

2020 Lian et al. Hierarchical based Fully-CNN model determining the discriminative
local regions and patches in the MRI images

Required large datasets

2020 Bi et al. Stacked CNN achieved significant performance in AD detection high time complexity and time consuming

2020 Hu et al. Generative Adversarial Network (GAN) model solved the imbalance
problems

Time consuming and computationally intensive

2021 Zhu et al. Dual Attention Multi Instance Deep Learning (DA-MIDL) model
achieved better classification performance by precisely identifying the

pathological locations

Overfitting and lack of interpretability were the major concerns

2021 Mehmood et al. Tissue segmentation and classification using Layer Wise Transfer
Learning (LWTL) for precise classification

Required proper selection

2021 Ashraf et al. 2nd and 3rd generation neural networks for AD classification was
more impressive in the AD classification than other models

High time complexity

2021 Janghel and
Rathore

decision tree, k-means clustering, and SVM achieves better
classification accuracy

Execution time was high on the ADNI datasets

2021 Kang et al. Effective ensemble learning system based on CNN model achieved
better classification results

High time complexity

2021 Fan et al. U-Net model for precise classification of AD efficiently improved the
classification performance

Skip-links in the U-NET model are prone to overfitting problems
when working with small datasets.

2021 Liu et al. The features were learned from the grouped regions by employing the
DenseNet model for image classification

Excessive parameters that led to overfitting problems

2022 Naz et al. Convolutional networks with freeze-features for classifying AD, NC,
and MCI in MRI scans

Limited computational complexity

2022 AlSaeed and Omar ResNet50 and stacked Convolutional Neural Network (CNN) for
efficient classification

Performance of the convolutional networks completely depends on
the image quality

2022 Alhassan et al. Dual Attention Multi Instance Deep Learning (DA-MIDL) model
obtains high model’s efficacy

lack of interpretability and overfitting

2022 Rani Kaka and
Prasad

Region growing and adaptive histogram equalization techniques
improved contrast of the MRI images

MSVM classifier was inappropriate in the larger datasets when the
target classes were overlapped.

2022 Yu et al. Multi-directional perception based Generative Adversarial Network
(GAN) efficiently captures salient global features and learns class

discriminative maps for dissimilar classes

GANs were especially difficult to train.

2022 Wang et al. Consistent perception-based GAN solved the imbalance problems Time consuming and computationally intensive

2024 Shukla A et al. Ensemble Learning approaches for Structural biomarker-based AD
detection

However, more study remains required to develop sustainable
methods for detecting AD and its stages.

2024 Shukla A et al. Ensemble Learning approaches to analyze a subcortical structure
in AD.

Still, further data may be required to properly categorize AD and its
stages.

2023 Shukla A et al. Ensemble Learning approaches to extensively explore the prediction of
AD and its stages.

On the other hand, accuracy for Multi Class is also respectable,
however it can still be improved upon when compared to the Binary
findings.
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feature extraction techniques are required to improve the
performance of classification models and to avoid the curse of
dimensionality problems. In order to overcome the
aforementioned issues, an effective automated framework is
proposed in this article for precise detection of AD in the sMRI
images. The automated framework includes Otsu-TSA method,
LDPv descriptor, LBP descriptor, and DBNmodel for AD detection.

3 Methodology

In the present scenario, the early detection of AD increases the
survival rate of the patient. The deep learning and machine learning
models on the sMRI images are extensively utilized in the detection
of AD for accelerating the process of diagnosis and assisting
clinicians in timely treatment. In this article, the proposed
framework comprises of four steps in AD detection which
include, dataset description: ADNI and AIBL datasets, region
segmentation: Otsu-TSA method, feature extraction: LDPv and
LBP descriptors, and classification: DBN model. The working
process of the proposed AD detection framework is shown
in Figure 1.

