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Ischemic stroke, a significant threat to human life and health, refers to a class of
conditions where brain tissue damage is induced following decreased cerebral
blood flow. The incidence of ischemic stroke has been steadily increasing
globally, and its disease mechanisms are highly complex and involve a
multitude of biological mechanisms at various scales from genes all the way
to the human body system that can affect the stroke onset, progression,
treatment, and prognosis. To complement conventional experimental
research methods, computational systems biology modeling can integrate and
describe the pathogenic mechanisms of ischemic stroke across multiple
biological scales and help identify emergent modulatory principles that drive
disease progression and recovery. In addition, by running virtual experiments and
trials in computers, thesemodels can efficiently predict and evaluate outcomes of
different treatment methods and thereby assist clinical decision-making. In this
review, we summarize the current research and application of systems-level
computational modeling in the field of ischemic stroke from the multiscale
mechanism-based, physics-based and omics-based perspectives and discuss
how modeling-driven research frameworks can deliver insights for future stroke
research and drug development.

KEYWORDS

ischemic stroke, system biology, computational modeling, virtual clinical trial, network
pharmacology

1 Introduction

Ischemic stroke is characterized as a cerebral vascular disease that is initially resulting
from disruptions in cerebral blood circulation (often due to vascular occlusion) and can
ultimately leads to brain tissue damage and cognitive as well as physical impairment
(Campbell et al., 2019). Clinically, ischemic stroke manifests primarily as a sudden-onset
focal or diffuse neurological deficit which are contributed by numerous etiological factors,
exhibiting complex pathophysiological mechanisms across various biological scales. At the
cellular and tissue levels, stroke onset and ischemia trigger substantial release of
inflammatory cytokines and danger signals from dead cells, which can permeate
surrounding tissues and activate inflammatory pathways within cells (Anrather and
Iadecola, 2016). This typically involves pivotal receptor-mediated pathways such as
TLRs (toll like receptors), TNFRs (tumor necrosis factor receptors), IFNRs (interferon
receptors), and various interleukin receptors (Caso et al., 2007; Qin et al., 2022; Xue et al.,
2022; Zhu et al., 2022; Kuo et al., 2023). Another essential regulator induced by ischemia is
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the activation of the HIF (hypoxia-inducible factor) pathway within
brain tissues (Luo et al., 2022). The cascade of events downstream of
HIF can contribute to angiogenesis, cell survival, and proliferation,
thereby playing a vital role in the restoration of damaged brain tissue
(Amalia et al., 2020). Ischemia also results in metabolic disturbances
in brain cells, hampers the normal functioning of ion pumps which
can disrupt intracellular ionic balance and activate pathways leading
to cell apoptosis or necrosis (Sekerdag et al., 2018). On the brain
microvasculature, the differential regulation of VEGF (vascular
endothelial growth factor) pathway is pivotal in regulating
angiogenesis, vascular permeability and blood-brain barrier
remodeling (Greenberg and Jin, 2013). Following the restoration
of blood flow, ischemia-reperfusion injury can occur and further
exacerbate the condition due to excessive production of reactive
oxygen species (ROS), calcium overload, damage to gap junctions,
metabolic dysregulation, and mitochondrial dysfunction (Nour
et al., 2013; Al-Mufti et al., 2018; Gauberti et al., 2018). Further
at the human body system level, variations in genetics, age, gender,
health status, and lifestyle among different patients can result in
divergent disease progression and recovery trajectories and this
necessitates the investigation of personalized treatment strategies
(Zafar et al., 2016). Overall, the complexity of ischemic stroke
pathophysiology is at least multi-scale from sophisticated signal
transduction and crosstalk at the cellular level, to multi-faceted
pathogenic and tissue damage mechanisms at the tissue level, all the
way to interindividual variability at the systems level, and this has
posed significant challenges to traditional experimental research that
aims to identify drug targets and treatment plans given the extremely
low success rates of stroke clinical trials in the past two decades
(Chen and Wang, 2016; Dhir et al., 2020).

Computational systems biology modeling, grounded in
physiology- and data-driven computer simulations, has emerged
as a robust and high-throughput approach for interpreting and
analyzing complex pathophysiological processes (Kitano, 2002).
These computational models have their unique advantages in
basic research and drug development as they allow mechanistic
integration of multimodal biological knowledge and data across
scales and studies (Yue and Dutta, 2022; Zhang et al., 2022), and for
complex diseases such as ischemic stroke, the systems-level
understandings derived from such models could contribute
significantly in translational research. As biological systems are
dynamical, ordinary differential equation (ODE) modeling has
become one of the most prevalent computational modeling
approaches in the field, with a long history originating from the
study and simulation of biochemical pathways and gene regulatory
networks (Sordo Vieira and Laubenbacher, 2022). A major
advantage of ODE modeling is that the ODE model system can
be mechanistically constructed and explained given a priori
knowledge regarding how various system components (e.g.,
genes, proteins, cells) interact with each other, and the
mathematical solution of the ODE system can quantitatively
predict time-course profiles of the entire system behavior
(including all components) upon particular perturbations which
can physiologically mimic disease triggers (Daun et al., 2008). Other
modeling approaches besides ODE such as agent-based modeling,
logic-based modeling, partial differential equation (PDE) modeling
as well as hybrid modeling have also gained popularity in different
research fields. PDE modeling, given its strong theoretical basis in

physical principles such as mass transfer and reaction-diffusion, are
particularly useful in the simulation of biophysical processes such as
vascular blood flow (Caiazzo et al., 2018). Thus, considering the
disease features of ischemic stroke, ODE and PDE modeling
(sometimes used in hybrid) are commonly employed by
computational systems biologists to decipher intracellular signal
transduction, cell-cell interaction as well as vascular hemodynamics
in stroke translational research.

