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Exercise genomics has progressed alongside advancements in molecular genetic
technologies that have enhanced our understanding of associations between
genes and performance traits. This novel field of research incorporates
techniques and tools from epidemiology, molecular genetics, exercise
physiology and biostatistics to investigate the complex interplay between
genotype and specific quantitative performance traits, such as muscle power
output. Here I aimed to illustrate how interdisciplinary training can ensure the
effective use of new emerging technologies, such as motion capture, to examine
the influence of genetic and epigenetic factors on power-related quantitative
performance traits. Furthermore, this study raises awareness about the present
research trends in this field, and highlights current gaps and potential future
developments. The acquired knowledge will likely have important future
implications in the biotech industry, with a focus on gene therapy to combat
age-related muscle power decline, personalized medicine and will drive
advancements in exercise program design.
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Introduction

The ground-breaking polymerase chain reaction (PCR) method was invented by Kary
Mulis in 1983, and in the decades since that discovery, remarkable advancements have been
made in genetic research. Cutting-edge molecular technologies have refined our approach
to investigating how genetic predisposition influence performance traits. Innovative genetic
research tools led to the formal recognition of the field of exercise genomics in the late
2000s. Initial research primarily focused on common genetic polymorphisms,1 with studies
mainly using the case-control approach, without incorporating quantitative performance
measures as relevant biomarkers (Woods et al., 2001; Yang et al., 2003; Papadimitriou et al.,
2008; Papadimitriou et al., 2009; Mikami et al., 2013). Subsequent molecular genetic
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1 Common genetic polymorphisms, most often single-nucleotide polymorphisms (SNPs), are heritable

nucleotide differences between individuals that occur in at least 1% of the population (Karki

et al., 2015).
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research enabled us to investigate the quantitative contribution
(Papadimitriou et al., 2016; Contrò et al., 2018; Papadimitriou
et al., 2018; Wei, 2021), gain genetic insights into physical
characteristics, such as muscle strength (Clarkson, 2005; Broos
et al., 2015; Willems et al., 2017) and explore the mechanistic
pathways (Papadimitriou et al., 2019) that explain the
interactions between genes and exercise training Figure 1.

While these methods have shown some effectiveness
(Papadimitriou et al., 2016; Willems et al., 2017; Contrò et al.,
2018), their implementation to explore complex performance
characteristics—such as speed and muscle power—has proven to
be more challenging (Hanson et al., 2010; Ruiz et al., 2011; Broos
et al., 2015). One possible explanation is that the contributions of
common genetic polymorphisms to these performance
characteristics typically have small effect sizes, and these
approaches lack the sensitivity required to detect such minor
effects. Furthermore, considering that the majority of athletic
outcomes involve multi-joint movements, the suitability of a
number of the technologies that were previously employed may
be questioned. Moreover, complex quantitative traits commonly
exhibit further epigenetic influence from factors that regulate gene
expression, such as DNA methylation (Raleigh, 2012).

Determining how common genetic polymorphisms influence
athletic performance and human locomotion is challenging for
several reasons—including the difficulty of accurately defining
precise biomarkers; challenges in identifying or measuring the
influences of environmental, epigenetic, and anthropometric
factors; inadequate sample sizes; and technological limitations in
obtaining sufficient and high-quality genetic and performance data.
Rapid advancements in technology have yielded new and improved
research tools that enable us to overcome these limitations. These
tools enhance the accuracy and specificity of measurements, and
improve the quality of created databases. These advancements
enable us to more efficiently and precisely identify and quantify
how common genetic variants and epigenetic factors influence
physical performance.

Exercise physiologists now have access to several new emerging
technologies, as it will be discussed in the paper. These include
motion capture, which enhances the accuracy and specificity of
performance measurements, bead-based DNA isolation methods
that yield efficiently high-quality DNA, and novel microarray-based
assays that enable rapid measurement of large numbers of genetic
and epigenetic markers.

Motion capture technology enables the precise detection and
analysis of specific performance characteristics, such as torque and

velocity. Initially, this technique was used in life sciences for gait
analysis. Today, motion capture is utilized in additional fields,
including neuroscience and robotics. As motion capture systems
continue to improve and expand, they hold great potential for
applications in exercise genomics (Htet et al., 2023) and future
use in epigenetics.

