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Introduction: Fetal heart rate monitoring during labor can aid healthcare
professionals in identifying alterations in the heart rate pattern. However,
discrepancies in guidelines and obstetrician expertise present challenges in
interpreting fetal heart rate, including failure to acknowledge findings or
misinterpretation. Artificial intelligence has the potential to support
obstetricians in diagnosing abnormal fetal heart rates.

Methods: Employ preprocessing techniques to mitigate the effects of missing
signals and artifacts on the model, utilize data augmentation methods to address
data imbalance. Introduce amulti-scale long short-termmemory neural network
trained with a variety of time-scale data for automatically classifying fetal heart
rate. Carried out experimental on both single and multi-scale models.

Results: The results indicate thatmulti-scale LSTMmodels outperform regular LSTM
models in various performance metrics. Specifically, in the single models tested, the
model with a sampling rate of 10 exhibited the highest classification accuracy. The
model achieves an accuracy of 85.73%, a specificity of 85.32%, and a precision of
85.53% on CTU-UHB dataset. Furthermore, the area under the receiver operating
curve of 0.918 suggests that our model demonstrates a high level of credibility.

Discussion: Compared to previous research, our methodology exhibits superior
performance across various evaluation metrics. By incorporating alternative
sampling rates into the model, we observed improvements in all performance
indicators, including ACC (85.73% vs. 83.28%), SP (85.32% vs. 82.47%), PR (85.53%
vs. 82.84%), recall (86.13% vs. 84.09%), F1-score (85.79% vs. 83.42%), and
AUC(0.9180 vs. 0.8667). The limitations of this research include the limited
consideration of pregnant women’s clinical characteristics and disregard the
potential impact of varying gestational weeks.
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1 Introduction

Fetal heart rate (FHR) serves as an indicator of the fetal heart and central nervous
system’s reaction to factors such as blood pressure, blood gases, and acid–base balance. In a
clinical setting, FHR analysis can aid in the identification of fetal distress, placental
abruption, chorioamnionitis, and other medical conditions (Sykes et al., 1983; Newton,
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1993; Usui et al., 2007). FHR monitoring during labor is a valuable
tool for detecting alterations in fetal heart rate patterns indicative of
insufficient fetal oxygenation, enabling timely intervention by
obstetricians to mitigate the risk of hypoxic injury or mortality.
Electronic fetal monitoring (EFM) is currently recognized as a
crucial modality for evaluating intrauterine fetal wellbeing and
oxygenation levels (Sweha et al., 1999), owing to its ease of use
and non-invasive nature. Consequently, EFM has emerged as an
essential adjunctive screening method in obstetrics, with its
utilization expanding in both antenatal and intrapartum settings.

The recording of dynamic changes in fetal heart rate can serve as
an indirect indicator of fetal oxygen supply in utero, facilitating early
detection of acute and chronic intrauterine hypoxia or asphyxia,
thereby enhancing clinical efficiency. The cardiotocography (CTG)
generated by EFM displays both FHR and uterine contractions,
providing insights into their interplay (Alfirevic et al., 2017).
Presently, three widely utilized clinical criteria exist for evaluating
FHR monitoring. The first method of FHR interpretation discussed
in academic literature is the nonstress test (NST) categorization
outlined in the guidelines of the Society of Obstetricians and
Gynecologists of Canada (SOGC), which classifies FHR as
normal, atypical, and abnormal (Liston et al., 2007). The second
approach is the three-tier FHR system jointly developed by the
American College of Obstetricians and Gynecologists (ACOG), the
Society for Maternal-Fetal Medicine (SMFM), and the National
Institute of Children’s Health and Human Development (NICHD),
which divides FHR into categories I, II, and III according to
established criteria (Macones et al., 2008). The third source of
guidance is the consensus guidelines on intrapartum fetal
monitoring by the International Federation of Gynecology and
Obstetrics (FIGO) and the National Institute for Health and
Clinical Excellence (NICE), which categorize fetal monitoring
into three classes: normal, suspicious, and pathological (Ayres-de
Campos et al., 2015). The assessment of CTG basic features for each
classification focuses on baseline, baseline variability, accelerations,
and decelerations. However, despite standardized guidelines,
discrepancies in recommendations and variations in obstetrician
expertise contribute to significant diversity in observer
interpretation of FHR.

