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Introduction: The aim of this study was to investigate the effect of pre-exercise
whole-body cryotherapy (WBC) on muscle damage indicators following
eccentric treadmill exercise in young women.

Methods: Twenty-seven participants underwent two 1-h downhill treadmill runs,
replicating 60% of their maximal oxygen uptake, with a 4-week intermission for
recovery and treatment application. In this intermission, one group underwent 20
sessions of WBC, delivered five times a week at −120°C for 3 min each, while the
comparison group received no such treatment. Markers of muscle injury—serum
myoglobin concentration, creatine kinase and lactate dehydrogenase activity and
also uric acid, and cell-free DNA concentration—weremeasured before and after
downhill runs.

Results: The study observed a notable reduction in post-exercise myoglobin and
CK levels in the WBC group after the second running session.

Discussion: The results suggest that WBC can have a protective effects against
muscle damage resulting from eccentric exercise.
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1 Introduction

Whole-body cryostimulation (WBC), medically denominated as whole-body
cryotherapy, encompasses succinct exposures (not exceeding 3 min) to frigid ambient
conditions, with temperature parameters setting between −100°C and −160°C. As the
research review shows, these safe, rarely causing side effects cold-temperature treatments
(Legrand et al., 2023), are deployed in order preventative health, therapeutic regimens as
well as regeneration and sport medicine (Lombardi et al., 2017; Patel et al., 2019; Bouzigon
et al., 2021; Garcia et al., 2021; Kujawski et al., 2021; Fontana et al., 2022; Dziedzic et al.,
2024; Jeyaraman et al., 2024).
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The scholarly dissemination on WBC’s implementation within
the field of women’s sports medicine remains inchoate as compared
to the entirety of its viable applications. The investigative emphasis is
traditionally directed at its utilization for recuperation post physical
training or throughout an athletic season, while inquiry into its
“prophylactic” or stimulating influences via repeated WBC sessions
upon biochemical markers is notably scant (Szymura et al., 2018;
Wojciak et al., 2020; Zembron-Lacny et al., 2020).

From previous research we know that extremely low
temperatures incite a prompt stress reaction within cellular
structures (Vieira Ramos et al., 2016). Upon prolonged exposure
to such stressors, it is posited that cellular responses evolve in
conjunction with adaptive processes (Barqawi et al., 2021).
Therefore, when studying the effect of cryotemperatures on the
body, the duration of exposure must be considered (Lubkowska
et al., 2012). In animal muscle cells, after cryotherapy, inflammatory
processes after injury were found to be attenuated by regulating the
expression of mRNA for tumor necrosis factor alpha (TNF-a),
nuclear factor-κB (NF-κB), transforming growth factor beta
(TGF-β) and matrix metalloproteinase 9 (MMP-9) and a
reduction in the percentage of macrophages (Vieira Ramos et al.,
2016). In human, WBC significantly reduced the post-exercise
generation of reactive oxygen and nitrogen species (H2O2 and
NO), and the concentrations of serum interleukin 1β and
C-reactive protein (Zembron-Lacny et al., 2020), as well as
increased sirtuins concentration (Sirt1, Sirt3) and antioxidative
capacity (Wojciak et al., 2020).

It was found that WBC induce changes in both innate and
adaptive branches of the immune system, hormones, and metabolic
status in non-professional male athletes, suggesting a beneficial
involvement of WBC in tissue repair (Nasi et al., 2020), but
hepatocyte growth factor, insulin-like growth factor, platelet-
derived growth factor, vascular endothelial growth factor, and
brain-derived neurotrophic factor, were also reduced by WBC
exposure (Zembron-Lacny et al., 2020).

The primary response to whole-body cryotherapy (WBC)
involves vasoconstriction in the skin and subcutaneous tissue due
to the stimulation of α2-adrenergic receptors (Charkoudian, 2003).
This results in a redistribution of blood flow and a decrease in skin
temperature (Skrzek et al., 2019), followed by reperfusion and a
sudden normalization of skin temperature (Westerlund et al., 2003).
Subsequent effects include anti-inflammatory and
antioxidant responses.