To fully enable the potential of today’s highly skilled exercise
physiologists and sport geneticists, we must support them in
integrating the latest technologies, with emphasis on the crucial
role of interdisciplinary research.

Motion capture technology in sport
genomics: a guide for incorporating an
emerging technology

Over the past 50 years, a wide range of vision-based methods
have been developed to track humanmovement. An in-depth review
of these approaches is available in the work of (Moeslund et al.,
2006). Here, I aim to provide a brief overview of the evolution of the
techniques used in the field, with an emphasis on the potential for
revolutionized future applications in genomic and epigenomic
research. The differences between these systems lie in the camera
configuration, representation of recorded data, and types of tracking
algorithms employed (Lee and Chen, 1985; Narayanan et al., 1995;
Kakadiaris and Metaxas, 1998; Wagg and Nixon, 2004).

While there are notable differences in the technical
characteristics of these techniques (Richards, 1999), they all share
the same fundamental concept. They involve identifying spots of
interest in sequential image frames, converting them into real-space
coordinates, and using this information to determine the three-
dimensional (3D) position of the visualizing skeleton (Corazza et al.,
2006; Baran and Popović, 2007).

Prior to the introduction of digital technology, film analog
cameras were commonly employed for tracking human
movement during athletic activities (Procter and Paul, 1982;
Bobbert et al., 1986; Lees et al., 1993). Some of this technology
proved helpful in analyzing explosive body movements due to its
greater resolution and enhanced recording frequency. However, the
effectiveness of this approach was hindered mainly by lengthy
processing times and complex data interpretation.

Over the last decade, there has been a remarkable progress in the
study of human movement. This is largely due to the utilization of
cutting-edge optoelectronics (Windolf et al., 2008). Faster
computing power, larger memory, and hardware shrinkage have

FIGURE 1
The timeline of different types of research conducted in the field of exercise genomics, as well as the future direction.
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further facilitated these advances. Due to these exciting
developments, research methodologies made significant
improvements and a plethora of innovative techniques of
automatic recognition of body movements have been developed.
Most of these systems employ numerous cameras that emit infrared
radiation, together with reflective markers that reflect this radiation
back to the cameras. This enables the recording devices to determine
the 3D position of the markers fast and accurately (Mündermann
et al., 2006; Maletsky et al., 2007). Recent technological
advancements have even made it feasible to detect motion
without the need for reflective markers (Saini et al., 2015). These
marker-less techniques often have much faster processing times and
an improved recording range. However, they demonstrate reduced
accuracy and precision, making them unsuitable for research
applications (Klous et al., 2010). Currently, marker-based
optoelectronic measurement systems are often regarded as the
gold standard in motion capture. They outperform all other
technologies in terms of the accuracy and precision required for
prospective usage in research environments (Corazza et al., 2010;
McGuirk et al., 2022; Johnson et al., 2023).

While motion capture is already prevalent in the life sciences
industry, there remains potential for growth in research settings
including in the fields of exercise genomics, physiology, and
epidemiology. There is great demand for highly accurate motion
capture technology in research. Current advancements in hardware
have overcome previous limitations, but for this potential to be
realized, it is important to educate and raise awareness among
researchers who may have little experience working with motion
tracking data. In particular, exercise physiologists and geneticists
can benefit from using this high-quality data in their investigations.
Ultimately, to fully harness the advantages of motion capture
technology in research, we must increase acceptance and
understanding among a range of researchers and their
respective fields.

Moreover, motion capture alone may not be sufficient to qualify
the performance levels of individuals. To successfully qualify and
quantify the genetic and epigenetic influences it is necessary to
evaluate dynamic performance characteristics, such as ground
reaction forces and the rate at which force is developed
incorporating additional technologies such as force plate
dynamometry.