In recent years, there has been an increasing integration of artificial
intelligence (AI) technology in the healthcare sector, particularly in
domains necessitating multifaceted inputs for evaluation and prompt
decision-making. One notable application is in the realm of electronic
fetal heart monitoring during labor and delivery. Using AI canminimize
the variability among observers, enabling real-time interpretation of
FHR data to prevent overlooking necessary interventions and enhance
neonatal outcomes. Furthermore, AI provides a more standardized
interpretation of the analysis of FHR monitoring findings.

Numerous researchers have endeavored to categorize FHR
utilizing a blend of feature extraction and machine learning
techniques. Georgoulas et al. (2006) conducted feature extractions
in both time and frequency domains in conjunction with
morphological features and applied a support vector machine
(SVM) to classify the features. Spilka et al. (2012) utilized three
types of features for classification, including 11 FIGO-like features,
14 heart rate variability-based features, and eight nonlinear features.
Following dimensionality reduction, the classification model was
trained using naive Bayes, SVM, and the C4.5 decision tree

algorithm. Dash et al. (2014) incorporated additional features
related to FHR responses to uterine contractions and
subsequently conducted a comparative analysis of three
generative models using SVM methods. Comert et al. (2016)
utilized software to extract 21 features and implemented an
extreme learning machine for data analysis. Spilka et al. (2017)
advocated for sparse SVM classification, which offered the
advantage of selecting a reduced number of features to detect
various FHR patterns. In addition to traditional FHR features,
techniques such as short-time Fourier transform (STFT), gray
Level Co-occurrence matrix (GLCM) (Comert and Kocamaz,
2018), wavelet transform (Comert and Kocamaz, 2017), and
common spatial pattern (CSP) (Alsaggaf et al., 2020) were
employed to enhance classification performance.

All these methods were hindered by the requirement for feature
extraction, which was typically done manually or with computer
assistance. In response to this challenge, researchers introduced deep
learning techniques to facilitate automatic feature extraction and
classification. Convolutional neural networks (CNNs) have shown
exceptional performance in image classification and have been
extensively utilized in the medical field. Given that FHR signals are
one-dimensional, researchers have explored various approaches to
transform FHR signals into two-dimensional images, including
STFT (Comert et al., 2019), continuous wavelet transform (CWT)
(Zhao et al., 2019a), and recurrent plot (RP) (Zhao et al., 2019b). FHR
analysis can be conducted using one-dimensional convolutional neural
networks (1D-CNN) (Ismail Fawaz et al., 2019) as a time series method.
Li et al. (2019) segmented 20-min FHR signals into 1–16 segments and
applied 1D-CNN to analyze each segment, aggregating results through
a voting mechanism. Cao et al. (Cao et al., 2023) employed a
multimodal deep learning architecture (MMDLA) that integrates a
CNN to extract high-level features from preprocessed
cardiotocographic signals and maternal clinical data, thereby
improving model performance. Zhou et al. (2023) proposed the
trend-guided long convolution network (TGLCN), a deep learning
methodology that integrates convolution kernel selection, residual
structures, and attention mechanisms. Baghel et al. Baghel et al.
(2022) utilized a Gaussian Butterworth band pass filter in
conjunction with the CNN for the diagnosis of fetal acidosis.
Furthermore, recurrent neural networks (RNNs), specifically long
short-term memory (LSTM) networks, are crucial in FHR
classification. Gao and Lu (2019) employed bidirectional LSTM
(BiLSTM) for the segmental classification of FHR.

Although previous studies have made significant advances, certain
challenges also persist, including imbalanced datasets affecting model
performance and limited research on features at various time scales. To
address these issues, this article introduces amulti-scale LSTMnetwork.
The article makes three key contributions: 1) Introducing a data
augmentation methodology for time series to enhance datasets and
address data imbalance. 2) Training LSTM models at different time
scales through finetuning. 3) Proposing multi-scale LSTM networks to
enhance model performance.

The subsequent sections of this article are organized as follows:
Section 2 outlines the database utilized, the processing procedures
applied, and the proposed methodology. Section 3 presents the
experimental findings and compares them with previous studies.
Section 4 provides a summary of the research and outlines potential
future directions.
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2 Methods

2.1 Dataset description

The dataset utilized in this study is the CTU-UHB database
(Chuda´cõek et al., 2014), an open-access repository comprising
552 recordings obtained at University Hospital in Brno (UHB)
during the period of 2010–2012. Each recording is composed of two
components: the cardiotocography (CTG) and clinical data. The CTG
data are captured using three distinct methods: ultrasound Doppler
probe, direct scalp measurement, or a hybrid approach. The CTG data
encompass FHR and uterine contractions sampled at a rate of 4 Hz,
resulting in four data points per second for each parameter.