3.1 Dataset description

The performance of the proposed AD detection framework is
evaluated on two benchmark-balanced datasets namely ADNI and
AIBL. At first, the ADNI dataset has 1,662 sMRI images, where the
subjects are classified into three types: NC, MCI, and AD based on
the clinical dementia ratings and Mini-Mental State Examination

(MMSE) scores. The clinical and demographic information of the
ADNI and AIBL datasets are described in Table 2 (Yue et al., 2019).
Secondly, the AIBL dataset has sMRI images (Zhu et al. (2021),
which are recorded from 496 subjects, out of which 307 subjects
belong to NC, 79 subjects are AD, 93 subjects are stable MCI (sMCI),
and 17 subjects are progressive MCI (pMCI) (Alhassan, 2022). The
sample acquired sMRI images from ADNI and AIBL datasets are
specified in Figure 2.

3.2 Region segmentation

After collecting the sMRI images, the RoI segmentation is
carried-out using the Otsu-TSA method. The conventional Otsu
thresholding method determines the maximum separability between
the classes (3 classes in the ADNI dataset and 4 classes in the AIBL
dataset) (Feng et al., 2017). The conventional Otsu thresholding
method improves the segmentation results by comparing the
average pixel value of the sMRI images with the selected pixel
value. This segmentation method initially partitioned the sMRI
images into two regions: dark region T1 and light region T0

(Goh et al., 2018; Tan et al., 2021). The mathematical
representation of the dark region T1 and light region T0 are
provided in Eqs 1, 2.

T1 � t, t + 1, . . . ., l − 1, l{ } (1)
T0 � 0, 1, . . . ., t{ } (2)

The term t and l are indicated as threshold value and histogram
bins, respectively. It is essential to select the optimal threshold value
for distinguishing the overlapped classes. Generally, in the

FIGURE 1
Working process of the proposed AD detection framework.

TABLE 2 Clinical and demographic information about the ADNI and AIBL dataset.

Datasets Classes Number of images Subjects Male/Female) Age MMSE scores

ADNI AD 335 180/156 78.56 ± 5.34 23.84 ± 2.10

MCI 542 349/193 78.86 ± 5.35 26.56 ± 2.63

NC 785 369/416 74.63 ± 3.69 29.07 ± 1.32

AIBL AD 335 33/46 73.34 ± 7.77 20.42 ± 5.46

MCI 542 9/8 75.29 ± 6.16 26.24 ± 2.04

NC 785 134/173 73.12 ± 6.19 28.77 ± 1.25
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conventional Otsu thresholding method, the optimal threshold
value is selected by reducing the variance of the weight based on
the probability of distinct groups d(i), and it is specified in Eq. 3.

d i( ) � number r, c( ) | image r, c( ) � i{ }
r, c( ) (3)

where, (r, c) is represented as the rows and columns in the acquired
sMRI images. The elements like variance σ2b(t) and σ2f(t), mean
μb(t) and μf(t), and weight wb(t) and wf(t) of the light and dark
regions T0 and T1 in the sMRI images are determined using Eqs 4,
5, where, background and foreground regions are represented as b
and f.

wb t( ) � ∑t

i�1d i( ), μb t( ) � ∑t
i�1i × d i( )
wb t( ) and

σ2
b t( ) � ∑t

i�1 i − μb t( )( )2 × d i( )
wb t( ) (4)

wf t( ) � ∑l

i�t+1d i( ), μf t( ) � ∑l
i�t+1i × d i( )
wf t( ) and

σ2
f t( ) � ∑l

i�t+1 i − μf t( )( )2 × d i( )
wf t( ) (5)

The optimal threshold value is determined with low class
variance σ2w in the conventional Otsu thresholding method, but it
is a time-consuming process. The low-class variance σ2w is
mathematically denoted in Eq. 6. Therefore, TSA is incorporated
with the conventional Otsu thresholding method for finding the
optimal threshold value with minimal execution time.