There are gender differences in the response to WBC. The
change in individuals” skin temperature in response to WBC
depends on anthropometric variables, with individuals having
greater obesity and a larger body surface area to body mass ratio
cooling more than lean individuals (Hammond et al., 2014). After
WBC, women experience a greater decrease in average skin
temperature compared to men, showing a negative correlation
with body fat content (Cuttell et al., 2017). Sex differences in
cellular stress responses across endocrine, inflammatory, and
redox pathways were observed (Hodes et al., 2024). During
adaptations to cold stress, men predominantly used strategies
involving greater metabolic and shivering responses, while
women demonstrated more effective insulating responses
(Solianik et al., 2014). It was implied that cold stress causes an
increase in the level of Unc-51-like kinase-1c, associated with the

autophagy initiation process, only in peripheral blood mononuclear
cells isolated from men, suggesting different cytoprotective
mechanisms between the sexes (King et al., 2024). Despite the
similar impacts on resting energy expenditure during cold
exposure, more significant changes in plasma glucose, leptin, and
adiponectin levels were observed in women (Mengel et al., 2020).
Cooling-induced stress was found to affect both genders similarly in
terms of central and peripheral fatigability, yet it predominantly
reduced fatigue in males during sustained maximal voluntary
contractions (Solianik et al., 2015; Castellani and Young, 2016).
Enhanced glucocorticoid secretion in response to stress was
exhibited by females, attributed to a differently regulated
hypothalamic-pituitary-adrenal axis (Handa and Weiser, 2014;
Heck and Handa, 2019). Moreover, it was noted that female
mitochondria produce less hydrogen peroxide and contain higher
levels of antioxidant enzymes compared to those in males
(Mendoza-Núñez et al., 2010; Miotto et al., 2018; Silaidos
et al., 2018).

Eccentric exercise, which involves lengthening of the muscle
under tension, can lead to muscle damage and oxidative stress
(Wiecek et al., 2017).

WBC triggers adaptive processes within the body, leading to
improved cellular responses and overall recovery (Vieira Ramos
et al., 2016). In addition,WBC has been found to reduce muscle pain
and inflammation, improve athletic performance and capacity, and
enhance recovery frommuscle damage (Capodaglio et al., 2022). It is
important to note that the existing body of research primarily
focuses on male subjects. However, as previously shown,
eccentric exercise causes oxidative damage to lipids in women,
which indicates a redox balance disturbance (Wiecek et al.,
2017). In men, eccentric submaximal aerobic exercise does not
induce oxidative stress. These results, as well as gender
differences in response to cryogenic temperatures (Cuttell et al.,
2017), highlights a need for more inclusive studies involving female
participants to fully understand the potential benefits of WBC in
preventing muscle damage and promoting recovery in individuals of
all genders.

The aim of our study is to determine whether the pre-exercise
use of 20 WBC treatments can mitigate muscle damage and pain
after aerobic eccentric exercise in untrained women, as well as
whether it can expedite muscle recovery. In our studies, we
indirectly assess myocyte damage based on changes in
biochemical markers in the blood (myoglobin, creatine kinase,
lactate dehydrogenase, uric acid, cfDNA) and subjective
assessment of pain perception.

We hypothesize that the level of myocyte damage and pain is
reduced and the rate of recovery from aerobic eccentric exercise is
greater following 20 WBC treatments.

2 Materials and methods

2.1 Study design

The investigative study comprised of 27 female participants
between the age of 19–25 years. Selection was based on exhaustive
medical assessments, involving blood morphology, lipid profiling,
glucose concentrations, glycated hemoglobin (HbA1c) levels,
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arterial blood pressure readings, and electrocardiogram evaluations.
Exclusion criteria included previous exposure to WBC procedures
within the preceding 6 months, medical contraindications for WBC,
or the necessity for uninterrupted pharmacological treatment.

A priori power analysis was performed utilizing G*Power
3.1 software (Dusseldorf, Germany) to determine the requisite
sample size for the study (Faul et al., 2007). Considering the
experiment’s structure of two groups and eight measurement
points, alongside a predefined alpha of 0.05 and a test power of
0.95, it was calculated that a total of 24 subjects (twelve per group)
would be required to adequately power the study.

Randomization ensued, forming two distinct cohorts: a control
group and one subjected toWBC interventions. An exercise test was
administered to deduce the maximal oxygen consumption
(VO2max) of each participant and to establish exercise intensity
for a 60-min downhill treadmill run at 60% VO2max. This specific
exercise modality was selected to provoke eccentric muscular effort,
which instigates distinct muscular responses compared to

concentric activity. Biomarker samples to gauge muscle damage
were systematically drawn before the exercise, 5 min, 60 min, and
24 h subsequent to the exertion.