In this review, we explore the application of computational
systems biology modeling in ischemic stroke research across various
scales, including cellular, tissue, and human body levels (Figure 1).
We will also touch upon recent examples that employedmulti-omics
and network pharmacology approaches for therapeutic target
identification and biomarker evaluation in ischemic stroke. We
emphasize the role of these modeling analyses in elucidating the
complex intracellular signaling patterns in brain cells and the
dynamic spatiotemporal changes in brain tissue damage and
repair following ischemic stroke, as well as the utilization of
computational models to predict individual stroke patient
outcome and formulate personalized treatment plans
(Table 1; Table 2).

2Modeling response to ischemic stroke
at the cellular level

The concept of the Neurovascular Unit (NVU) was introduced
in 2001 at a meeting of the National Institute of Neurological
Disorders and Stroke as the fundamental unit for studying the
mechanisms of interaction between neural and vascular
components (Wang et al., 2021; Tiedt et al., 2022). Structurally,
the NVU encompasses neurons, glial cells (e.g., astrocytes,
microglia), endothelial cells, smooth muscle cells and pericytes.
Functionally, the NVU mediates neurovascular coupling (NVC),
wherein neurons and astrocytes secrete substances to regulate
cerebral blood flow (CBF) (Salinet et al., 2019; Beishon and
Minhas, 2021) as well as ensure adequate energy supply and
timely clearance of metabolic by-products. NVU also coordinates
the formation of the blood-brain barrier (BBB) through the
regulation of endothelial cells and pericytes, which is responsible
for preventing the entrance of metabolic toxins and safeguarding
normal neural functions (Salmina et al., 2021; Naranjo et al., 2022).
Following the onset of ischemic stroke, the blood-brain barrier is
compromised, resulting in increased permeability which allows
metabolic by-products to infiltrate the central nervous system
and cause damage to neural cells (Abbott et al., 2010; Prakash
and Carmichael, 2015). Subsequently, impaired neural cells exhibit
reduced capacity to regulate CBF which results in the accumulation
of metabolic waste and accelerates the progression of the disease.
Therefore, maintaining the functional integrity of NVU during
ischemic stroke is crucial for preserving brain function and
mitigating brain injury. Previous studies have demonstrated that
mechanistic systems biology modeling can provide a robust
framework to describe and analyze complex multiscale biological
systems; in the scenario of NVU, this could greatly advance our
understanding of the emergent underlying principles that govern the
operation of NVU. The subsequent section will discuss mechanism-
based computational models specifically developed for the various
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cellular components of NVU, including astrocytes, microglia, brain
microvascular endothelial cells and neurons.

2.1 Astrocytes in stroke

Astrocytes, a subtype of glial cells, are integral to the central
nervous system (Sofroniew and Vinters, 2010; Endo et al., 2022).
They contribute to the structural support surrounding microvessels
by secreting extracellular matrix molecules such as proteoglycans
and collagens to enhance BBB integrity and maintain a stable
environment essential for neuronal function (Linnerbauer et al.,
2020; Lee et al., 2022). Astrocytes are interconnected by gap
junctions which allow the free exchange of IP3 (inositol 1,4,5-
triphosphate) among cells and downstream activation of calcium
pathways to promote the release of glutamate, an essential
neurotransmitter (Mulica et al., 2021). During the course of
ischemic stroke onset and progression, astrocytes can secrete

critical neurotrophic and angiogenic factors such as VEGF and
BDNF (brain-derived neurotrophic factor) to promote angiogenesis,
improve cerebral blood flow, enhance neuronal activity, mitigate
inflammatory cascades as well as ischemia-induced tissue damage
(Shen et al., 2021; He et al., 2022; Li et al., 2022).

Regarding astrocyte metabolism and function in ischemic
stroke, Diekman et al. constructed an ODE-based computational
model to describe how changes in IP3-mediated calcium release can
affect mitochondrial ATP production during ischemic stroke
(Diekman et al., 2013). The model includes a core ATP
generation module based on previous work by Magnus and
Keizer (1997), and the authors added mechanistic description of
calcium ions being absorbed into and pumped out of endoplasmic
reticulum, as well as the cellular mechanisms for importing and
exporting sodium and potassium ions. Model simulations suggest
that, under conditions of hypoxia and glucose deprivation, there is a
significant decrease in intracellular ATP concentration that would
lead to a decline in Na+/K+ pump activity, membrane

FIGURE 1
Overview of systems biology modeling at different scales for ischemic stroke translational research (created by Figdraw).
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TABLE 1 Selected examples of computational systems biology models of ischemic stroke that focus on cell- and tissue-level pathophysiology.

Model
scale

Model elements Model
type

Summary of model Refs

Cell scale Mitochondria biomolecules
and ions

ODE Described a mathematical model regarding the regulation
of intracellular calcium ion, ATP production in ischemic
stroke

Diekman et al. (2013)

Cell scale M1/M2 microglia and
cytokines

ODE Employed systems biology modeling approach to study the
regulation and transition of M1/M2 phenotypes of
microglia post-stroke

Amato and Arnold (2021)

Cell scale Intracellular signal pathway
proteins and molecules

ODE Developed a computational model of the brain
microvascular endothelial cell to predict molecular targets
and drivers of therapeutic response in different CNS
diseases

Gorick et al. (2022)

Cell scale Cytokines and biomolecules ODE A mathematical model that included different NVU
coupling mechanisms

Sten et al. (2023)

Tissue scale Ions, metabolites. ion
channels

Hybrid
ODE-PDE

Computational models of osmosis that included diffusion
dynamics of sodium, potassium, calcium, chloride, and
bicarbonate ions and the resulting regulation of edema
volume following stroke

Dronne et al. (2006), Orlowski et al. (2011),
Chander and Chakravarthy (2012), Orlowski
et al. (2013)

Tissue scale Immune cells, neurons and
astrocytes

ODE A computational model that involves the interactions
between neurons, astrocytes, microglia, neutrophils,
macrophages, cytokines, and chemokines during an
ischemic stroke

