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The health of astronauts during and after the return from long-haul space
missions is paramount. There is plethora of research in the literature about
the medical side of astronauts’ health, however, the dental and oral health of
the space crew seem to be overlooked with limited information in the literature
about the effects of the space environment and microgravity on the oral and
dental tissues. In this article, we shed some light on the latest available research
related to space dentistry and provide some hypotheses that could guide the
directions of future research and helpmaintain the oral health of space crews. We
also promote for the importance of regenerative medicine and dentistry as well
highlight the opportunities available in the expanding field of bioprinting/
biomanufacturing through utilizing the effects of microgravity on stem cells
culture techniques. Finally, we provide recommendations for adopting a
multidisciplinary approach for oral healthcare during long-haul space flights.
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Introduction

Space flights have a significant effect on different tissues of the body (Iwase et al., 2020)
and the oral cavity (Mednieks and Hand, 2019) including the nervous system (Onorato
et al., 2020), musculoskeletal system (Juhl IV et al., 2021); bone (Stavnichuk et al., 2020),
teeth (Moussa et al., 2023), saliva (Sun et al., 2022) and skin (Caswell and Eshelby, 2022).
The majority of the changes are related to the changes in microgravity, increased exposure
to radiation in particular the galactic cosmic rays (GCR), using dry washing technique,
variations in air quality and changes in microbe replication and growth parameters which
could be related to immunosuppression (Onorato et al., 2020; Stavnichuk et al., 2020; Juhl
IV et al., 2021; Caswell and Eshelby, 2022; Sun et al., 2022). Furthermore, the interaction
between microgravity and the exposure to ionizing radiation could have a substantial effect
on physiological events and cellular responses (Yatagai et al., 2019).

Dental emergencies have a substantial impact on spacemissions to the extent that it has been
classified as one of the top five essential conditions that need to be predicted before launching a
space mission (Menon et al., 2012). As a result, The Space Medicine Exploration Medical
Condition List included a number of dental conditions not limited to toothache, pulpitis,
avulsion, tooth loss, crown replacement, and temporary fillings (Watkins et al., 2011; Johnston
et al., 2014; Blue et al., 2019). More recent, a newmedical conditions list was developed for space
exploration flights based on reviewing information from nine previous lists in a systematic way
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by subject matter experts based on their history of occurrence in
previous flights and citation in previous lists (Kreykes et al., 2023).
It would not be a surprise to mention that dental conditions were a
priority on the list. The above work related to medical conditions list
relevant to space flights would help in reduction of the number of dental
events. However, it should be taken into consideration that other
physiological changes in the body due to the influence of
microgravity (bone loss as an example), could indirectly result in
dental disease and/or a relevant dental event during space flights as
a result of upsetting the balance within other oral anatomical structures,
saliva or oral microbiome (Lloro et al., 2020).

The effect of space flights on
dental caries

Factors affecting dental caries progression
in space

There are several factors that contribute to the development of
relevant dental events in space. These factors include, increase in
salivary immunogolbulins (Brown et al., 1974; Brown et al., 1976)
and increase of salivary Mycoplasms (Brown et al., 1974). In longer
space flights, anaerobic bacteria populations increased even in studies
with simulated microgravity (Brown et al., 1976). Changes in the oral
microbiome could be related to the lack of a balanced diet during space
exploration missions (Tang et al., 2021) as well as the stress that
astronauts have to endure. This highlights the importance of
establishing sustainable food production systems (Tang et al., 2021;
Pandith et al., 2023) and the mental wellbeing with regards to
psychological support to astronauts (Arone et al., 2021; Oluwafemi
et al., 2021). Furthermore, there is growing evidence that cosmic
radiation during space travel alters gut microbiota including the
Lactobacillus and Bacteroides families (Li et al., 2022). We
hypothesize that the oral microbiome is also affected by cosmic
radiation which could lead to accelerating the progression of dental
caries and other forms of oral diseases through a number of
mechanisms including the alteration of the immune response and
mutation accumulation. The changes in the oral microbiome should
not be taken lightly as it would lead to a state of chronic inflammation
that could be a risk factor for increasing the chances of the incidence of
other chronic conditions such as asthma, arthritis and ischemic heart
disease (Lloro et al., 2020). Furthermore, the state of chronic
inflammation in the oral cavity, increases the permeability of
mucous membranes that could act as potential entry routes for
microbes through the oral cavity, eyes, nose and respiratory tracts
(Szot et al., 2017; Gomes et al., 2018).

Possible mechanisms of dental caries
development and progression during
space flights

There have been cases of dental pain related to caries
progression during space flights reported with no success of
identifying the origin of the problem (Gontcharov et al., 2005;
Menon, 2012). It is understandable that progression of the caries
would be related to the increase in anaerobic bacteria as described

above and the elevated Streptococcus mutants count (Orsini et al.,
2017) as well as the variations/evolution of S. mutants species that
alters their survival and pathogenic properties (Fernander et al.,
2022; Fernander et al., 2023). However, the origin of the carious
lesion could have been an area of pre-existing demineralization or
arrested caries. This raises the point of carefully selecting astronauts
during the recruitment process and ensuring that all pre-existing
lesions are treated as well as preventative measures applied to avoid
caries progression. It could be argued that the increase in IgA and
IgG discussed above could have contributed to increasing the
adhesion of cariogenic substances and microbes to the salivary
biofilm on the teeth surfaces (Costalonga and Herzberg, 2014). In
addition to the above, studies have shown increased levels of
glucosyltransferase enzymes during microgravity adding strength
to the virulence of S. mutants through facilitating the synthesis of
glucans from sucrose and mediating the attachment of micro-
organisms to tooth surfaces (Omar et al., 2012).