Post-evaluation, one subset of 14 individuals underwent a series
of twentyWBC sessions, involving 3-min exposures at −120°C, while
the rest functioned as a control group. The influences of cryotherapy
on the biochemical markers related to muscle and oxidative stress,
initiated by the eccentric exercise, were analyzed. A follow-up
downhill run was conducted subsequent to the last WBC session.
Participants were instructed to maintain their habitual dietary and
physical activity routines throughout the duration of the study.

2.2 Study participants

Prospective subjects with health concerns precluding WBC
utilization, previous WBC users within 6 months, smokers,
individuals exhibiting substance abuse, those currently on

FIGURE 1
Flow chart of participants.
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medication, athletes, and women with irregular menstruation cycles
were excluded.

The study began with 36 eligible candidates, 34 of whom were
included; however, attrition led to seven withdrawals during the
investigation. The final composition of the study population
included 27 women, partitioned as follows: The WBC group,
which participated in cryotherapy sessions between downhill
running activities (n = 14). The control group, which abstained
from WBC engagements (n = 13). The flow chart of participants is
presented at Figure 1.

The research protocol adhered rigorously to the ethical
guidelines set forth in the Declaration of Helsinki and received
approval from the Bioethical Committee of the Regional Medical
Chamber (55/KBL/OIL/2022).

2.3 Procedure of whole-body cryotherapy

TheWBC protocol was executed as follows: Participants initially
experienced a 30-s episode within a −60°C antechamber, subsequent
to which they were exposed for 3 min to −120°C temperatures in the
main cryogenic chamber. The cooling of the chamber air was
facilitated through the employment of liquid nitrogen. The KN-1
model cryogenic chamber, hailing from the Bamet company of
Wielka Wies, Poland, served as the locale for these sessions. Oxygen
levels within the chamber were rigorously kept within the 21%–22%
range, a statistic confirmed by continuous monitoring facilitated by
dual oxygen sensors, specifically the EurOx.O2 G/E models from
Krakow, Poland.

The treatment protocol accommodated up to four participants
per session, who were instructed to ambulate in a circular pattern
within the chamber. Upon audio cues, the direction of motion was
reversed, ensuring participants followed a consistent and controlled
respiratory pattern throughout the exposure.

In terms of attire, participants donned athletic shorts, sports bra,
knee-high socks, clogs, gloves, ear-caps, and surgical masks with
gauze covering the oral and nasal regions. All accessories, inclusive
of eyeglasses and watches, were mandatorily removed preceding
chamber entry. Moisture elimination and non-abrasive skin contact
were emphasized to mitigate the risk of frostbite during treatment.

The cryotherapy installation featured an intricate array of
equipment encompassing real-time temperature monitoring
systems for both chambers, an automatic air drying function,
oxygen concentration sensors, and an interior chamber
surveillance via video feed for continual observation.
Additionally, the facility was equipped with an emergency button
and instantly operable door release mechanism for user safety.
Observation through thermally insulated windows and
communication through a camera system enabled direct
supervision. Certified physical therapists oversaw each treatment
session, ensuring adherence to safety protocols and
procedural integrity.

2.4 Assessment of body composition

Prior to initiating the sequence of running sessions, body height
and body mass of each participant were documented. Subsequent to

these measurements, body composition was assessed via electrical
bioimpedance analysis using the Jawon IOI-353 Body Composition
Analyzer (Gyeongsa, Korea)—a multifrequency bioelectrical
impedance device—equipped with eight electrodes functioning at
frequencies of 5, 50, and 250 kHz. The body composition data
obtained through this method is provided in Table 1.

2.5 The graded test protocol

The protocol for graded exercise employed in this study aimed
to ascertain each subject’s maximal oxygen consumption (VO2max).
This was pivotal in setting the specific workload for the ensuing 60-
min treadmill (h/p/Cosmos Saturn, Germany) descent at 60% of the
individual’s VO2max, as delineated in the previous work by Wiecek
et al. (2017). Commencing with a 0° treadmill incline, the exercise
began at a pace of 6 km/h, with a subsequent speed increment of
1.0 km/h every 2 min. This increment was upheld until the
participant either elected to terminate the test (volitional
exhaustion) or did not manifest any additional rise in oxygen
uptake despite escalating exercise intensity.