Di Russo et al. (2010)

Tissue scale Blood vessel and water
filtration

PDE Amodel developed to study the effect of reperfusion on the
formation of vasogenic oedema during stroke

Mokhtarudin and Payne (2015)

Tissue scale Brain cells, ions,
biomolecules as sub-modules

ODE
and PDE

Mechanism-based computational models of brain
ischemia, reperfusion injury as well as edema formation
during stroke progression

Dronne et al. (2004), Chapuisat et al. (2010)

Tissue scale Brain cells as units affected
by blood flow and oxygen

Algebraic A 2D model of stroke that incorporates time-dependent
evolution of various disease biomarkers including blood
flow- and oxygen-related measurement features

Duval et al. (2002)

Tissue scale Ions, ion channels,
transporters, pumps

ODE A multiscale mechanistic computational model depicting
the primary early pathophysiological mechanisms of stroke
in rodent and human brains with applications in testing
different neuroprotective strategies

Dronne et al. (2008)

Tissue scale Stem cells and brain cells ODE An ODE-based model that examines the influence of stem
cell transplantation on the dynamic recovery of brain tissue
post-stroke

Alqarni et al. (2021)

Tissue scale Blood vessel and haematoma PDE A 2Dmathematical model capable of simulating the effects
of hemorrhagic transformation across various scales of
vasculature length in stroke

Wang and Payne (2021)

TABLE 2 Selected examples of multi-scale clinical trial models for patients with ischemic stroke with focuses on thrombectomy outcome prediction and
surgical planning.

Model
scale

Model outcome of
interest

Model
type

Summary of model Refs

Patient scale Brain perfusion maps PDE A three-compartment porous microcirculation model capable
of describing changes in cerebral blood flow perfusion in
healthy individuals and ischemic stroke patients

Jozsa et al. (2021)

Patient scale Thrombectomy procedure and clot
status

PDE Using previously validated methodologies, these models can
simulate the thrombectomy procedure in a patient-specific
case to identify factors contributing to procedural success or
failure

Luraghi et al. (2021a), Benemerito
et al. (2023)

Patient scale Population-level patient functional
outcome after thrombectomy

Hybrid Developed multiscale computational frameworks that can
simulate the thrombectomy procedure in patient-specific
manners to identify potential factors that contribute to
recanalization success or failure

Good et al. (2020), Lopez-Rincon
et al. (2020), Miller et al. (2021)
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depolarization, and cell swelling. Simulations also suggest that
activation of P2Y1R (P2Y receptor) is able to reverse these
effects, and further analyses suggest that the reversal ability of
P2Y1R is associated with IP3-mediated calcium release. The
authors then used the model to characterize the timing of
reduced mitochondrial ATP production due to decreased levels
of acetate or external oxygen as well as the time-course dynamics
of how activation of P2Y1R would re-stimulate the ATP production,
suggesting a new strategy for astrocyte protection after ischemic
stroke. From the model utility standpoint, it is suggested that the
model simulations should be further compared with quantitative
experimental measurements of cell calcium and ATP concentrations
in vitro, in order to establish the translational significance of such
model-based target identification efforts.

2.2 Microglia in stroke

Microglia serve as the brain’s primary line of defense. They
respond to tissue inflammation and injury by secreting
inflammatory factors as well as phagocytizing damaged cells to
maintain immune homeostasis within the neural tissue
microenvironment (Colonna and Butovsky, 2017; Lenz and
Nelson, 2018). Furthermore, microglia can modulate synaptic
formation and remodeling by up- and downregulating the release
of neurotransmitters (Zeng et al., 2022). During ischemic stroke,
microglia can differentiate into two distinct phenotypes (Ma et al.,
2017; Xu et al., 2020). M1-type microglia are known to secrete a
variety of pro-inflammatory cytokines including TNFα, IL-1β, and
IL-6, which can facilitate the formation of an inflammatory milieu in
neural tissue and compromise the integrity of the blood-brain
barrier (BBB). M2-type microglia primarily function in an anti-
inflammatory and neuroprotective capacity by phagocytizing debris
from dead cells; they also release various anti-inflammatory factors
such as IL-10 and IL-13 and neurotrophic factors like BDNF and
GDNF (glial cell-derived neurotrophic factor) to expedite neural
repair (Tang and Le, 2016; Jurga et al., 2020; Guo et al., 2022).

To investigate the complex role of microglia, Alam et al. (2016)
explored, from the perspective of intracellular signaling pathways
within microglial, the potential therapeutic impact of combining
anti-inflammatory pharmacotherapy with transcranial direct
current stimulation (tDCS) and repetitive transcranial magnetic
stimulation (rTMS) following ischemic stroke using an ODE-
based mechanistic model. The authors chose the NFκB (nuclear
factor kappa B) signaling pathway to represent the intracellular
inflammatory responses, and they also included signaling cascades
such as PI3K/AKT, Ca2+/Calmodulin (CaM), MAPK (mitogen-
activated protein kinase) modules upon the binding of BDNF to
its receptor, which is closely related to cellular proliferation and
survival. The primary focus was to simulate the effect of post-stroke
treatment using the anti-inflammatory drug minocycline in
conjunction with tDCS and rTMS. At the molecular level, the
model revealed that minocycline can reduce cellular
inflammation by inhibiting the activation of NFκB, and moreover
the therapeutic application of tDCS and rTMS can activate the
calcium/calmodulin-dependent protein kinase II (CaMKII) pathway
and enhance cell survival. Overall, the simulation results suggested
that the combined use of pharmacotherapy and tDCS/rTMS