σ2
w � wb t( ) × σ2

b t( ) + wf t( ) × σ2
f t( ) (6)

TSA has drawn a lot of attention because of its straightforward
design, small number of parameters, quick iteration, and high search
functionality. TSA has been used by researchers to tackle
optimization issues in a variety of domains, and they have
discovered that TSA is rather effective in solving several real-
world application issues. The TSA is one of the recent and
effective optimization algorithms, which mimics the foraging
behavior of the tunicates in ocean (Kaur et al., 2020). The TSA
works based on two constraints: (i) it follows the positions of the
qualified agents and, (ii) prevents the conflicts between the
exploitation and exploration agents. The positions of the new
agents are computed according to Eqs 7–9 for preventing the
inter-agent conflicts (Houssein et al., 2021; Arabali et al., 2022).

�A � �G
�U

(7)

where,

�G � c2 + c3 − �F (8)
�F � c1 × �F (9)

where, the random numbers are represented as c1, c2 and c3, �A is
denoted as the vectors of the agent’s new positions, �F is stated as the
water flow, and the social forces between the agents are stored in a
new vector �U, which is mathematically expressed in Eq. 10.

�U � Omin + c1 × Omax − Omin[ ] (10)
where, Omin � 1 and Omax � 4 are represented as the first and
second subordinates, respectively, where these subordinates
indicate the speed of the social interactions. In this optimization
algorithm, it is essential to follow the present best agents to reach the
optimal solution. Eq. 11 is used for computing the best positions of
the best search agents.

OD


→� |Xbest − rrand ×Oo x( )





→∣∣∣∣∣∣ (11)

where, the best position is represented asXbest, the stochastic value is
denoted as rrand, which ranges between 0 to 1, and the tunicate’s
position during iteration is indicated as Oo(x)





→

. The term OD


→

denotes the length between the optimal agent and the food
origin. Further, Eq. 12 is used to bring the search agents close to
the best agents.

Oo x( )





→ � Xbest + A × OD


→

if rrand ≥ 0.5

Xbest − A × OD


→

if rrand < 0.5

⎧⎨⎩ ⎫⎬⎭ (12)

where,A is denoted as the agent’s new positions. The positions of the
present agents are updated based on the positions of neighboring
agents in order to model the tunicate’s swarming behaviour, as
mentioned in Eq. 13. Here, finding the optimal threshold value of the
Otsu thresholding method is the objective function, which is equal to
0.4. The TSA method terminates after reaching the maximum
iteration number.

Oo x + 1( )










→ � Oo x( )





→+ Oo x + 1( )










→
2 + c1

(13)

The parameters fixed in the TSAmethod are represented as follows:
number of population is 30,maximum iteration number is 100, c1 is 0.7,

FIGURE 2
Sample acquired sMRI images from ADNI and AIBL datasets.
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c2 is 0.3, and c3 is 0.5. After the RoI segmentation, the feature extraction
is carried out utilizing the LDPv and LBP descriptors. The sample
segmented sMRI images are shown in Figure 3.

3.3 Feature extraction

After the RoI segmentation, the images are converted into
vectors by employing the two global descriptors LDPv and LBP.
At first, the LDPv descriptor extracts the vectors from the sMRI
images by encoding the directional patterns and contrast
information (Jabid et al., 2010). In this descriptor, a variance σ is
included in the LDP as an adaptive weight for adjusting the LDP
codes τ, while generating the histograms (Kabir et al., 2010; Kabir
et al., 2012). The mathematical expressions of the LDPv descriptor
are presented in Eqs 14–16, where M and N state the size of the
segmented sMRI images. Approximately, 3,722 and 2,982 texture
vectors are extracted from the ADNI and AIBL datasets by
employing a LDPv descriptor.