The clinical data include information regarding fetal status and
parameters concerning puerperal and newborn infants. Table 1
displays a portion of the clinical statistics obtained from the CTU-
UHB database. Umbilical artery pH serves as a recognized marker for
fetal acidemia, a condition associated with neonatal complications,
such as multiple organ dysfunction in newborns (Sehdev et al., 1997;
van den Berg et al., 1996). Studies have shown a relationship between
FHR and variations in umbilical artery pH (Singh et al., 2021).
Consequently, we employed the umbilical artery pH values from
the clinical data to classify our dataset into two separate groups in
Figure 1. In accordance with the established criterion that a pH value
exceeding 7.15 signifies a normal condition, a total of 439 samples
were classified as normal, and 113 samples were categorized as
pathological based on their pH value (Comert et al., 2018).

2.2 Data preprocessing

During the data collection process,missing signals and artifactsmay
arise in the original data due to external factors such as limitations in
data acquisition by ultrasound probe andmaternal and fetal movement,
necessitating the preprocessing of data. The process is as follows:

(1) The original data are divided into 1-min segments, each
containing 240 points. Then, the number of zero-value

points f0 are counted, and the data loss rate LR is
calculated according to Eq. 1.

LR � f0

240
× 100%, (1)

if LR ≥ 40%, this data segment will be discarded.

(2) When the FHR value is greater than 220 times per minute
or less than 60 times per minute, it is treated as an
abnormality due to poor contact with the acquisition
device. The linear random interpolation method is used
to replace the abnormal data. The formula of linear
random interpolation is displayed according to Eq. 2.

fin � λfbefore + 1 − λ( )fafter, (2)

where λ is a random factor, and fbefore and fafter are values before
and after the missing point.

Due to too many missing signals in some recordings, the
number of recordings in the dataset decreased to 550, with
439 normal recordings and 111 pathological recordings.

There are only 550 recordings in the dataset, and the ratio of
normal recordings and pathological recordings is 4:1. The limited
number of recordings and the ratio of normal to pathological
readings can easily cause model overfitting. The length of
recordings varies from 60 to 90 min. Under the instruction of
obstetricians, we take 20-min signals to do further analysis. Thus,
the dataset can be augmented by window slicing (Liang and Lu,
2023). The specific process is given as follows:

Step 1: For an FHR time series T � t1, t2, . . . , tn{ }, choose the
length of slicing window s and step length k;

Step 2: Obtain the first slice with a window T1 � t1, . . . , ts{ };
Step 3: Move the window to get T2 � tk+1, . . . , tk+s{ }, ..., Tm �

tmk+1, . . . , tmk+s{ } and stop the process when mk + s> n.
Figure 2 shows the signals before and after preprocessing. In this

article, we chose s � 4800 and k � 600, which implies generating 20-
min samples with the beginnings of two adjacent samples that are
2.5 min apart. An example of a slice operation is shown in Figure 3.

After data augmentation, the number of normal samples
increased to 6382 from 439, and the number of pathological

TABLE 1 Patient and labor outcome statistics for the CTU-UHB
cardiotocography database.

Mean Min Max

Maternal age (years) 29.8 18 46

Parity 0.43 0 7

Gravidity 1.3 1 11

Gestational age (weeks) 40 37 43

pH 7.23 6.85 7.47

Base excess (BE, mmol/L) −6.36 −26.8 −0.2

Base deficit in extracellular fluid (BDecf, mmol/L) 4.60 −3.40

Apgar 1 min 8.26 1 10

Apgar 5 min 9.06 4 10

Neonatal weight(g) 3408 1970 4750

FIGURE 1
Class distribution.
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samples increased to 1615 from 111. Because the two classes were
still imbalanced, we chose 1,615 from 6,382 normal samples
randomly to create a new dataset with all pathological samples.

2.3 LSTM networks

An LSTM is a special kind of RNN designed to solve the problem
of long-term dependency (Hochreiter and Schmidhuber, 1997).