treatment, based on its impact on microglial function, can
potentially bring additive neuroprotective effect and alleviate
reperfusion injury for stroke. Another kinetics-based model
constructed by Amato and Arnold (2021) studied the dynamic
differentiation process of microglial cells (into M1 and
M2 subtypes) following ischemic stroke. The major underlying
principle of the model is that the M1-type cells were
predominantly differentiated from resting microglial cells upon
stimulation by pro-inflammatory cytokines, and M2-type cells
were generated from resting microglial cells upon encountering
anti-inflammatory factors; meanwhile, M1-and M2-type cells are
capable of secreting pro- and anti-inflammatory cytokines to
facilitate the aforementioned interactions. The authors then
simulated the changes in the quantities of M1-and M2-type cells
within the first 72 h after stroke. Additionally, sensitivity analysis
was performed to identify key parameters that could effectively
reduce the differentiation of M1 microglial cells and simultaneously
promote the transformation of resting microglia and M1 microglial
cells into anti-inflammatory M2 cells. By simulating different
neuroprotectant treatments, the authors suggested that early
inhibition of M1 activation can lead to a decreased minimum
ratio of M1 to M2 microglia and may allow for a larger number
of M2 than M1 cells in the long run. In terms of model limitations,
the above two studies of microglia signaling and transition are rather
more theoretical and can both be further strengthened with more
detailed calibration against experimental data measured at the cell
level, thereby achieving higher degrees of model confidence and
better predictive power in target identification scenarios.

2.3 Brain microvascular endothelia cells
in stroke

The blood-brain barrier serves as a selective permeability barrier
between the central nervous system (CNS) and the circulatory blood
system (Daneman and Prat, 2015). Cerebral microvascular
endothelial cells are a critical component of the blood-brain
barrier. Compared to ordinary endothelial cells, they form tighter
capillary endothelium and use intercellular tight junction proteins to
bridge the gaps between cells and ensure a controlled, stable
permeability of the BBB (Luissint et al., 2012; Kadry et al., 2020).
During ischemic stroke, cerebral microvascular endothelial cells
experience a decline in cellular activity due to oxidative stress.
The resultant production of superoxide can damage the tight
junction proteins, leading to increased BBB permeability and may
allow toxic substances from the blood to enter the central nervous
system and cause severe tissue damage. Therefore, preserving the
integrity of the cerebral microvascular endothelial cells post-stroke is
crucial for accelerating the repair of damaged brain tissue and
slowing the progression of the stroke-related infarction (Lehner
et al., 2011; Casas et al., 2019a; Abdulkadir et al., 2020).

To investigate the role of cerebral microvascular endothelial cells
in various brain diseases, Gorick et al. (2022) developed a logic-
based ODE model capable of depicting the signaling network within
human brain microvascular endothelial cells (BMEC) activated by
external stimuli such as VEGF, BDNF, and NGF (nerve growth
factor). This model primarily characterized cellular behaviors
including glucose transport, pro-growth factor signaling, and cell
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apoptosis, and furthermore through model sensitivity analysis, the
authors identified MMP (matrix metalloproteinase) and NFkB as
key therapeutic targets in stroke. By simulating certain physiology-
based treatment goals in stroke, the authors emphasized the
importance of combination treatment as they noted that even a
combination of two therapeutic modulations was insufficient to
achieve all of the treatment goals. Such a computational platform
that comprehensively integrates diverse findings and data on
cerebral endothelial cells can provide important insights for the
evaluation of new pharmacological intervention strategies in
treating ischemic stroke. From the modeling standpoint, we
suggest that several other cell functions with essential significance
in stroke such as oxidative stress, metabolism and inflammatory
factor signaling should also be considered in such large-scale
modeling efforts, in order to provide a more comprehensive
characterization of BMEC physiology in stroke progression
and recovery.

2.4 Neurons in stroke

Neurons are the principal functional units of the brain. They
play pivotal roles in the reception and conduction of information
and are critical to the brain’s optimal operation. These cells are
instrumental in various functions such as perception, information
processing, motor control, homeostasis, memory, and the regulation
of emotions and behavior, enabling our bodies to adapt and respond
to diverse environmental stimuli. Following an ischemic stroke, the
ensuing inflammatory response, oxidative stress, and the
accumulation of metabolic products due to ischemic hypoxia can
severely impair the normal functions of neurons, constituting the
primary cause of cerebral dysfunction (Baron et al., 2014; Morris
et al., 2018; Zhao Y. et al., 2022).

In a recent study conducted by Kratimenos et al. (2022), a
combination of experimental and modeling approaches was
employed to investigate the molecular mechanisms underlying
neural injury induced by hypoxia. Given that hypoxic conditions
stimulate neuronal calcium overload which is critical in the
induction of cellular apoptosis, the focus was to model the
hypoxia-mediated activation of the SRC (SRC proto-oncogene)/
calcium/CaMKK2 (calcium/calmodulin-dependent kinase kinase 2)
signaling pathway. The authors first simulated the upregulation of
BAX (BCL2-associated X) protein expression and the acceleration of
neuronal apoptosis induced by hypoxia, and then they used the
model to simulate the inhibitory effect on BAX protein expression
under conditions where the SRC inhibitor PP2
(pyrazolopyrimidine) was introduced. Furthermore, through
global sensitivity analysis, the authors identified the crucial role
of NMDAR (N-methyl-d-aspartate receptor) in hypoxia-induced
neuronal apoptosis. Adjusting parameters related to NMDAR
activation significantly reduced cytoplasmic calcium
concentration, consequently lowering BAX protein expression
levels. The study revealed that the inhibitory effect is further
enhanced when combining NMDAR intervention with PP2.
Overall, this ODE-based model could serve as a starting point to
embrace more mechanisms of calcium overload in order to
systematically characterize excitotoxity and reveal new
therapeutic targets. With future model detail additions such as

new regulatory mechanisms of calcium influx, mitochondria
metabolism and apoptosis, this model-based platform can
provide more comprehensive insights in assisting translational
investigations of hypoxic brain injury and neuronal signal
transduction.