Effects of microgravity on dental caries
progression

Further investigating the hypothesis of increased virulence, gene
expression and antibiotic resistance of pathogens in simulated
microgravity (Taylor, 2015; Senatore et al., 2020) is not only
important for astronauts but also is significant for understanding
and exposing potential alternative mechanisms of disease
progression that could be applied to clinical practice on earth
(Salavatifar et al., 2023). In simulated microgravity, increased pain
scores around the lower jaw especially around the submandibular and
sublingual areas during mandibular movements could be related to the
lack of resistance from gravity and the potential loss of muscle tone/
strength during long term space flights which could eventually lead to
changes in occlusion and/or teeth clashing in occlusal positions that are
less ideal secondary to the muscular changes. Furthermore, the sleep
disturbances and unregulated sleep patterns of astronauts could also
contribute to the oral and dental issues described above as sleep
deprivation is linked to higher levels of blood cortisol and elevated
levels of stress which would result in physiological changes to the
symbiosis of the oral cavity (Pavy Le-Traon and Roussel, 1993; Wu
et al., 2018).

The effect of space flights on dental
hard tissues

Effect of microgavity on craniofacial
structures

Understanding the effects of microgravity on craniofacial
structures is crucial to predict the risks during long-haul space
flights in order to develop comprehensive plans for prevention and
management of dental emergencies (Moussa et al., 2023). However,
it has been noted that there is not a sufficient number of studies that
discuss the effects of the space environment on many areas of the
craniofacial complex such as the maxilla, temporomandibular joint,
molar, premolar, and canine teeth, as well as small sample sizes for
the studies of the mandible and incisors (Moussa et al., 2023). There
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are indications that space flights might induce changes in the teeth/
dentition, for example, it was shown that the pulpal size increased in
space flight animals which indicates deficiency in dentin formation
and/or quality (Maupin et al., 2019). Furthermore, there were
contradictory results related to incisor calcium (Ca) and
phosphorus (P) content between studies conducted during the
Cosmos-1887 mission (Simmons et al., 1990) and the Cosmos-
1129 mission (Rosenberg et al., 1984). In the first study, the Ca and P
content remained relatively unchanged (Simmons et al., 1990), while
in the second study, the overall Ca and P content in the entire dentin
was greater in space flights compared to ground crew samples but in
the inner half of dentin (formed during the space flight) was
relatively deficient (Rosenberg et al., 1984). It should be noted
that according to our knowledge, no studies were conducted so
far on the effect of cosmic radiation on dental hard tissue. We
hypothesize that the exposure to higher radiation doses during long-
haul space flights will negatively impact dental hard tissues based on
the previous knowledge related to the development of radiation
caries after the exposure to high doses of radiation during
radiotherapy for cancer treatment which could change the
mechanical properties, ultrastructure, appearance, crystal
properties, and the chemical composition of dental hard tissue
(Lu et al., 2019).

Directions for future research on the effect
of space flights on teeth

With the limited data available on the effect of space flights on
teeth and dental hard tissues, the results remain unconclusive. This
is due to the absence of consistency between different studies where
different factors were not standardized nor considered such as the
duration of the space flight, diet, age and sex of the samples in each
study (Moussa et al., 2023). Furthermore, most of the studies
conducted on the effect of space flights on teeth/dental hard
tissues used rodents which are completely different from humans
that their incisors continuously erupt, the tooth enamel and dentin
are constantly deposited by ameloblasts and odontoblasts (Goldberg
et al., 2014). This makes the translation of results into human
subjects inaccurate and unreliable. However, rodents’ molar teeth
show limited continuous eruption and renewal of their dental tissues
which can be a more accurate comparison to human teeth in
response to environmental factors and space conditions including
microgravity (Goldberg et al., 2014; Moussa et al., 2023). More
studies are necessary to develop valid conclusions with regards to the
effects of long-haul space flights on dental hard tissue and teeth in
order to fill the current gaps in the literature and knowledge.

The effect of space flights on the
alveolar bone

Effect of microgravity on bone loss

Cosmonauts experience three stages of physiologic adaptation
resulting from altering gravity during space flights: 1) alterations
upon entering weightless (initial adaptation), 2) modifications
during extended time in weightlessness, and 3) re-adaptation to

Earth’s gravity (Iwase et al., 2020). The immuno-haematological,
bone metabolic, musculoskeletal, cardiovascular and
neurovestibular systems of the body are each affected by
weightlessness; alterations to these systems occur during these
adaptation periods (Frippiat et al., 2016; Iwase et al., 2020; Tesei
et al., 2022).