LDPv τ( ) � ∑M

r�1∑N

c�1w LDP r, c( ), τ( ) (14)

w LDP r, c( ), τ( ) � σ LDP r, c( )( ) LDP r, c( ) � τ
0 otherwise

{ } (15)

σ LDP r, c( )( ) � 1
8
∑7

i�0 mi − �m( )2 (16)

The mean of all directional responses mi is represented as �m,
and it is computed in a position of (r, c), where r represents rows
and c represents columns. Secondly, the LBP is one of the most
efficient texture descriptors in medical image processing, which
thresholds the neighborhood pixels on the basis of the current pixel
value. The LBP descriptor superiorly captures the grey-scale
contrast and local spatial patterns in the sMRI images (Kaplan
et al., 2020). In the LBP descriptor, the neighborhood set is defined
by the radius Ra and number of pixels P. Here, the centered pixel is
represented as gc. The general formula of the LBP descriptor is
mentioned in Eqs 17, 18.

LBPP,Ra � ∑p−1
p�0s gp − gc( )2p (17)

where,

s x( ) � 1 x ≥ 0
0 x < 0

{ } (18)

where, P is fixed as 8 and the radius Ra is 1. The function s(x) is
equal to 1 when the difference is over the threshold value 0 and
otherwise, the function s(x) is equal to 0 (Tuncer et al., 2020; Pan
et al., 2021). A binomial factor 2p is assigned in the LBP
descriptor for the spatial structure of the local texture. The
LBP descriptor extracts 2,820 and 2,207 vectors from the
ADNI and AIBL datasets, respectively. The obtained vectors
are passed as input to the DBN model for image classification. In
this article, these two descriptors are employed by computing
feature importance scores on the sMRI images, which is
graphically shown in Figure 4.

3.4 Classification

The vectors extracted by using the LDPv and LBP descriptors
are combined by performing feature level fusion. Around
6,542 and 5,189 vectors are extracted from the ADNI and AIBL
datasets which are passed to the DBN model for image
classification. The DBN is a probability generation model,
which is trained in a greedy manner and stacked by Restricted
Boltzmann Machine (RBM) (Sabar et al., 2020; Wang et al., 2020).
In the DBN model, the previous layer’s output is passed as the
input to the next layer. The hierarchical learning of the DBNmodel
is inspired from the structure of the human brain (Hassan et al.,
2019). Every layer in the DBN model is regarded as a logistic
regression model.

The input of the DBN model are the two-dimensional vectors
which are obtained during feature extraction. During pre-training,
the RBM layers are trained with one another, and the visible values
are considered as the duplicate of the hidden values in the prior
layers. Here, the features are learned from the prior layers, and the
learning parameters are transferred in a layer-wise manner. The
linear regression is the final layer trained after fine-tuning. The cost
function is updated by back propagation for optimizing the
weights. The schematic diagram of the DBN model is shown
in Figure 5.

By inspecting Figure 5, it is seen that the DBN model includes
two major processes where: (i) RBM layers are trained unsupervised,
and the inputs are mapped into dissimilar feature spaces, and (ii)
linear regression layer is incorporated at the top of the DBN model
as a supervised classifier. The parameters fixed in the DBNmodel are
determined as follows: size of RBM layers is [8, 6], number of epochs

FIGURE 3
Sample segmented sMRI images.
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is 100 for fine tuning, number of epochs is 10 for training RBM
layers, batch size is 100 for training RBM layers, momentum is 0,
learning rate is 0.01, activation function is sigmoid, and batch size is
100 for fine tuning. The numerical analysis of the Otsu-TSAmethod
and DBN model is discussed in Section 4.

The performance of the proposed Otsu-TSA method and
DBN model are analyzed using MATLAB R2022a software. The
proposed framework is simulated on a system with 128GB RAM,
NVIDIA GeForce RTX 3080 Ti graphics card, and Windows

(64-bit) operating system. The Otsu-TSA method’s efficacy is
investigated based on three different performance measures:
JSC, DSC, and PA. In addition, the DBN’s effectiveness is
validated on the basis of 4 performance measures, namely:
specificity, classification accuracy, execution time, and sensitivity
on the ADNI and AIBL datasets.

In the segmentation phase, the JSC estimates the degree of
overlap between the masks or bounding boxes, while the DSC
quantifies the similarity between the masks. The formulas to

FIGURE 4
Calculation of feature importance scores.