Throughout the graded test, vital cardiorespiratory metrics were
monitored, including, but not limited to, oxygen consumption,
production of carbon dioxide, the respiratory exchange ratio, and
heart rate. These were performed via a MetaLyzer 3B from Cortex,
Germany, and a Polar H10 heart rate sensor from Polar Electro,
Finland. The criteria for determining VO2max were stringent as
previously described (Wiecek et al., 2017), calling for an observable
plateau in oxygen consumption concomitant with an RER in excess
of 1.1, alongside the achievement of a heart rate nearing the subject’s
age-predicted ceiling by a margin of 10 beats per minute.

2.6 Execution of the downhill running task

The downhill running exercise was conducted at a −10% incline
on a treadmill, initially set at a speed of 6 km/h. Following a 4-min
period, the participants” pace was adjusted to meet 60% of their
VO2max, gauged with precision. This velocity was sustained for the
duration of 1 h, during which cardiorespiratory parameters were
consistently measured.

2.7 Blood sample collection protocol

Venipuncture was conducted at eight distinct time points
throughout the study: before the initial downhill exercise (1 pre),
5 min after (1 post), at 1 hour post-exercise (1 post 1 h), and at 24 h
post the first exercise bout (1 post 24); and similarly timed
surrounding the second bout of exercise (2 pre, 2 post, 2 post
1 h, and 2 post 24). For these procedures, a vacuum extraction
methodology was employed, utilizing equipment provided by
Becton Dickinson, established in Franklin Lakes, NJ,
United States. Participants were seated and allowed to rest for
5 min prior to the blood draw. The participant could not eat
drink after the first blood collection till 1 h after the run. A
schematic diagram illustrating the blood collection protocol is
presented in Figure 2. For the serum and plasma collections,
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blood was collected into specialized 4 mL Vacutainer™ tubes fitted
with clot activators for serum retrieval, and K2EDTA for plasma
extraction. Subsequent to collection, these samples were centrifuged
for a quarter hour at an RCF of 1,000 × g. The centrifuge equipment
utilized was the MPW-351R (MPW Med. Instruments of Warsaw,
Poland), which operates at a controlled temperature of 4 C. Post-
centrifugation, the serum and plasma specimens were preserved
at −80°C ± 5 C using the ZLN-UT 300 PREM freezer from POL-
EKO-APARATURA, Wodzisław Śląski, Poland, thus retaining their
integrity until it was time for analysis.

To measure lactate concentration, capillary blood was taken
from participants both before and immediately after succeeding the
exercise bouts. Specimen collection was carried out using
Microvette® fluoride/heparin tubes, which incorporate a glycolysis
inhibitor to preserve sample integrity. The centrifugation of these
samples was performed at ambient temperature (21 C) for 3 min at
an RCF of 14,300 × g with the MPW-55 centrifuge.

2.8 Pain self assessment

Following each blood collection, participants were instructed to
perform a squat, which served as a stimulus for the pain assessment
process. They then evaluated and communicated the level of pain
they experienced using the Visual Analogue Scale. The VAS is a

validated tool designed to measure pain intensity—a subjective
experience. It employs a 10-cm line as a continuum where the
endpoints are defined as “no pain”—white color and “worst pain
imaginable”—dark red color. Individuals report their pain by
marking a colored point on the line that corresponds to the
intensity of their pain, offering a quantifiable measure of pain
levels for both acute and chronic conditions.

2.9 Biochemical analysis

The biochemical analysis for this study involved the
measurement of lactate and uric acid concentrations, as well as
the activity of creatine kinase and lactate dehydrogenase. These
parameters were evaluated using spectrophotometric methods, with
assay kits provided by RANDOX (catalog numbers: LC2389 (plasma
level 0.5–1.6 mmol/L; sensitivity 0.155 mmol/L, Intra assay CV(%):
2.07, Inter Assay CV(%): 1.24), UA230 (serum level in women
142–339 μmol/L; sensitivity 36.2 μmol/L, Intra assay CV(%): 1.77,
Inter Assay CV(%): 3.95), CK110 (serum level 24–175 U/L,
sensitivity 21.7 U/L, Intra assay CV(%): 2.31, Inter Assay CV(%):
3.91), and LD401 (serum level 230–460 U/L, sensitivity 55 U/L, Intra
assay CV(%): 3.86, Inter Assay CV(%): 3.99); RANDOX Global
Healthcare, United Kingdom). The detection of these measurements
was carried out on an Evolution™ 201 UV-Visible

TABLE 1 Body composition and blood pressure.