My research team integrated motion capture technology with
force plate dynamometry in hopes of identifying novel power-
related outcomes that are more sensitive to allele-specific
differences. The study we conducted presents evidence that there
is a connection between allele-specific differences and specific
performance characteristics in certain joints during explosive
body motions, such as sprinting or jumping (Htet et al., 2023).
The physiological and biomechanical parameters identified from
these analyses are shown in Table 1. These variables can serve as
biomarkers in future studies to reveal subtle associations between
performance traits and genetic or epigenetic factors.

The angular parameters quantify relative torque and power
during explosive body movements, such as jumps and sprints, as
recorded by motion capture technology. On the other hand, the
dynamic variables represent power related characteristics of the
force-time curve as measured by force plate dynamometry.
Furthermore, the reactive parameters quantify the elastic
utilization during vertical jumps with very short ground contact
time, and increased muscle contraction velocity combining an
explosive coupling between an eccentric and concentric muscle
action, commonly known as stretch-shortening cycle (SSC)
(Nicol et al., 2006). These parameters are determined based on
participants’ performance in Squat Jump (SJ) and Drop Jump (DJ),
which was measured using motion capture technology (Htet
et al., 2023).

Motion capture technology allows sport geneticists and exercise
physiologists to incorporate biomechanical biomarkers into studies
of allele-specific performance traits, thereby improving the accuracy
and specificity of the measurements. The potential to include a
biomechanical marker that reflects the genetic effect on a specific
joint represents an advancement compared to traditional
approaches for assessing speed and power-related performance in
genetic research.

Compared to previous research approaches, the potential
widespread utilization of motion capture technology in sport
genomics offers several advantages. Firstly, it enables a focus on
specific joints without influence by the overall anthropometric
parameters of the human body. Secondly, it facilitates the
analysis of full-body movements. Furthermore, it enables detailed
analysis of more specific performance characteristics, such as peak
torque and velocity, with regards to individual joints.

TABLE 1 The table provides a summary of the most relevant physiological and biomechanical parameters that arise from these techniques and that can be
linked to genetic and epigenetic factors along with their calculation formulas.

Variables Formulas Technology References

Angular Relative torque RT � Segmentalmass(kg)*Angular acceleration (deg s−2)
Total bodymass(kg) Motion capture Knudson (2007)

Power P � Relative torque(Nm)*Angular velocity(deg s−1) Sayers et al. (1999)

Dynamic Peak power PP � Force at peak velocity (N)*Peak velocity(ms−1) Integration of motion capture systems with force
plate dynamometry

Turner et al. (2012)

Rate of force
development

RFD � Peak Force(N)
Time to peakForce(s) Comfort et al. (2011)

Reactive Reactive strength
index

RSI � DJHeight(m)
GroundContact Time(s) Riggs and Sheppard

(2009)

Index of reactive force IReaF � DJHeight−SJHeight (m)
SJHeight(m) Papadopoulos et al.

(2009)
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Before motion capture technology can be implemented in
exercise genomic research, exercise physiologists must thoroughly
assess the characteristics and reliability of this new laboratory
approach. This requires analyzing the sensitivity, specificity, and
other aspects that could affect the accuracy of the measurement. A
series of preliminary and validation studies must be conducted (Moe
et al., 2022) before these biomarkers can be used in large-scale
genetic investigations. For example, researchers must determine
how much of the variation in allele-specific measurements can be
attributed to individual differences, intra-individual variability, or
laboratory error. Each stage of this investigation process requires a
foundation in exercise genomics, as well as expertise in various
academic fields, potentially including physiology, biomechanics, and
biostatistics. Thus, a sport geneticist or an exercise physiologist must
have a comprehensive understanding and involvement in all
components of the study, even those that extend beyond
traditional exercise physiology or genomic training.

Other emerging technologies with
potential application in the field

Bead-based DNA separation methods

Microarrays have been extensively utilized as platforms for SNP
detection (Bumgarner, 2013). These technologies require high
quality sample preparations, and the process of DNA isolation
for sport genomic research continues to be a time-consuming
task, relying on various extraction and centrifugation steps (Head
et al., 2014).