3 Modeling ischemic stroke-induced
brain damage at the tissue level

Ischemic stroke at the tissue level involves the complex interplay
of excitotoxicity, oxidative stress, inflammation, and endothelial
damage (Culmsee and Krieglstein, 2007; Amantea et al., 2009).
Excitotoxicity, a process involving neurons and astrocytes, is
exacerbated under hypoxic conditions due to the excessive release
of glutamate by neurons and reduced glutamate absorption by
astrocytes. This glutamate surplus overstimulates NMDARs,
leading to calcium influx and activation of calcium-dependent
death signal proteins, ultimately resulting in neuronal death
(Belov Kirdajova et al., 2020; Shen et al., 2022). In the acute
phase, oxidative stress will lead to significant production of ROS
and cause primary tissue damage. During reoxygenation, peripheral
immune cells can also contribute to oxidative stress by enhancing
iNOS (inducible nitric oxide synthase) expression and the formation
of oxidizing peroxynitrite which would further result in nitrosative
stress and cell damage (Crack and Taylor, 2005; Allen and
Bayraktutan, 2009). The inflammatory response in stroke is
usually a two-step process: the activation of immune cells within
the brain, then followed by the recruitment of peripheral immune
cells. Key players in this process include microglia, astrocytes,
neutrophils, and macrophages, which secrete inflammatory
cytokines, chemokines and engage in phagocytosis of dead cells.
Under ischemic conditions, DAMPs (damage-associated molecular
patterns) will activate microglia, altering their morphology and
function to enhance phagocytosis and secretion of various cell
factors and chemokines. These cell factors lead to the
accumulation of adhesion molecules on the endothelium, paving
the way for peripheral immune cells to enter brain tissue (Jin et al.,
2010; Jayaraj et al., 2019). The second phase involves the infiltration
of peripheral immune cells, primarily neutrophils and monocytes.
These mechanisms will compromise the integrity of the blood-brain
barrier, as endothelial cells interconnected by tight junction proteins
becomes more permeable. This increased permeability allows
molecules and ions from reperfused blood, including plasma
proteins, salt, and water, to enter the tissue space. After tPA
(tissue plasminogen activator) treatment and clot breakdown,
restoration of blood flow to ischemic areas, coupled with
increased blood pressure, can result in excessive fluid leakage
into the tissue space. This fluid accumulation, particularly in
cells, can lead to cytotoxic edema and cerebral edema that may
escalate intracranial pressure and tissue stress. Furthermore, the
unregulated movement of ions due to permeability changes can alter
osmotic pressure, exacerbate edema accumulation and cause cellular
acidosis. Severe BBB damage can also allow direct blood entry into
brain tissue, forming hematomas and exerting further pressure on
surrounding brain tissue (Kim et al., 2012; Huang et al., 2021).

To systematically understand this inflammation cascade, a study
by Lelekov-Boissard et al. (2009) examines the dynamics of various
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types of cells post-stroke, including live and dead neurons, microglia
cells, neutrophils, and macrophages. The categorization of more
specific cell states involves alive/necrotic/apoptotic neurons, along
with activated and resting microglia cells. Employing six ordinary
differential equations, the model investigates the inflammatory
response within the first 24 h following a stroke. The authors
used this model to track changes in cell counts, pro-
inflammatory factor levels, infiltration rates of neutrophils and
macrophages into brain tissue, spatial and temporal activation of
microglia cells, and the effects of phagocytosis. Model simulations
suggested that the influx of neutrophils and macrophages into brain
tissue are not simultaneous, indicating the need to treat these cells as
distinct cell populations with different functions. Additionally, the
model suggests incorporating spatial diffusion aspects such as the
migration of chemotactic cells from blood to brain tissue and the
diffusion of cytokines and chemokines, along with other aspects to
be refined by future efforts (e.g., protective elements like
complement cascades, endothelial growth factors, neurotrophic
factors). In a similar attempt, Di Russo et al. (2010) proposed a
hybrid ODE-PDE computational model that intricately involves
neurons, astrocytes, microglia, neutrophils, macrophages, cytokines,
and chemokines. The model incorporates the following
pathophysiological processes during an ischemic stroke: neurons
and neuroglial cells undergoing necrosis or apoptosis, cellular
demise that activates microglia, activated microglia phagocytose
dead cells and produce cytokines and chemokines, and
macrophages and neutrophils infiltrating the brain tissue. This
model employs 13 equations to simulate the alteration in tissue
cell counts (particularly apoptotic and necrotic ones), expression of
adhesion factors, as well as level of inflammatory mediators and
chemokines over the first 72 h post-stroke. The authors simulated
how size of the initial infarction can affect the process of
inflammation, and the results showed that the severity of
inflammation does not correlate linearly with the infarction size.
This finding can help determine the optimal timing of using anti-
inflammatory drugs during treatment, as the model suggested that
the existence of tissue inflammation may be beneficial when the
infarction size is small, and the use of anti-inflammatory drugs in
small infarctions may actually exacerbate tissue damage in the long
run. However, this conclusion may be driven by the biased model
inclusion of primarily M1-type microglia and pro-inflammatory
cytokines, as the potential anti-inflammatoryM2microglia response
which was not described could also have profound impact on the
regulation of drug treatment response.