FIGURE 5
Schematic diagram of the DBN model.
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compute JSC and DSC are represented in Eqs 19, 20. The terms PS
and GS are represented as the pixels in the predicted segmentation
and ground-truth segmentation. Additionally, PA is determined as
the ratio of the number of misclassified pixels in a class pixelii to the
total number of pixels in a class pixelij. Where, the term K is
denoted as class. The mathematical expression of PA is specified in
Eq. 21.

JSC PS,GS( ) � PS ∩ GS| |
PS ∪ GS| | (19)

DSC PS,GS( ) � 2 × PS ∩ GS| |
PS| | + GS| | (20)

PA � ∑K
i�0pixelii∑K

i�0∑K
j�0pixelij

(21)

Correspondingly, in the classification phase, specificity estimates
the proportion of TNs that are precisely classified by the DBN
model. On the other hand, the sensitivity estimates how well the
DBN model detects positive instances in AD detection. The
classification accuracy is determined as the ratio of the number
of correct predictions to the total input samples. In this scenario, the
performance measures: specificity, accuracy, and sensitivity are
estimated using the default threshold value of 0.5. The
mathematical formulas of the undertaken performance measures

are described in Eqs 22–24. Where, TP states true positive, TN states
true negative, FP depicts false positive, and FN represents
false negative.

Specif icity � TN
TN + FP

× 100 (22)

Accuracy � TP + TN
TP + TN + FP + FN

× 100 (23)

Sensitivity � TP
TP + FN

× 100 (24)

4 Results

Here, the performance of the proposed segmentation method
(Otsu-TSA) is compared with other segmentation methods like:
region growing, K-means clustering, Watershed algorithm,
superpixel clustering, and Otsu thresholding in terms of JSC,
DSC, and PA on both ADNI and AIBL datasets which is clearly
described in the following subsections.

4.1 Analysis related to region segmentation

The results of the Otsu-TSA method and the comparative
methods are described in Table 3. By analyzing Table 3, it is clear
that the proposed Otsu-TSA method achieves better segmentation
than other segmentation methods. The proposed Otsu-TSA
method achieved 0.95 of JSC, 0.96 of DSC, and 0.94 of PA on
the ADNI dataset. The method achieved 0.94 of JSC, 0.93 of DSC,
and 0.95 of PA on the AIBL dataset, which are far better than the
results of the other segmentation methods. The conventional Otsu
thresholding method uses an exhaustive search approach for
region segmentation, which is computationally complex and
consumes high processing time. Therefore, TSA is introduced
in the conventional Otsu thresholding method to optimize the
threshold value. The visual evaluation of the Otsu-TSA method
and the comparative segmentation method’s results are shown
in Figure 6.

TABLE 3 Achieved results of the Otsu-TSA method and the comparative
segmentation methods.

Methods ADNI dataset AIBL dataset

JSC DSC PA JSC DSC PA

Region growing 0.70 0.79 0.75 0.75 0.80 0.76

K-means clustering 0.74 0.80 0.79 0.78 0.83 0.78

Watershed algorithm 0.82 0.87 0.80 0.80 0.88 0.88

Superpixel clustering 0.90 0.92 0.83 0.85 0.90 0.90

Otsu thresholding 0.93 0.94 0.90 0.89 0.91 0.93

Otsu-TSA 0.95 0.96 0.94 0.94 0.93 0.95

FIGURE 6
Visual evaluation of the Otsu-TSA method and the comparative segmentation methods.
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4.2 Analysis related to classification

The effectiveness of the DBN model is validated by
comparing its results with other classification models
(Autoencoder, LSTM, GRU, AlexNet, and DenseNet) on the