Loss of bone due to exposure to microgravity is a serious
problem for the wellbeing of crew members on exploration
flights (Oganov et al., 1991; Leblanc et al., 2000; Vico et al., 2000;
Smith and Heer, 2002; Smith et al., 2005). Exposure to weightless
causes bones’ fragility, which can affect them even after their return
(Planel, 2004; Iwase et al., 2020). Although the exact process of loss
of bone mineral during space missions is unknown, obviously it is
multi-factorial (Zwart et al., 2018). Microgravity has significant
negative consequences such as muscular atrophy and, more
crucially, loss of bone. Throughout a mission to space,
individuals lose a mean of between 0.5 and 2 percent of bone
mass each month, or six to twenty-four percent annually
(Hodkinson et al., 2017; Lloro et al., 2020; Stavnichuk et al.,
2020; Moroni et al., 2022). Plenty of research indicate that
weightless can induce osteoclastogenesis while increasing
resorption of bones, either during long-haul space flights or in a
simulated microgravity setting (Lloro et al., 2020).

Pharmacological approaches for a
favourable bone response during
space flights

As the density of bones is adequate before the commencement of
flight, the best approach to pharmacotherapy preventing loss of bone is
to avoid loss of bone rather than accelerating its production once stress is
reduced throughout flight. Multiple medications have been suggested to
assist with avoiding loss of bone in weightless (Iwase et al., 2020).
Bisphosphonates possess two phosphonate groups as well as are
structurally identical to pyrophosphate. They attach to hydroxyapatite
in the bone matrix, preventing loss of bone by blocking osteoclastic
resorption of bone. In addition, thesemedications have been shown to be
beneficial for inhibiting the loss of bones throughout bedrest trials
(Thompson et al., 1990; Grigoriev et al., 1992; Rodan and Fleisch,
1996; Iwase et al., 2020). Despite the inherent risk of bisphosphonate
related osteonecrosis of the jaw (BRONJ) that is associated with
bisphosphonate treatment, the risk is minimal during space travel
due to the strict requirements and screening that astronauts go
through before being accepted in the space crew. This minimizes the
chances of needing invasive procedures that involve manipulation of the
jawbone during space missions.

Amongst numerous forms of bisphosphonates, pamidronate has
been proved to slow bones’ minerals loss and avoid the production of
renal stones throughout bed rest trials (Watanabe et al., 2004; Iwase et al.,
2020). In summary, the majority of the bone degradation seen in the
astronauts who took part in this investigation may have non-reversible
characteristics. Even though bisphosphonates, medications that prevent
resorption of bone and are employed in conjunction with physical
activity, have been demonstrated to be effective in maintaining DXA-
BMD at the spine and hip levels, the reported variability in bone
response pattern could result in unexpected treatment outcomes
(LeBlanc et al., 2013). Although bisphosphonates and nutrition were
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regarded as therapeutic options to reduce loss of bone, exercising proved
as the most effective (LeBlanc et al., 2002; LeBlanc et al., 2013;
Hodkinson et al., 2017). As such, resistance exercise, particularly, is
considered to promote osteogenesis (Guadalupe-Grau et al., 2009;
Hodkinson et al., 2017).

Effects of microgravity and space travel on
the mandible

Previous research investigated the implications of space travel
and simulated microgravity on the mandible. In rats flown aboard
Cosmos 1129 for 18.5 days, periosteal osteogenesis decreased in
non-muscle-covered parts of the mandibular bone (molar area)
(Simmons et al., 1990). The mesial portion of the first molar had less
alveolar bone formation, suggesting a delay of mouse molars’ usual
distal drift. There was also a reduction in alveolar bone mineral and
collagen in the most matured parts, but elevated levels in the most
undeveloped parts, indicating a delay in maturity (Simmons et al.,
1990). The lower jaws of rats that travelled for a 12-day period
aboard Cosmos 1887 exhibited comparatively elevated calcium and
magnesium levels, even though their hydroxyapatite crystals were
smaller (Simmons et al., 1990; Mednieks and Hand, 2019). Changes
in bone architecture and blood vessels are less pronounced in the
lower jaw than in the vertebra and the lower extremities’ long bone.
In the Bion-M1 flying and habitat control mice, the reduction in
blood vessels observed was probably attributable their consumption
of soft paste food. Flight mice have a greater percentage of sclerostin-
positive osteoclasts and osteocytes in their lower jaws, indicating
that weightlessness might have a role (Mednieks and Hand, 2019).

Other animal and human investigations that extended multiple
weeks indicated that reducing mastication and hence occlusal pressures
influenced all tissues, such as bones and musculature (Philippou et al.,
2015; Treffel et al., 2016). A different possible worry is osteonecrosis of
the maxilla andmandible, but the likelihood is limited (Woo et al., 2005;
Gill et al., 2009; Iwase et al., 2020). It should be noted that the issue of
possible osteonecrosis is not related to space flights or microgravity but
rather as a result of the side effects of the use of bisphosphonates. These
osteolytic or osteonecrotic occurrences consistently coincide with tooth
infection, iatrogenic trauma (tooth extraction/denture damage), or
physiological strain (mastication) (Ruggiero et al., 2004; Ruggiero and
Woo, 2008; Iwase et al., 2020). It is difficult to hypothesize based on the
available animal studies (Ghosh et al., 2016; Moussa et al., 2023) that the
alveolar is bone would be significantly impacted at a similar capacity in
long-haul space flights as other bones in the body. Therefore, further
research is deemed necessary to confirm the extent of the well-
established negative effects of microgravity on skeletal bones and its
correlation with the maxillary and mandibular alveolar bone.