The workflow of the LSTM cell at time t is as follows: the
hidden state of the previous moment and the input of the current
moment enter the forget gate, input gate, and output gate for
calculation and then update the cell state and hidden state. The
input gate can decide what new information can be stored in the
cell state, and the output gate determines what information can
be output based on the cell state. The forget gate can decide what
information will be discarded from the cell state. The calculation
process is according to Eqs 3–8.

ft � σ Wfhht−1 +Wfxxt + bf( ). (3)
it � σ Wihht−1 +Wixxt + bi( ). (4)

c̃t � tanh W
c̃h
ht−1 +Wc̃xxt + b~c( ). (5)

ct � ft · ct−1 + it · c̃t. (6)
ot � σ Wohht−1 +Woxxt + bo( ). (7)

ht � ot · tanh ct( ). (8)

The architecture of LSTM cell is shown in Figure 4.

2.4 Multi-scale LSTM networks and
voting mechanism

In clinical practice, obstetricians primarily utilize nonstress
testing (NST) as the main modality for evaluating prenatal FHR.
The SOGC (Liston et al., 2007) guidelines stipulate that interpreting
NST results requires assessing various parameters, including baseline
FHR, baseline variability, accelerations, and deceleration, each of which
must be evaluated across different time intervals. For instance, the
baseline FHR denotes the mean level of FHR over a 10-min period,
excluding any accelerations, decelerations, or notable variability, and
requires a minimum of 2 min of uninterrupted observation.

In contrast, acceleration and deceleration are typically evaluated
within a time frame of less than 30 s. Consequently, the model must
possess the capability to encompass both enduring characteristics
that signify the general pattern in FHR data and fleeting
characteristics that indicate minor fluctuations in specific areas.
In accordance with this principle, we adopt the strategy of training
numerous models by downsampling the data at varying frequencies.
Downsampling is a prevalent technique in the processing of time
series data. Downsampling facilitates the hybrid model in extracting
data features across various time scales, thereby mitigating
computational expenses and eliminating data redundancy (Liu
et al., 2021).

Subsequently, each dataset undergoes downsampling by
distinct sampling intervals before being inputted into diverse
time-scale LSTM models. These outputs of multi-scale models
are aggregated using weights to yield the ultimate result,
represented by the final result vector y denoting the

FIGURE 2
Data before and after preprocessing.
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probability of data belonging to each category. The computation
process is according to Eqs 9, 10.

y � Σn
i�1ωiyi. (9)

Σn
i�1ωi � 1, (10)

where yi is the output vector of the i-th model and ωi is the
corresponding weight value of i-th model. The architecture of
multi-scale LSTM networks is shown in Figure 5.

2.5 Evaluation index

The confusion matrix is a commonly utilized tool for assessing
the efficacy of models in classification tasks (James et al., 2013). In
the context of the binary classification discussed in this article, a
confusion matrix with dimensions of two rows and two columns
represents the frequency of four distinct prediction outcomes.

The metrics employed in our study include accuracy (ACC),
specificity (SP), precision (PR), recall, F1-score, and area under the
curve (AUC). ACC provides a comprehensive measure of the
accuracy of predictions, while SP emphasizes the proportion of

accurately identified negative samples. The constraints of electronic
fetal monitoring contribute to a notable false positive rate in
obstetric diagnoses. Inaccurate identification of pathological
conditions may result in unwarranted medical interventions (Li
et al., 2019). Therefore, it is imperative to consider precision and
recall metrics, which evaluate the accuracy of positive predictions
and the proportion of successfully detected positive samples. The
F1-score represents the harmonic mean of PR and recall, while the
quality index is calculated as the geometric mean of SP and
sensitivity. The metrics mentioned above are calculated according
to Eqs 11–15.

ACC � TP + TN

TP + FP + TN + FN.
(11)

SP � TN

TN + FP
. (12)

PR � TP

TP + FP
. (13)

Recall � TP

TP + FN
. (14)

F1 − score � 2 · PR · Recall
PR + Recall

. (15)

FIGURE 3
Slice operation. (A) Original data. (B) Slices of original data.
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3 Experiments and results

3.1 Experimental settings

The experiment was carried out utilizing the PyTorch deep
learning framework in Python, along with additional packages such
as Numpy and Scikit-learn. The hardware configuration includes an
Intel(R) Core (TM) i9-10900X CPU @ 3.70 Hz and an NVIDIA
GeForce RTX 2080Ti.