ADNI and AIBL datasets. These five comparative models are
also executed on the same environment and system
configuration. The parameter settings of the comparative
models for AD detection are presented as follows. Specifically,
the parameters considered in the autoencoder model are as
follows: learning rate is 0.001, batch size is 128, optimizer is
Adam, dropout rate is 0.15, number of hidden layers is 5, number
of nodes in every layer is 500, epochs are 100, and activation is
ReLU. The common parameters assumed in the LSTM and GRU
models are presented the following: cost function is cross
entropy, activation functions are sigmoid and tangent,
minimum batch size is 64, epochs is 100, and learning rate is
0.001. Further, the common parameters considered in the
AlexNet and DenseNet models are set as follows: epochs are
100, train batch size is 128, dropout rate is 0.5, momentum is 0.9,
and weight decay is 0.005.

The results of the DBNmodel and the comparative classification
models on the ADNI and AIBL datasets are described in Tables 4, 5.
As mentioned in Table 4, the DBNmodel’s efficacy is compared with
5 different classification models: autoencoder, Long Short Term
Memory (LSTM) network, Gated Recurrent Unit (GRU), AlexNet,
and DenseNet. In the ADNI dataset, the DBN model achieves
supreme results with a specificity of 99.88%, classification
accuracy of 99.80%, and sensitivity of 99.72%. The visual
evaluation of the performances of DBN and the comparative
classification models on the ADNI dataset are shown in Figure 7.
In this scenario, the DBN is able to handle more feature vectors than
the comparative classification models. Due to its usage and
robustness of the hidden layers, the DBN assembles useful
correlations of the feature vectors to achieve better image
classification.

Correspondingly, in the AIBL dataset, the DBN model
achieves supreme classification results with 99.82% of
specificity, 99.92% of classification accuracy, and 99.78% of
sensitivity, as mentioned in Table 5. Figure 8 is the visual
evaluation of DBN and the comparative classification models’
results on the AIBL dataset.

TABLE 4 Achieved results of the DBN model and the comparative
classification models on the ADNI dataset.

ADNI dataset

Classifiers Specificity
(%)

Accuracy
(%)

Sensitivity
(%)

Autoencoder 95.52 96.10 96.48

LSTM 96.32 97.56 97.72

GRU 97.77 97.86 98.22

AlexNet 98.93 98.78 98.80

DenseNet 98.92 99.02 99.10

DBN 99.88 99.80 99.72

TABLE 5 Achieved results of the DBN model and the existing classification
models on the AIBL dataset.

AIBL dataset

Classifiers Specificity
(%)

Accuracy
(%)

Sensitivity
(%)

Autoencoder 97.58 97.83 97.98

LSTM 97.65 98.82 98.90

GRU 98.60 98.80 99.12

AlexNet 98.90 99.04 99.30

DenseNet 99.22 99.20 99.33

DBN 99.82 99.92 99.78

FIGURE 7
Visual evaluation of the DBN and the comparative classification models results on the ADNI dataset.
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4.3 Comparative analysis

The effectiveness of the proposed framework is validated by
comparing its results with the existing model developed by Yue et al.
(2019) on the ADNI dataset. Initially, an automated anatomical
labelling is performed to segment RoI from the acquired sMRI
images. Then, the informative voxels are extracted in the segmented
regions, which are finally fed to the CNN model for image
classification (NC, MCI, and AD). The experimental outcomes of
the proposed framework and the existing model developed by Yue
et al. (2019) are described in Table 6. Here, the experiment was
conducted for 1662 ADNI sMRI images.

On the other hand, the proposed framework’s efficacy is
compared with the existing model developed by Alhassan (2022)
on the AIBL dataset. In the existing study, the sMRI image denoising
is initially carried out utilizing linear registration, skull stripping,
and geometry correction techniques. From the denoised sMRI
images, the RoI segmentation is performed by combining the
EFEHO algorithm with the Otsu thresholding method, and
finally, the image classification is done by implementing the DA-
MIDL model. By examining the experimental results, the DA-MIDL
model obtained 86.50% of accuracy, 93% of sensitivity, and

specificity on the AIBL dataset with 320 sMRI images. Whereas,
the DBN model obtained 99.92% of classification accuracy, 99.82%
of specificity, and 99.78% of sensitivity on the AIBL dataset with
320 sMRI images, which is described in Table 7. The benefits of
proposing the Otsu-TSA method and the DBN model in AD
detection are briefly detailed in the discussion section.