The effect of space flights on the
oral mucosa

Effect of salivary changes on the oral
mucosa during space flights

Oral mucosa is the protective intra-oral layer that acts as barrier
against oral infection as well as contributing to wound healing. It is

always laminated by a thin film of saliva that keeps it wet. It has been
demonstrated in literature that the salivary composition changes
under simulated microgravity conditions (Sun et al., 2022).
Furthermore, changes in the size of salivary glands, reduction in
masticatory activity and changes in the expression of salivary
proteins are also evident (Mednieks and Hand, 2019). To be
more specific, it has been noted that simulated microgravity
results in the shift in the salivary microbiome from oral health
related bacteria to oral disease related bacteria with a trend towards
reduction of the salivary PH which still remained alkaline (Sun et al.,
2022). Another study revealed that salivary microbiome changes
during space flights are correlated with viral reactivation of certain
conditions that affect the oral mucosa (Urbaniak et al., 2020).

Oral mucosal conditions during space travel
and their effect on the overall health

Multiple oral mucosa related issues have been associated with
long-haul space flights and prolonged exposure to microgravity
including sarcopenia (Runfeldt et al., 2019), peripheral nerves
alterations, neuromotor plaque in the muscles of mastication,
labial, lingual and buccal weakness, nociplastic pain in oral
mucosal diseases, soft tissue changes and pathologies related to
chewing, corticomotor neuroplasticity of tongue, and swallowing
biomechanics (Dugan et al., 2023). Various modern techniques
including transcranial electrical and magnetic stimulation (tES
and TMS) which are non-invasive brain simulation techniques
that are used in pain control and could be helpful in space flights
(Ekhtiari et al., 2019). Furthermore, it has been proven that the space
flights conditions had an impact on the overall microbiome of
astronauts and the host-microbe interactions (Tesei et al., 2022).
Probiotics have been suggested as promising countermeasures for
health issues during long-haul space flights and we propose that this
could be applied for oral diseases and infections (Bharindwal et al.,
2023). Further studies are deemed necessary to validate
this proposal.

Preventative measures against soft tissue
infections during space flights

Due to the potential of an immune system drop (Sonnenfeld,
2005; Crucian et al., 2008) and delayed wound healing (Davidson
et al., 1998) during long-haul space flights, every effort should be
made to minimize the chances of infection in human space travel.
Exercise (Shearer et al., 2009), vitamin D supplements (Martineau
et al., 2011), maintaining a healthy microbiological status (Ilyin,
2005), waterless hand hygiene products, personal protective
equipment, chlorhexidine mouth rinses, gamma irradiation of
selected foods and ultraviolet light for disinfecting surfaces
(Mermel, 2013) are highly important due to the increased
chances of opportunistic infections in space. An interesting
finding from a recent study showed that Bacillus horneckiae, that
was first identified within the Kennedy Space Centre was present in
the impression disinfection solution in a university clinic (Chukwu
et al., 2024). This bacterial species was not killed with the industry
standard impression disinfectant solution and its pathogenicity is
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still unknown (Chukwu et al., 2024). This highlights the high
variability in bacterial species during long-haul space flights and
the need for strict infection control/prevention measures during
space flights.

The effect of space flights on
periodontal disease

Microgravity as a risk factor for
periodontal disease

The revelation that periodontal issues are the next most
prevalent dental disease in prolonged solitary settings implies
that such long duration has an impact on oral hygiene, however,
it is reported that the increased risk for periodontal disease in long-
haul space flights is mainly related to less than optimal oral care,
environmental factors as the dry and cold air in spaceships as well as
the lack of pre-mission visits to the dentist for regular check-ups and
regular professional dental care (Kupper et al., 2014). That scenario
might be readily resolved by teaching the aboard medical staff on
dental hygiene using an ultrasonic scaler and demanding everyone
onboard to get regular professional hygiene (Lloro et al., 2019). In
addition, low salivary flow and dry mouth increase the risk of caries
and periodontal disorders; dry mouth can be caused by inhaling dry
compressed gases in an aeroplane (Fontana and Zero, 2006;
Pathak, 2015).

Microgravity and low-shear stress can cause an imbalance in
microbial communities and alter bacterial physiological processes
(Nickerson et al., 2000; Nickerson et al., 2004; Wilson et al., 2007;
Castro-Wallace et al., 2017; Fernander et al., 2022). Oral occurrences
reported from lengthy as well as weightless operations included a rise in
streptococcal and anaerobic components (Streptococcus mutans) in
saliva and dental plaque microorganisms in addition to a growth in
IgA in saliva as well as demonstrating an elevated prevalence over brief
durations (Lloro et al., 2020). The gastrointestinal tract is the most
complex community followed by the human mouth which has over
1000 distinct species (Dewhirst et al., 2010; HumanMicrobiome Project
Consortium, 2012; Fernander et al., 2022). Studies have demonstrated
that microorganisms can create biofilms, produce extracellular
polysaccharides, grow faster, change their pathogenic stress response
and virulence, acquire new resistance, and produce more secondary
metabolites when exposed to simulated microgravity (Fang et al., 1997;
Nickerson et al., 2000; McLean et al., 2001; Brown et al., 2002; Lynch
et al., 2004; Allen et al., 2008; Crabbé et al., 2008; Mauclaire and Egli,
2010; Castro et al., 2011; Gilbert et al., 2020; Fernander et al., 2022).