Magnetic DNA isolation is an emerging technology that utilizes
the power of magnetism for fast and effective DNA extraction and
purification (Haddad et al., 2016). Column-based procedures
involve the centrifugation of the lysate, followed by the addition
of the supernatant to a silica membrane for the purpose of binding
nucleic acids. The DNA is then washed and finally released in an
adequate volume of elution buffer. These steps present a significant
risk of causing mechanical damage to the DNA. Magnetic bead-
based procedures have a reduced number of handling stages, and
certain protocols eliminate the need for centrifugation, which
reduces the risk of shearing compared to column-based methods
(Chacon-Cortes and Griffiths, 2014; Ali et al., 2017). This
improvement in efficiency also leads to lower costs.

Exercise geneticists can benefit from using this high-quality
DNA in their studies, but in order to take full advantage of this
potential, it is crucial to promote awareness among researchers who
might lack familiarity working with this methodology.

DNA micro-array based methylation assays

In recent years, there has been growing interest in health-related
fitness epigenetics. Complex power-related quantitative traits
commonly exhibit varying degrees of genetic influence, as well as
further influence from the epigenome. The epigenome serves as the
interface connecting the environment with the genome.

Epigenetic modifications involve changes of gene expression
that occur without any alternations to the DNA sequence and

include DNA methylation, histone modifications, and microRNA
expression (Ling and Groop, 2009). An explanation of all types of
epigenetic modifications is beyond the scope of this mini review
study and may be obtained elsewhere (Portela and Esteller, 2010).
Here I aim to raise awareness and understanding of newly developed
technologies employed in research examining DNA methylation
and their potential application in exercise genomics.

DNA methylation involves the attachment of a methyl group to
the 5-carbon position of the pyrimidine nucleotide cytosine. This
mark predominantly appears within the context of a CpG
dinucleotide (Brait et al., 2008). This kind of regulation changes
the gene expression by functioning as a bidirectional valve. Once a
particular CpG reaches a specific CpG location, it leads to the
suppression of gene expression, whereas its demethylation
facilitates gene expression.

In order to investigate this process, several laboratory techniques
have been created to assess different aspects of DNA methylation
(Laird, 2003). The utilization of these methods originated in the field
of cancer research and includes global methylation, which
characterizes an individual’s general methylation profile (Zhang
et al., 2011), and methylation that is specific to a particular gene,
which regulates how certain genes are expressed (Deneberg
et al., 2010).

The introduction and extensive use of epigenome-wide DNA
methylation technologies—such as Illumina Infinium Human
Methylation 450K assay—allowing rapid and simultaneous
measurement of methylation levels at around 480,000 CpG sites
across the genome (Wang et al., 2015), led to the development of
DNA methylation-based biomarkers for various types of health
related fitness characteristics (Yousefi et al., 2022; Jokai et al.,
2023). Biomarkers of methylation levels may have future
applications in large-scale studies to assess the complex
relationships between genotype, gene expression, and specific
quantitative performance characteristics such as muscle torque
and power.

Discussion

This work highlights the potential for a future utilization of
novel biomarkers and technologies in the context of exercise
genomic research. With the growing acceptance of emerging
technologies, such as motion capture, there is a significant
opportunity to improve our understanding of the relationship
between common genetic variants and certain quantitative
performance traits, such as muscle power output, as well as
identify the potential influence of epigenetic factors.

Most quantitative genetic studies have demonstrated that
specific common genetic variants typically account for only about
2%–3% of the variation in muscle speed and power performance
(Papadimitriou et al., 2016). The remaining variability is influenced
by a diverse array of genetic, epigenetic, and environmental
factors—the majority of which are not well understood, especially
the genetic and epigenetic factors.

The presently available data support the conclusion that the
genetic predisposition to power-related performance traits and
responses to physical training are determined by the interplay of
numerous genes and non-genetic factors, rather than by a single
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gene or few alleles. Elucidating the effects of common genetic
variations on human movement and athletic performance is a
difficult task. Challenges include the precise detection of
common variations in DNA, the determination and
quantification of anthropometric and epigenetic variables,
technological constraints in procuring genetic and performance
data of sufficient quantity and quality, and the complex
characteristics inherent in conducting research with humans.