In terms of BBB research, Orlowski et al. (2011) developed a
mechanistic model that focuses on three mechanisms: fundamental
brain cell metabolism, pH regulation, and increased H+ ions due to
ATP consumption during a stroke. The metabolism module
encompasses energy exchanges between neurons and astrocytes
and nutrient transport via capillaries, while pH regulation
involves a cellular buffering system with HCO3

−, (CO3)
2-, and

H2CO3. The model equations for ATP consumption were
formulated quantitatively based on Na+ concentration. Model
simulations revealed a decrease in H+ concentration across
neurons, astrocytes, and tissues with reduced cerebral blood flow
upon stroke occurrence. To further describe in detail the impact of
cerebral blood flow on H+ diffusion during ischemia and the roles of
cellular ion pumps, in a follow-up work, Orlowski et al. (2013) added

ion dynamics that were used to simulate cytotoxic edema and
analyze dynamic changes in sodium, potassium, calcium,
chloride, and bicarbonate ion concentrations. This new hybrid
ODE-PDE model elucidates the evolution of spatial dimensions
of neurons, astrocytes and the extracellular space during ischemia,
focusing particularly on the impact of sodium ion and metabolite
diffusion on cellular volume and subsequent tissue volume changes.
Still, this model framework of post-stroke pH dynamics could be
augmented in future with additional mechanisms (e.g., more details
of chloride and hydrogen ion channels) to enhance its accuracy and
predictive capability. From another perspective, Mokhtarudin and
Payne (2015) developed a PDE-basedmodel to analyze the impact of
reperfusion on the disruption of the blood-brain barrier and the
collapse of brain microvessels. This model quantitatively used the
filtration of capillaries to simulate the formation of vasogenic edema
and used morphological changes in microvessels to study their
collapse. The simulation results suggested that microvessel
collapse would happen most likely under high reperfusion
pressure, low blood osmolarity, decreased blood-brain barrier
reflection coefficient, and reduced microvessel stiffness. In terms
of model limitations, the role of aquaporin-4, which is crucial in
blood-brain barrier stabilization and modulation of brain edema,
and arguably the effect of oxidative stress-induced damage on BBB
should be considered in a future version, as mentioned by
the authors.

4 Developing in silico clinical trial
models for patients

Thrombolytic therapy and mechanical thrombectomy are the
principal therapeutic interventions for ischemic stroke. The primary
aim of these treatments is to re-establish blood flow by
pharmacologically dissolving or surgically removing the vascular
occlusion, thereby restoring perfusion and expediting the functional
recovery of ischemic tissues (Green and Shuaib, 2006; Diener et al.,
2013; Catanese et al., 2017). Currently, recombinant tissue
plasminogen activator (rt-PA) is the only thrombolytic agent
approved by the FDA for the treatment of ischemic stroke. Its
primary mechanism of action involves converting plasminogen to
plasmin, which degrades fibrin within thrombi, facilitating
thrombolysis and restoring blood supply to the ischemic regions
of the brain. However, the therapeutic window for rt-PA is narrow;
administration beyond 4.5 h post-onset not only diminishes its
efficacy but also increases the risk of hemorrhagic complications
(Coutts et al., 2018; Hacke et al., 2018; Katsanos et al., 2021).
Mechanical thrombectomy primarily targets large vessel
occlusions, such as those in the middle cerebral artery, rapidly
restoring blood flow and preventing extensive cerebral ischemia
(Guo and Miao, 2021). Both therapeutic approaches carry inherent
risks. Thrombolytic therapy in patients with underlying conditions
such as hypertension or coagulation disorders can increase the risk
of hemorrhage andmay also lead to complications such as infections
or recurrent strokes. Various external factors can lead to variability
in the outcomes of mechanical thrombectomy, including the size
and location of the thrombus, the duration of ischemia, and the
patient’s specific physiological condition. Not all patients may
experience a restoration of normal cerebral function
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postoperatively (Lambrinos et al., 2016; Jadhav et al., 2021).
Assessing a patient’s indications for surgery is a highly
challenging task, necessitating a comprehensive analysis of
multiple baseline physiological indices (Mokin et al., 2019; Sarraj
et al., 2023). Computational systems biology models can
significantly aid in this complex task. By constructing virtual
patient models using data from prior research, such an approach
can support thrombectomy at multiple time points: preoperatively,
individualized physiological data can be used to simulate and
analyze potential post-surgical risks, aiding in the determination
of a patient’s suitability for surgery; intraoperatively, simulations of
different thrombectomy strategies can help maximize brain function
preservation and increase the survival rate of brain tissue;
postoperatively, these models can assist in devising subsequent
treatment plans, enhancing the safety of the therapy and
accelerating disease recovery (Table 2).

In a recent publication regarding the INSIST project (IN-Silico
trials for treatment of acute Ischemic STroke), a systematic approach
was reported in terms of constructing virtual patient models for
ischemic stroke to enable prediction of therapeutic outcomes for
different patients (Konduri et al., 2020). To systematically simulate
blood flow, thrombectomy, brain tissue damage and clinical
outcome of acute ischemic stroke (AIS) patients, different
computational modules were developed and seamlessly connected
under the INSIST modeling workflow. Firstly, a virtual cohort was
generated using a variety of collected clinical data, including imaging
and thrombus characteristics. Secondly, a biophysics-based
computational modeling framework was designed and employed
to simulate cerebral blood flow, perfusion, thrombosis, and
mechanical thrombectomy at the individual patient level. As seen
in a proof-of-concept study by Jozsa et al. (2021), an exemplar PDE-
based three-compartment porous microcirculation model capable of
describing changes in cerebral blood flow perfusion in both healthy
individuals and ischemic stroke patients were computationally
implemented, which was validated against CT imaging data from
both healthy individuals as well as ischemic stroke patients. For
thrombectomy, a PDE-based simulation strategy as described by
Luraghi et al. (2021b) incorporates a physics-derived cohesive zone
model that describes the viscoelastic properties of the thrombus-
artery interface to enable accurate predictions of blood flow profiles
following thrombectomy in ischemic stroke patients. In addition,
such biophysics-driven modules are designed to be integrated with
mechanism-based hypoxic tissue injury modules (for example, the
hybrid ODE-PDE modeling work by Orlowski et al. (2013) as
described in the second section of this review) to depict damage
caused by hypoxia and reperfusion to cells and brain tissue, which
would allow a more dynamic multiscale reflection of the
pathophysiological processes during stroke initiation and
progression.