Biofilm considerations for periodontal
disease during long-haul space flights

Despite environmental stresses such as eating habits, pH,
temperature, and flow of saliva, bacterial communities may
maintain the density of cells of up to 100 CFU mL (Evaldson
et al., 1982; Kolenbrander et al., 2006; Palmer et al., 2006; Kreth
et al., 2008; Fernander et al., 2022). Oral microorganisms contribute
to both systemic and oral health because bacteria live on all of the
oral cavity’s surfaces (teeth, tongue, gums, etc.), blocking pathogen

colonization. (Shroff et al., 1995; Hooper et al., 2012; Fernander
et al., 2022). Nevertheless, tooth caries is still amid the most
common disorders among people (Takahashi and Nyvad, 2011;
Fernander et al., 2022). The phenotypes of the bacteria causing
periodontal disease on earth are extensively known, and treatment
options are more predictable, but this may not be the case during
long-term space flight (Marsh, 1999; Schachtele et al., 2007; Gross
et al., 2010; Fernander et al., 2022). A simulated study of a Skylab
mission found that secretory immunoglobulin A levels steadily rose
in chamber confinement, peaking at the 55th day of monitoring.
Though the alterations in enteric bacilli and mycoplasma were
statistically noteworthy, there was not a spike in Streptococcus
mutans in saliva. Nevertheless, a study showed a rise in
Streptococcus mutans in plaque on teeth, which was linked to a
diet high in sugar (Brown et al., 1974; Lloro et al., 2020).

Bacteroides species, Veillonella species, Fusobacterium species,
Neisseria species, and Streptococcus mutans appear in larger
quantities in periodontitis when compared to the healthy status of
the oral cavity (Costalonga and Herzberg, 2014). These bacterial species
were present and proliferated in the oral microbiome of the astronauts
over three Skylab missions (Lloro et al., 2020). Veillonella species in
plaque might account for as much as 45 percent throughout the early
phases of periodontal or gingival inflammation. In addition to other risk
factors, Fusobacterium species is a direct bacterial pathogen that
contributes to the development of several periodontal disorders
(Ardila et al., 2010; Lloro et al., 2020). L. salivarius, P. denticolens, S.
mutans and S. wiggsiae were nearly entirely detected in plaques derived
from dentinal caries. However, in infants, S. sanguinis and some species
of Neisseria and Leptotrichia were regularly discovered in healthy
tooth’s plaque (Richards et al., 2017). Similar bacterial strains were
evident under the effect of microgravity, but the question remains on
whether the changes in the oral microbiome is solely related to the effect
of microgravity or other factors as radiation, isolation, stress which also
affect oral and systemic health in space (Lloro et al., 2020). The
significance of the development of periodontitis after bacterial
proliferation is clear given that, in an individual suffering from a
mild periodontal inflammation, the portion of the periodontal bag
directly contacting the bacterial plaque is around 72 cm2, which is
roughly the human palm’s size (Page, 1998; Lloro et al., 2020). Table 1
summarizes the bacterial species found during space missions and their
role in development of dental diseases on earth.

Mechanism of development and
progression of periodontal disease in
space travellers

A comprehensive evaluation of the influence of periodontal
condition on cortisol levels in saliva demonstrated its rise
proportional with the advancement and extent of periodontitis
(Botelho et al., 2018; Lloro et al., 2020). Cortisol is an oxidative
damage mediator; hence it could be contributory to these variations
as oxidative stress appears to play a significant role in advanced
periodontal inflammation (Aschbacher et al., 2013; Acquier et al.,
2017; Lloro et al., 2020). Based on these findings, a study determined
that adding cortisol to the culture media at 12 and 24 hours drastically
boosted the development rate of Porphyromonas gingivalis dose-
independently. This study indicates that cortisol could have a
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particular influence on the development of Porphyromonas gingivalis
(Akcali et al., 2014; Lloro et al., 2020). This aligns with recent literature
indicating that elevated cortisol levels have a significant effect on the
immune system’s response in particular T-cells (Miranda et al., 2023)
and antimicrobial salivary proteins (Agha et al., 2020). However, it
should be noted that other studies indicated that different space flight
stressors (rather than cortisol alone) may interact and produce adverse
health effects amongst space travellers (Radstake et al., 2022). This area of
research needs further exploration as cortisol levels fluctuate during
space flights as a result of altered sleep patterns (Gemignani et al., 2014).
We propose that further space environment simulation studies are
necessary to understand the full effect of different stressors (including
cortisol) on the overall physical and mental health of astronauts. We
recommend that collecting salivary samples to measure cortisol levels
would be a convenient tool for sample collection.