4.4 Discussion

In AD detection, the proposed framework comprises of two
important steps, which are: region segmentation carried out by the
Otsu-TSAmethod, and the AD classification carried out by the DBN
model. After the acquisition of sMRI images, the RoI is segmented
by integrating the Otsu thresholding method with TSA. The TSA
finds the optimal threshold value in the Otsu thresholding method
for fast and precise segmentation, and the selection of optimal
threshold value reduces the execution time of the proposed
framework. In the segmented RoI, the vectors are extracted by
implementing LDPv and LBP descriptors. The conversion of
images into vectors boosts the learning rate, decreases redundant
data, and improves the accuracy of the classification model. The
extracted vectors are passed as the input to the DBN model for
categorizing three classes (NC, MCI, and AD) in the ADNI dataset,
and four classes (NC, AD, sMCI and pMCI) in the AIBL dataset. The
DBN has high generalization and learning ability than the DenseNet
model on the sMRI images, therefore, it is effective in obtaining
maximum classification results in AD detection. The execution time
of different classification models on the ADNI and AIBL datasets is
described in Table 8, and it also shows the effectiveness of
incorporating TSA in the Otsu thresholding method.

FIGURE 8
Visual evaluation of the DBN and the comparative classification models results on the AIBL dataset.

TABLE 6 Comparative outcomes on the ADNI dataset.

Classification accuracy (%)

ADNI dataset NC vs. MCI MCI vs. AD AD vs. NC

CNN Yue et al. (2019) 98.90 97.80 99.70

DBN 99.88 99.81 99.71

TABLE 7 Comparative outcomes on the AIBL dataset.

AIBL dataset Accuracy (%) Sensitivity (%) Specificity (%)

DA-MIDL Alhassan (2022) 86.50 93 93

DBN 99.92 99.78 99.82

Frontiers in Physiology frontiersin.org11

Ganesan et al. 10.3389/fphys.2024.1380459

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1380459


5 Conclusion

In this paper, an effective AD detection framework was
proposed based on the Otsu-TSA method and DBN model. The
proposed AD detection framework included three steps: RoI
segmentation using the Otsu-TSA method, extraction of vectors
using hybrid descriptors (LDPv and LBP) and image classification
by the DBN model. The performance of the proposed
segmentation method (Otsu-TSA) and classification model
(DBN) were analyzed on 1662 ADNI subjects with 3 classes
and 496 AIBL subjects with 4 classes. The performance
measures: JSC, DSC, PA, specificity, classification accuracy, and
sensitivity were used for evaluating the effectiveness of the
proposed segmentation method and classification model. In
comparison with the existing methods, the proposed Otsu-TSA
method achieved higher PA of 0.94 and 0.95 on the ADNI and
AIBL datasets, respectively. Additionally, the classification model
DBN obtained maximum accuracy of 99.80% and 99.92% on the
ADNI and AIBL datasets, which is superior to the conventional
detection models like autoencoder, LSTM, GRU, AlexNet, and
DenseNet. The results demonstrated that the proposed framework
not only achieved better diagnosis performance, but also precisely
identified the discriminative pathological locations in the sMRI
images than the comparative systems. The selection of optimal
threshold value in the Otsu thresholding method by TSA reduced
the execution time of the proposed framework to 48.58 and 36.38 s on
the ADNI and AIBL datasets.

However, the integration of an optimization algorithm in the
segmentation method increases the computational complexity that
needs to be overcome in the future. As a future extension, a novel

unsupervised model can be developed with a grid search hyper-
parameter optimization method for diminishing the computational
complexity, and can be applied in other diseases like lung cancer and
breast cancer detection.
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