The third step involves establishing connections and
associations between physiological outputs generated from the
biophysical models with actual clinical endpoints and outcome
indicators for every patient. Finally, the aforementioned
biophysical modeling-clinical outcome prediction system will be
validated against unused clinical trial data to examine its
predictability and applicability at the population level for clinical
scenarios. As such virtual patient models include comprehensive
depictions of the cerebral vasculature and are grounded in

hemodynamics and the morphology of blood vessels and
incorporate the actual location of occlusions to position virtual
thrombi, they can provide high-throughput, comprehensive
portrayal of the alterations in global cerebral blood flow that
occur during ischemic stroke and upon surgery for every single
patient. This can lead to the derivation of virtual clinical indicators,
which would have great potential in formulating precise
personalized patient treatment plans. The significant translational
value of such in silico ischemic stroke trial studies following the
above four steps proposed by the INSIST project has been first
demonstrated in the publications by Miller et al. (2021), Miller et al.
(2023). After integrating the various biophysical and physiological
modules as described above, the authors, using their computational
workflow, generated 500 virtual patients with M1 segment vessel
occlusion, based on data of patients enrolled in theMRCLEANTrial
(Jansen et al., 2018). Following simulated endovascular treatment in
all virtual patients, the population-level recanalization rate as
predicted by the computational platform matched quantitatively
with the reported trial results of MR CLEAN. The authors also
explored different trial scenarios including thrombectomy in stroke
patients with different thrombi fibrin compositions as well as
performance comparison of different commercially available stent
retrievers, demonstrating that such in silico trials can have a great
potential to guide ischemic stroke clinical trial design and patient
stratification as well as inform medical device developers on the
design and performance of new thrombectomy devices.

5 Application of omics profiling and
network pharmacology in drug target
and biomarker discovery for
ischemic stroke

Omics research entails a comprehensive analysis of biological
molecules through the collective study of various biological datasets
(Krassowski et al., 2020). Omics research methodologies encompass
genomics, transcriptomics, proteomics, and metabolomics, among
others, facilitating an in-depth understanding of molecular
mechanisms at various biological levels, disease pathogenesis, and
therapeutic targets for drug treatment (Hasin et al., 2017; Rohart
et al., 2017; Durufle et al., 2021). Genomic studies focus on studying
the entire genome of organisms. By examining the genome of stroke
patients, it can identify the genetic variations that most significantly
impact ischemic stroke and elucidates the relationship between
different gene phenotypes and disease risk (Cheng et al., 2023).
Transcriptomic studies primarily investigate the process by which
genes are transcribed into mRNA. By analyzing changes in gene
expression in patients with ischemic stroke, it identifies key gene
modulators critical to the disease’s onset and progression, thereby
discovering valuable molecular biomarkers for early diagnosis and
prognosis prediction (Appunni et al., 2022; Gallego-Fabrega et al.,
2022). Proteomics studies analyze the types, quantities, and
functions of different proteins within biological samples. It has
significant potential in identifying protein biomarkers in blood
for stroke early diagnostics, therapeutic efficacy assessment and
drug discovery (Gu et al., 2021; Hochrainer and Yang, 2022; Kalani
et al., 2023). Metabolomic studies focus on the types and quantities
of metabolites within organisms. By analyzing alterations in
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metabolic pathways in the brain tissues of ischemic stroke patients, it
is possible to identify the most influential metabolic routes and offer
new insights for the discovery of therapeutic targets. The metabolites
identified can also serve as indicators used for early diagnosis and
disease monitoring (Sidorov et al., 2019; Chumachenko et al., 2022;
Li et al., 2023).

An exemplar recent multi-omics study by Li et al. (2020) delved
into the molecular changes that occur during the progression of
stroke and aimed to identify potential markers and drug targets for
stroke treatment. The authors used the mice middle carotid artery
occlusion (MCAO) model to simulate stroke and performed
proteome profiling on cerebral cortex samples at various time
points. Proteomic analysis revealed general upregulation of genes
associated with immune response and downregulation of genes
related to neurodevelopment throughout stroke progression. To
further narrow down potential drug targets, the authors then
conducted integrated transcriptomic analyses using multiple Gene
Expression Omnibus (GEO) datasets for the same purpose and
compared the results with findings from the proteomics data, and
three proteins (C3, Apoa4, and S100a9) emerged as potential
markers or drug targets for stroke as all three displayed
significant upregulation in the MCAO model and the GEO
datasets. These results again pointed to the involvement of the
complement system in stroke progression and suggested that
inhibiting C3 activity could be a potential therapeutic approach
for mitigating inflammation and reducing brain injury after stroke.
For more information on this topic, the review (Montaner et al.,
2020) by Montaner et al. has specifically detailed how such omics-
driven computational analyses could help to illuminate the intricate
molecular landscape driving stroke progression and provide
promising new avenues for targeted interventions in ischemic
stroke treatment. We have also summarized in Table 3 recent

representative omics-based studies with applications in ischemic
stroke translational research.

On the network pharmacology side, Casas et al. (2019b) used a
bottom-up “target-to-data” approach and chose NOX4 (NADPH
oxidase 4), a potent producer of superoxide following the onset of
ischemic stroke, as the primary protein target to study potential
combination therapies for stroke. The authors employed network
pharmacology approaches for multi-omics datasets and identified
four targets—CYBB (cytochrome B-245 beta chain), NOS2 (nitric
oxide synthase 2), NOS3 (nitric oxide synthase 3), and NOS1 (nitric
oxide synthase 1) that potentially have synergistic interaction with
NOX4. Subsequently, NOS family was selected for experimental
validation, and the authors showed that in vitro cultured brain cells
treated with the NOX4 inhibitor (GKT136901) plus the NOS
inhibitor (L-NAME) exhibited superior cell survival compared to
the control group (single inhibitor) after oxygen-glucose
deprivation. This significant combination effect was further
demonstrated in tMCAO mice in vivo, suggesting that such a
network pharmacology and omics-driven approach could be of
great value in deciphering multi-target drug discovery and
therapy for ischemic stroke.