Considering how alterations in cosmonaut physiological processes
impact periodontal state, it is critical to emphasize its biologic link with
systemic illnesses such as obstetric difficulties, cardiovascular disease,
diabetes, chronic respiratory diseases, and cancer (Akcali et al., 2014; Bui
et al., 2019; Lloro et al., 2020). The research extensively reports a link
amongst periodontitis, aging, and chronic non-communicable illnesses
(Bui et al., 2019). A consistent theme that arose was the effects on low-

grade systemic inflammation caused by periodontal bacteraemia/
endotoxemia caused by daily activities such as eating and teeth
brushing via acute-phase (C-reactive protein, CRP) and neutrophil
oxidative stress responses (Sanz et al., 2018; Lloro et al., 2020).

Preventive measures and prior investigations significantly reduce
dental incidents. This underscores the need for specialized dental staff
and supplies during unique situations, particularly in upcoming long-
term space trips (Lloro et al., 2019). To minimize the chance of
contracting infections in space, both the team and the spacecraft are
subjected to extensive microbial screening before the mission. However,
this precautionarymeasure might not avoid new evolving characteristics
from emerging within the member’s microflora because of being
subjected to the new conditions found during long-haul space flights
(Barratt and Pool, 2008; Fernander et al., 2022).

There are limited studies that discuss the effect of space flights on
periodontal disease. However, several studies have shown that motility
and chemotaxis of some bacterial strains increased under microgravity
conditions (Acres et al., 2021). Furthermore, it was reported that other
environmental and genetic host-related factors increased the chances of
biofilm formation (Rossi et al., 2018), affected oxygen availability
(Marteyn et al., 2011), increased adhesion and invasion of epithelial
cells (Lee and Falkow, 1990). The above changes were attributed to the
downtrend of the regulation of expression of hfq which is an important
post-transcriptional factor that facilitates the pairing of small RNAs with
their target mRNAs with an important role in bacteria (Valentin-Hansen
et al., 2004;Gottesman and Storz, 2011;Vogel and Luisi, 2011).Decreased
hfq expression was evident in simulated microgravity studies and
consistent with stress response studies (Gangaiah et al., 2014; Kim
et al., 2015; Wang et al., 2018). We cannot exclude the possibility of
ionizing/cosmic radiation affecting the microbiome via mutation
accumulation. One of the under-rated biological hazards of ionizing
radiation during space travel is microbiome-mediated pathophysiology
(Casero et al., 2017), whichwarrants further investigations to establish the
chronic effects of radiation on the oral health. Most of the available
literature is related to gutmicrobiota rather than the oralmicrobiome and
is mainly based on animal models (Fernandes et al., 2023).

In addition to the bacterial-related factors, we believe that the
changes in bone and salivary microbiome discussed above as well as
the potential drop in immunity as result of prolonged exposure to space
radiation and microgravity (Cao, 2022) could contribute to the
development of periodontal disease during long-haul space flights. It
has been reported that simulated microgravity increased the salivary
levels of Actinomyces species which has a high affinity to sticking on the
tooth and root surfaces as well as high association with periodontal
disease and apical periodontitis (Do et al., 2017; Sun et al., 2022).
Furthermore, it has been shown that the salivary microbiome
changes during space flights with Streptococcus mutants being the
most abundant species contributing to 8% of the total micro-
organisms detected (Urbaniak et al., 2020). This supports our
hypothesis that the incidence of periodontal disease would tend to
increase during long-haul space flights. Furthermore, the reason behind
the scarcity of studies around periodontal health in space could be related
to the fact that all astronauts undergo a rigorous dental check-up before
embarking on space flights to ensure that their dental and periodontal
tissues are in a meticulous condition to avoid the need for emergency
treatment during long-haul space flights. As a result, all astronauts are
selected with no existing ongoing chronic dental and/or periodontal
conditions.

TABLE 1 A summary of the bacterial phenotypes isolated from different
space missions and their origin as well as role in dental and/or periodontal
disease on earth.

Bacterial
species

Effect on the teeth and periodontium

P. denticolens Common in dental caries

Fusobacterium species Contributes to the development of several periodontal
disorders

Leptotrichia species Found in plaque around healthy teeth in infants

S. mutans Common in dental caries

Neisseria species Found in plaque around healthy teeth in infants

L. salivarius Common in dental caries

S. sanguinis Found in plaque around healthy teeth in infants

Veillonella species Contributes to early phases of gingival and periodontal
inflammation

S. wiggsiae Common in dental caries

TABLE 2 Presenting a summary of the possible dental emergencies that
require medical attention during as well as before and after space flights.

In-flight dental
emergencies

Near flight (pre- and post-flight)
dental emergencies

Crown displacement Pulpitis

Lost fillings Displaced crown

Dental pain Tooth fracture

Dental caries Periapical abscess

Barodontalgia Deteriorating amalgam restoration

Avulsion/tooth loss Loose tooth requiring stabilisation
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Regenerative medicine and dentistry
and space flights

Challenges and advancements in
bioengineering research in space

The lengthy space flights could result in progressive tissue
degradation and an increased susceptibility to injury. Therefore, the
field of regenerative dentistry, medicine, surgical repair and advancement
of wound healing is highly important (Iordachescu et al., 2023). Due to
isolation, distance, and the absence of a possible emergency evacuation
plan in space, the design of facilities, infrastructure and the specialized
equipment required remain a challenging task to the rapidly developing
field of regenerative bioengineering (Iordachescu et al., 2023). In addition
to the above, the exposure to extensive cosmic radiation complicates the
requirements for development of research facilities in during space
missions (Röstel et al., 2020).