Future research in the field of exercise genomics should be
composed of a larger amount of functional quantitative research and
a smaller fraction of case-control studies as illustrated in Figure 1.
Case-control studies have played a key role in the initial stage of
exercise genomics research, as they constitute a useful approach for
investigating the association between common genetic variations
and athletic performance. However, they have several drawbacks,
including being prone to bias, and the majority of published
candidate gene studies suffer from limited sample numbers and
insufficient statistical power. Therefore, it is important to confirm
the findings of case-control studies through replication with
improved quantitative research designs (Papadimitriou et al.,
2016; Contrò et al., 2018).

The potential use of motion capture technology in sport
genomics provides several advantages compared to earlier
research analyses in this field (Moran et al., 2007; Ruiz et al.,
2011). Firstly, it enables a focus on specific joints without being
affected by general anthropometric factors of the human body.
Furthermore, it facilitates a comprehensive full-body examination
of specific performance characteristics, including the peak torque
and power generated at individual joints during explosive body
movements. Such methodological and technological advancements
have facilitated the identification of more precise phenotypes, and
improved study designs for detecting and measuring the effects of
common genetic variants on complex phenotypes, such as those
associated with muscle speed and power (Htet et al., 2023).

Further research is necessary to expand beyond common genetic
variants, combining transcriptomics with genomics and utilizing
motion capture technology to investigate the potential influence of
DNA methylation markers on training adaptations in specific
performance characteristics important for speed and power.

Moreover, motion capture alone may not be sufficient to qualify
the performance levels of individuals. Integrating additional
technologies like force plate dynamometry is crucial. Muscular,
body related signals and cerebral activities are also essential
elements to be able to refine the intrinsic quality of the
movement and today accompany the measurement of movement
in the field (Cosendey et al., 2023).

Future exercise geneticists must thoroughly understand diverse
disciplines to determine the appropriate use of emerging
technologies and novel biomarkers, to assess their validation, and to
ensure their meaningful interpretation. In a way, an exercise geneticist
can be viewed as the stage director of a scientific project, which includes
physiologists, biomechanical research scientists, computer vision
analysts, laboratory technicians and bioinformatics experts. Just as it
is impractical for a stage director to be involved in every role in a theater
performance, it is also unrealistic for an exercise geneticist to be an
expert in every role required for modern genomic research. However,
like a stage director, an exercise geneticist must have a thorough
understanding of each discipline, in order to coordinate and

synthesize their contributions. Thus, in addition to expertise in
genomic research, an exercise geneticist must also have a
multidisciplinary skill set. Embracing interdisciplinary education in
exercise genomics will cultivate an appreciation for different
perspectives and methodologies within traditional fields of study and
will facilitate the effective utilization of new emerging technologies to
shed light on complex interplay between genome, epigenome and
power-related performance traits.

This integrated knowledge has the potential to greatly impact the
biotech industry, particularly in terms of age-related muscle power
decline, and future applications in personalized exercise training
programs, that aim to tailor training based on an individual’s genetic
makeup (Amato et al., 2018). Overall, this field of research can
greatly enhance human health and well-being.

Lastly, incorporating rapidly emerging technologies can be a
daunting task due to the overwhelming amount of data they
produce. Prior to conducting further research in the field, it is
imperative to employ discovery-based strategies to sort through
the vast amount of data generated and pinpoint specific markers.
This challenge led to emergence of the bioinformatics field, and it is
now essential to have a biostatistician or an expert in data
interpretation as a collaborator. Furthermore, artificial
intelligence has the capacity to discover novel approaches to
analyze biomarker and genomic data, equipping us with
cutting-edge tools for predicting genes or epigenetic factors
associated with performance traits and to address challenges
associated with evaluating and understanding vast quantities of
genomic and biomechanical data (Nguyen et al., 2022). Moreover,
the large quantity of data being generated fundamentally changes
the validation process, which now necessitates both discovery and
hypothesis testing.

In a nutshell, exercise geneticists can greatly benefit from
incorporating emerging technologies, like motion capture, into
their studies. However, to fully realize this potential, it is crucial
to raise awareness while improving acceptance and comprehension
among researchers from various fields.
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