6 Discussion

As reviewed and discussed here, a number of computational
models have been developed to describe the multilevel changes that
occur during ischemic stroke, encompassing cellular, tissue, and
systems-level alterations within the human body. These
computational studies have utilized various types of modeling
approaches to analyze and predict numerous quantifiable aspects
of the disease, such as changes in blood flow, the extent of infarction,

TABLE 3 Selected examples of recent omics-based and network pharmacology studies in ischemic stroke translational research. Abbreviations:
MMP12—matrix metalloproteinase 12, SCARA5—scavenger receptor class A member 5, GSEA—gene set enrichment analysis, WCGNA—weighted gene co-
expression network analysis, PCA—principal component analysis, PPI—protein-protein interaction.

Summary of omics-based study Applications in stroke translational research Refs

Proteomic and transcriptomic analyses of mouse MCAO time-course tissue samples
using bioinformatics approaches (e.g., GSEA, WGCNA, hierarchical clustering)
revealed that C3, Apoa4 and S100a9 as potential drug targets for stroke

Identification of potential drug targets Li et al. (2020)

Network pharmacology analyses using multi-omics data pointed to new combination
treatment strategies in stroke animal models

Identification of potential drug targets and new combination
treatment strategies

Casas et al.
(2019b)

Proteomic profiling of mouse DH-MCAO brain tissues and bioinformatics analysis
(e.g., PCA, hierarchical clustering) revealed a number of differentially regulated
proteins post-stroke

Identification of potential inflammation-related drug targets and
pharmacodynamic biomarkers

Gu et al.
(2021)

Plasma proteomic profiling of ischemic stroke patients suggested that NTproBNP and
MMP12 were independently associated with ischemic stroke risk

Identification of potential diagnostic biomarkers Kalani et al.
(2023)

Bioinformatics profiling (e.g., GSEA, PPI) of mRNA and miRNA datasets reveled
6 mRNAs and 2 miRNAs as potential diagnostic markers for ischemic stroke

Identification of potential diagnostic biomarkers Xie et al.
(2020)

Analyses of circulating proteome in ischemic stroke patients revealed 7 potential
biomarkers for stroke risk and SCARA5 as a new drug target.

Identification of potential drug targets and diagnostic biomarkers Chong et al.
(2019)

Network pharmacology profiling in combination with in vitro/vivo experiments
revealed the potential mechanism of action of Huangxiong herbal formula in treating
ischemic stroke and pointed to α-Asarone as the major active ingredient

Identification of potential drug mechanism of action Zhao et al.
(2023a)

Network pharmacology profiling in combination with in vivo experiments revealed the
potential mechanism of action of Shuxuening herbal formula in treating ischemic
stroke

Identification of potential drug mechanism of action Cui et al.
(2020)
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radiological alterations, and clinical indicators. However, each
modeling approach has its own advantage and limitation. Omics-
driven network pharmacology modeling and analysis are capable of
handling vast amounts of biological data in a comprehensive and
multi-level manner, and thus it can facilitate efficient and cost-effective
screening of therapeutic targets compared to traditional biological
experiments. However, this sort of modeling analysis demands high
quality experimental data, which means incomplete or low-quality data
can result in low-accuracy and biased outcomes (Aderem, 2005; Martin
et al., 2011; Somvanshi and Venkatesh, 2014; Meyer and Saez-
Rodriguez, 2021). Mechanism-based systems biology models often
have rich information regarding signaling pathways and cellular
crosstalk; still, establishing association between biological markers
and clinical endpoints is always a challenge for neurological
disorders. Physics-based models can vividly illustrate the physical
changes in cerebral blood flow and the alterations in brain electrical
signal conduction following an ischemic stroke. However, they rarely
account for the related pathophysiological signal transduction or
biological regulatory mechanisms. Therefore, integrating multiple
modeling approaches (mechanism-based, physics-based, omics-
based) in ischemic stroke research can ideally allow for the
combination of their strengths and thereby significantly drive
model-based translational applications in various aspects including
identification of new therapeutic targets, simulation of clinical trials,
design of personalized surgical plans, and prediction of stroke recovery.
Such a multi-scale modeling strategy has already demonstrated
significant potential in various other disease areas (Zhang et al.,
2021; Zhao C. et al., 2022; Zhao C. et al., 2023), so we envision that
its application in ischemic stroke will greatly facilitate basic research and
translational medicine.

Another emerging computation-intensive research direction in
ischemic stroke is machine learning, a branch of artificial
intelligence designed to analyze large datasets automatically and
make data-driven decisions (Jhaveri et al., 2022; Jabeen et al., 2023).
In a recent study by Nishio et al. (2020), deep learning algorithms
were applied to construct a model that can assist physicians in
analyzing clinical CT images from stroke patients. The authors used
existing CT imaging data from ischemic stroke patients to train a
two-stage deep learning model, and the resulting model
demonstrated outstanding assistive capacities in real clinical
scenarios in terms of providing fast and accurate diagnosis
according to automatic analysis of patient CT images. In another
study by Brugnara et al. (2020), a machine learning model was
constructed to predict individualized treatment outcomes for
ischemic stroke patients. The study incorporated clinical
diagnosis and imaging data as well as treatment outcome data
(modified Rankin Scale scores) spanning 3 years for 246 ischemic
stroke patients. According to their treatment outcomes, patients
were categorized into favorable and unfavorable groups, and a

machine learning model based on gradient-boosted classifier was
used for prediction. Their results show that the trained machine
learning model can accurately predict patient outcomes 3 months
post-treatment and identify specific patient characteristics that may
lead to unfavorable treatment results. In summary, we envision that
in future the aforementioned systems-level modeling strategies,
particularly when combined with machine learning, will have
increasingly significant roles throughout the diagnosis and
treatment of ischemic stroke and hold great promise as high-
throughput computational tools in the development of new drug
targets and therapeutics.
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