The hybrid model is composed of two LSTM layers, three full
connection layers, and an output layer, with each LSTM layer
containing 512 hidden units. In order to address overfitting, a
dropout rate of 0.2 is applied before the full connection layer.
The output dimension is reduced to 2 through the full

connection layers, with the final activation function being
softmax for classification. The optimizer used is Adam, and the
loss function employed is cross-entropy. To enhance the
convergence of the network, we implemented a learning rate
decay strategy during the training process consisting of
2,000 epochs. The initial learning rate was set at 0.001 and
decreased by a factor of 10 after 500 and 1000 epochs.

The models were trained using a 10-fold cross-validation
approach, where the dataset was partitioned into 10 subsets,
each containing 323 samples. Nine subsets were utilized to train
the model, while the remaining subset was used to test its
performance. Following the training and testing of 10 models
on the test set, the mean and standard deviation of the results
were calculated.

FIGURE 4
The architecture of an LSTM cell.

FIGURE 5
The architecture of multi-scale LSTM networks.
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3.2 Results analysis

Initially, the experiments were conducted to examine the impact
of varying sampling rates on the efficacy of the model. The results
presented in Table 2 indicate that the model exhibits optimal
performance at a sampling rate of 10. Specifically, ACC and F1-
score metrics demonstrate an improvement of approximately 5%

compared to the next highest-performing model, while the SP and
PR metrics show an enhancement of approximately 4.5%. The
model’s performance improves with increasing sampling
intervals, potentially due to its enhanced ability to discern
between normal and pathological data by capturing long-term
features. Furthermore, larger sampling intervals serve to diminish
the impact of noise signals within the data.

TABLE 2 Comparison of the performance of different models.

Model ACC (%) SP (%) PR (%) Recall (%) F1-score (%) AUC

Sampling Rate = 4 74.49 ± 5.15 73.93 ± 4.33 74.15 ± 4.56 75.05 ± 6.54 74.57 ± 5.42 0.7699 ± 0.0552

Sampling Rate = 6 75.05 ± 4.39 73.68 ± 4.95 74.43 ± 4.53 76.41 ± 4.64 75.38 ± 4.34 0.7854 ± 0.0443

Sampling Rate = 8 78.39 ± 5.87 77.95 ± 6.51 78.22 ± 6.04 78.83 ± 6.56 78.47 ± 5.9 0.8193 ± 0.0626

Sampling Rate = 10 83.28 ± 4.37 82.47 ± 5.24 82.84 ± 4.68 84.09 ± 4.69 83.42 ± 4.24 0.8667 ± 0.0479

Multi-scale Model 1 85.73 ± 2.5 85.32 ± 3.68 85.53 ± 3.19 86.13 ± 3.1 85.79 ± 2.43 0.918 ± 0.0278

Multi-scale Model 2 84.92 ± 3.67 84.51 ± 5.06 84.78 ± 4.42 85.33 ± 4.01 85 ± 3.54 0.914 ± 0.0316

Multi-scale Model 3 84.18 ± 3.5 87.86 ± 5.15 87.11 ± 4.67 80.5 ± 5.12 83.56 ± 3.67 0.8992 ± 0.0375

FIGURE 6
ROCs of different models.

Frontiers in Physiology frontiersin.org07

Rao et al. 10.3389/fphys.2024.1398735

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1398735


Three different multi-scale models were constructed by
manipulating the quantity and magnitude of the component
models. Multi-scale Model 1 comprises four sampling rates: 4, 6,
8, 10. Multi-scale Model 2 utilizes models with sampling rates of 4, 8,
and 10, whereas multi-scale Model 3 exclusively integrates models
with sampling rates of 8 and 10. The superior performance of all
multi-scale models over the single models is evident in Table 2,
indicating that the incorporation of multi-scale features aids in
mitigating overfitting to some degree and enhances categorization
accuracy. Multi-scale Model 1 demonstrates superior performance
on ACC, recall, F1-score, and AUC, suggesting that incorporating
diverse time-scale features enhances classification accuracy.
Conversely, Model 3 exhibits higher SP and PR but
comparatively lower performance on other evaluation criteria.
The ROC curve depicted in Figure 6 illustrates the discriminative
capabilities of single models versus multi-scale models, with the
latter showcasing an enhanced ability to distinguish between
two classes.