Despite the obstacles mentioned in the previous paragraph,
developments are ongoing in the fields of research of stem cells
(Blaber et al., 2014), spheroids - a form of spherical agglomerates of
cells (Pietsch et al., 2017), organs-onchips (Low and Giulianotti, 2019)
and the implementation of biomanufacturing/bioprinting (Cubo-Mateo
et al., 2020; Sharma et al., 2022). Examples of the progress in the field of
stem cell research on earth are some FDA-approved therapeutic
products including cultured epidermal autografts (Epicell®) that
allows treating deep dermal burns (Brockmann et al., 2018), or the
autologous cultured chondrocytes on porcine collagen membranes
(MACI®) for fixing cartilage defects (Bliley et al., 2022). There are
limitless applications for biofabrication techniques in space so that
space flights become self-sufficient (Moroni et al., 2022).

Tissue engineering and space travel

While microgravity could be viewed as a hurdle for tissue
engineering, however, it is a valuable tool that can be utilized in cell
culture techniques especially the stem cell culture environment for cell-
based therapy (Imura et al., 2019). Furthermore, bone marrow stromal
(BMSCs) and bone-derived mesenchymal stem cells that were cultured
under simulatedmicrogravity environments had great success in treating
different spinal cord and brain injuries through its neuroprotective
properties (Yuge et al., 2011; Mitsuhara et al., 2013; Otsuka et al.,
2018). In addition to the above, differentiation and growth of dental pulp
stem cells was enhanced in animal model that used simulated
microgravity (Li et al., 2017) and the 3D growth and architecture of
ameloblast-like cells as well as periodontal ligament cells engineering
were improved under the microgravity conditions (Pandya et al., 2021).
This could open the horizon for rapid developments in the field of
regenerative dentistry and tooth vitality. Finally, in order to fully
understand best possible ways to overcome the effect of microgravity
and galactic cosmic rays (GCRs) on different tissues including the
nervous system, the development of animal experimental models
could be an alternative method to overcome the challenges described
above and accelerate the development of knowledge in the field of
regenerative medicine/dentistry and bioengineering in space missions
(Onorato et al., 2020). The outcomes fromhuman research conducted in
space are of extreme scientific/biomedical importance and translate to
medical care on Earth (Shelhamer et al., 2020).

A multidisciplinary approach to
maintaining oral health during
space flights

The importance of treatment planning in
aerospace dentistry

Dentists are increasingly concerned about dental issues in
solitary and confined groups, particularly those who are isolated
or have no access to healthcare. This is especially important given
the growth of manned space programs, Antarctica research, and
submarine operations. Financial expenses for treatment, specialized
dental staff, evacuation, and transportation to dental institutions
vary based on the frequency of acute dental occurrences and the
dental care provided (Lloro et al., 2019). Therefore, dental planning
is crucial for maintaining aircrews’ operational health, especially at
higher altitudes, and ensuring oral health to enable uninterrupted
tasks (Pathak, 2015; Pathak et al., 2015; Lloro et al., 2019). Aerospace
dentistry focuses on enhancing the dental and oral hygiene of crew
members, particularly in preventing illnesses caused by changes in
atmospheric pressure (Pathak, 2015; Pathak et al., 2015). High-
altitude fluctuations can cause discomfort, pain, and organ
malfunction like periodontitis, dental abscesses, and deep carious
lesions, and for those reasons, a proper assessment could help in
preventing them (Pathak, 2015; Pathak et al., 2015).

NASA’s mission to establish human settlement on Mars is a
growing concern due to potential risks to mission goals; one of
which is that crew members face microbiological issues during long-
haul space flights, potentially limiting their production and the
ships’ integrity. To minimize infection, extensive microbial
screening is conducted (Fernander et al., 2022) The
implementation of prevention strategies and prior screenings
significantly reduce oral issues rates of occurrence (Lloro et al.,
2019). However, the crew’s microflora may develop unique
evolutionary traits due to their exposure (Fernander et al., 2022;
Fernander et al., 2023). NASA has developed tight requirements for
cosmonaut choosing, continuation, as well as prior to flight oral
examinations for particular space flights, plus a rigid clinical
regimen. Astronauts undergo rigorous screenings 24 weeks before
departure, including dental care at least 12 weeks before missions.

Dental emergencies during long-haul
space flights

The Space Medicine Exploration Medical Condition List states that
basic dental treatments and diagnoses will be accessible (Blue et al., 2019);
furthermore, dental emergencies were forecasted to be one of the leading
circumstances influencing subsequent mission goals by the Integrated
MathematicalMedicalModel (Fernander et al., 2022). As time progresses,
space medicine is achieving more recognition as a speciality that is
involved in different phases of the space flight from the crew selection,
training and the space flight itself to post-flight rehabilitation and long-
term health of astronauts (Hodkinson et al., 2017). Table 2 summarizes
the possible dental emergencies that can occur during as well as before
and after space flights. This is extremely important given the complexity
of the nature risk factors that astronauts are exposed to during long-haul
space flights (Figure 1).
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A dentist would be crucial during long-term space trips to Mars, as
full dental treatment, radiographs, and root canals are unavailable in
space. Aeronautic dentistry is a relatively new field that has received little
attention (Pathak, 2015; Pathak et al., 2015). It is crucial that the aviation
sector promotes treatment protocols and diagnostic tools to safeguard
the health of its crew, as clinical aeronautic dentistry aims to restore crew
members to full wellness after oral emergencies (Pathak, 2015; Pathak
et al., 2015), in addition, dental professionals and flight crews should take
advantage of any opportunity to incorporate dental and oral health into
crews’ physiological prerequisites in order to boost their overall health
(Pathak, 2015; Pathak et al., 2015).

Special precautions are necessary for aircrew patients during
restorative, endodontic, oral and maxillofacial surgical, and
prosthodontics treatments to prevent onboard incapabilities
and potential major problems (Pathak, 2015; Pathak et al.,

2015; Lloro et al., 2019). Excavating dental decays and
restoring them must be performed ahead of flight departure,
also leaking fillings ought to get replaced after which an extensive
inspection of the cavity floor is necessary to avoid pulp chamber
penetration, and a protective cavity liner like glass-ionomer
cement is applied. For successful multi-visit root canal
therapy, the interim restoration should be appropriately
positioned (Pathak, 2015; Pathak et al., 2015). Although, in
1995, root canal therapy for a suspicious pulp chamber
invasion in a crew member was needed in order to avoid
silent pulp necrosis and sub-acute pulpitis, and their pressure
related complications; moreover, when not properly addressed,
endodontic infections might result in leaking of diseased tissue
into the peri-radicular tissues and subcutaneous emphysema
(Niazi and Bakhsh, 2022).

FIGURE 1
Summarizes the possible correlations between risk factors to astronauts in space and illustrates the complex nature of the health-related challenges
in long-haul space flights.

TABLE 3 A summary of the recommended directions for future research in aerospace dentistry.

Field of recommended future research Aims and objectives

The effect of space flights on teeth/dental hard tissues in humans • Standardization of factors such as the duration of the space flight, diet, age and sex of the samples
• Fill the gaps in literature as most studies in this field are based on rodents’ teeth which are not
comparable to human teeth

The importance of prebiotics and probiotics in astronauts’ diet • Modification and regulation of the microbiome. Helping in lowering levels of inflammatory processes
and loss of bone

Effects of microgravity on the maxillary and mandibular alveolar
bone

• Confirmation of the extent of the well- established negative effects of microgravity on skeletal bones
and correlating them with the alveolar process

Tooth-derived stem cell and oral microbiology research in space • Further advancement of the fields of regenerative dentistry, medicine, surgical repair and wound
healing

Potential negative effects of pharmaceuticals under microgravity
environments

• Evaluation of prospective pharmaceutical agents taken for or during space flights
• long-term clinical trials for identifying potential low-level negative reactions with denosumab
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Preventative measures against dental
problems before and during space flights

Cuspal covering indirect restorations can serve as preventative
dentistry. Moreover, resin cements are recommended for
cementation of indirect restoration due to their superior retention
and decreased porosity (Lyons et al., 1997; Pathak, 2015; Pathak
et al., 2015). Eating sweets or chewing gum during missions can
increases salivary output hence prevent dry mouth; noting that dry
mouth is correlated with periodontal diseases and high caries incidence.
Once a maxillary tooth is extracted, oral surgeons should check for oro-
antral communication, which may cause sinusitis upon exposure to a
fluctuating pressure; if present, an oro-antral communication ought to be
sutured. Furthermore, osseointegrated dental implants may enhance
edentulous denture retention (Pathak, 2015; Pathak et al., 2015).

NASA does not verify an individual onboard prevention technique
without considering different bone-loss strategies for each crew.
Moreover, pharmaceutical therapies may prevent bone loss during
space flights, but prospective studies should be meticulously designed
to yield unambiguous results (Orwoll et al., 2013). Finally, in addition to
the medical and dental considerations discussed above, it is essential to
understand that a holistic approach needs to be taken into account while
planning for the health, safety and wellbeing of the astronauts in long-
haul space flights. This should take into account the psychological
aspects of the astronauts’ health through promotion of positive
emotions, subjective resilience and the prevention of the development
of emotional disorders to allow adaptation to extreme environments
(Gatti et al., 2022). Finally, Table 3 summarises the recommended
directions for future research that are deemed necessary to advance
the field of aerospace dentistry and provide a holistic approach to the
health and wellbeing of astronauts during long-haul space flights.

Conclusion

This review summarizes the available research with regards to the
effects of microgravity and long-haul space flights on oral and dental
tissues. We provide a few hypotheses that could contribute to expanding
the current available knowledge in this field. Dentistry in space travel is
best incorporated within a medical team that provides a holistic and
multidisciplinary healthcare approach to the astronauts. Furthermore, the
most significant evidence-based changes within the oral cavity that are
related to the space environment are changes in the salivary components
and oral microbiology. Finally, we highlight the promising potentials for
space travel in regenerativemedicine anddentistry, especiallywith regards
to the utilization of stem cell culture and bioengineering/
biomanufacturing. The information presented in the current review
helps provide directions for future research as well as

recommendations for maintaining the health of astronauts and
preventing the long-termnegative effects of space travel andmicrogravity.
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