3.3 Discussion

In this research, we introduce a multi-scale LSTM model
integrated with models that target various time scales.
Experimental analyses were carried out on both single and
multi-scale models. The results demonstrate that multi-scale
LSTM models outperform regular LSTM models in various
performance metrics. Specifically, among the single models
tested, the model with a sampling rate of 10 exhibited the
highest classification accuracy. Incorporating alternative
sampling rates into the model resulted in enhancements across
all performance indicators, including ACC (85.73% vs. 83.28%),
SP (85.32% vs. 82.47%), PR (85.53% vs. 82.84%), recall (86.13%
vs. 84.09%), F1-score (85.79% vs. 83.42%), and AUC
(0.9180 vs. 0.8667).

To illustrate the importance of our model, the outcomes of
both machine learning (Comert et al., 2018; O’Sullivan et al.,
2021; Ben Barek et al., 2023) and deep learning approaches (Liu
et al., 2021; Singh et al., 2021) utilizing the identical dataset are
presented in Table 3. Our model exhibits superior performance
in terms of ACC, SP, PR, recall, and AUC compared to the
aforementioned machine learning methods (Liu et al., 2021;
Singh et al., 2021). Furthermore, when compared to a specific
model (Liu et al., 2021), our model demonstrates notably higher
levels of ACC, SP, and recall. It is worth noting that the model

discussed (Singh et al., 2021) achieves an ACC of 69.6%,
potentially attributed to the limitations of CNNs in capturing
temporal features effectively. This observation suggests that our
model possesses enhanced classification capabilities.

In conclusion, the proposed model demonstrates enhanced
performance in the classification of FHR. This model offers
several advantages, including directly classifying FHR signals
without the need for complex feature extraction processes and
ensuring immediate discrimination. Additionally, incorporating
various time-scale signals enables the model to effectively learn
both long-term and short-term features, thereby optimizing overall
performance.

4 Conclusion

In this study, a multi-scale LSTM model was developed for the
automatic classification of FHR. The publicly available CTU-UHB
database was utilized for this purpose. Following data preprocessing
and enhancement, FHR signals were employed as input for the
models. The proposed model demonstrated the ability to identify
pathological FHR patterns. Experimental results indicate that our
model outperforms common LSTM models and previous research
efforts in terms of various metrics. Specifically, the model achieved
an accuracy, specificity, and precision of 89.78%, 91.36%, and
91.03%, respectively. Our work presents significant contributions
in utilizing the LSTM model for extracting hidden features from
FHR signals, eliminating the need for manual feature extraction.
Additionally, incorporating various time-scale features enhances the
performance of the models. Ultimately, our model facilitates
intelligent recognition of FHR, aiding obstetricians in identifying
abnormal FHR patterns and supporting timely treatment
interventions.

Nevertheless, it is important to acknowledge the limitations
of our research. First, the clinical characteristics of pregnant
women, including maternal age and weight, can significantly
influence the classification results and should be taken into
consideration. Second, the data in the CTU-UHB dataset were
gathered 90 min prior to delivery, potentially overlooking the
impact of varying gestational weeks on fetal heart rate patterns,
particularly around 32 weeks. Moving forward, we plan to
establish partnerships with medical facilities to expand our
dataset by incorporating additional fetal heart rate, uterine
contraction, and clinical information. Further analysis of
additional features should be conducted during the model

TABLE 3 Comparison of the proposed model with previous work.

References Method ACC (%) SP (%) PR (%) Recall (%) F1-score (%) AUC

Comert et al. (2018) EMD + DWT + SVM 67.00 67.26 \ 57.42 \ \

O’Sullivan et al. (2021) ARMA + SVM 83.3 77.7 \ 82.6 \ 0.809

Liu et al. (2021) CNN-BiLSTM + Attention, DWT 71.71 ± 8.61 70.81 ± 12.20 \ 75.23 ± 9.58 \ \

Singh et al. (2021) HoloViz + CNN 69.6 \ 63 70 66 \

Ben Barek et al. (2023) LR \ \ \ \ \ 0.74

Ours Multi-scale LSTM 85.73 ± 2.5 85.32 ± 3.68 85.53 ± 3.19 86.13 ± 3.1 85.79 ± 2.43 0.918 ± 0.0278
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construction process, and adjustments to the model structure
should be made in order to enhance classification accuracy.
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