Variable CON WBC p-value

BM (kg) 63.00 ± 7.14 65.12 ± 8.34 0.61

BH (cm) 166.21 ± 5.93 165.39 ± 5.02 0.56

BF (%) 26.45 ± 5.15 27.63 ± 4.60 0.81

LBM (kg) 44.76 ± 3.81 43.57 ± 3.51 0.73

SBP (mmHg) 120 ± 5.02 120 ± 7.82 0,98

DBP (mmHg) 75 ± 6.04 75 ± 4.67 0,96

Values are means ± SD; BM, body mass; BH, body height; BF, body fat; LBM, lean body mass; SBP, systolic blood pressure; DBP, diastolic blood pressure; CON, control group; WBC, Whole-

body cryotherapy group.

FIGURE 2
Study scheme.
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Spectrophotometer (Thermo Scientific™, located in MA,
United States).

Myoglobin concentration was determined separately using an
enzyme-linked immunosorbent assay with the DRG ELISA kit
(serum level 12–100 ng/mL; sensitivity 5 ng/mL, Intra assay
CV(%): 3.9, Inter Assay CV(%): 7.8) (DRG International, NJ,
United States). The detection in this case was performed using
the SPARK™ Microplate Reader (Tecan Group Ltd., Switzerland).

Additionally, cell-free DNA (cfDNA) concentrations were
assessed. The process began by isolating cfDNA from a 300 μL
plasma sample using the Higher Purity circulating DNA Purification
kit (Canvax, Spain). Subsequent quantification of cfDNA was then
realized through the application of the Pico488 ds DNA
Quantification kit (Lumiprobe GmbH, Germany), in accordance
with the guidelines prescribed by the manufacturer.

The results of CK, LDH activity and cfDNA, lactate, myoglobin
and UA concentration, were corrected by the percentage changes in
plasma volume (%1PV) according to the Kraemer and Brown
formula (Kraemer and Brown, 1986). ΔPV was calculated on the
basis of changes in HGB concentration (g/dL) and HCT values (%)
(Dill and Costill, 1974; Harrison et al., 1982).

2.10 Statistical analysis

All statistical analyses were conducted using the STATISTICA
13.3 software package (TIBCO, Inc., CA, United States). The
normality of the distribution of the variables was tested with the
Shapiro–Wilk test, and the homogeneity of variances was confirmed
with Levene’s test. Depending on whether the data was normally
distributed or not, different statistical tests were employed. For
variables with a normal distribution, one-way ANOVA and
Student’s t-test were used, while for those not normally distributed,
the non-parametric Kruskal-Wallis and Friedman test were utilized.

To evaluate the impact of whole-body cryotherapy and the timing
of venipuncture on various outcome variables, a repeated measures
ANOVA was used. This test helps in understanding the main effects of
factors such as the Group (whether they were in the Control or WBC
group) and Time, as well as any interaction effect between Group and
Time. If significant effects were found, post-hoc analyses were conducted
using the Tukey test to further investigate the differences.

For all the tests, a p-value of 0.05 or below was set as the criterion
for statistical significance. This means that if the observed
differences had a p-value of less than or equal to 0.05, they were
considered statistically significant.

3 Results

3.1 Body composition

The somatic build are presented in Table 1. There were no
differences between the groups.

3.2 Blood morphology

Blood morphology results are in Table 2.

3.3 Physiological parameters and
lactate level

In Table 3 there are results of graded test, calculation for
downhill run and lactate concentration from the downhill runs.
There were no significant differences between the CON and
WBC group.

3.4 Biochemical markers

3.4.1 Myoglobin concentration
An interaction was observed between the temporal

measurement points and the treatment groups with respect to
serum myoglobin levels. An immediate and persistent elevation
in myoglobin levels was discernible in both groups immediately and
1 h subsequent to the both downhill running tasks (p < 0.001).
Notably, the rise in myoglobin concentration observed post-exercise
was less pronounced following the second run compared to the first
(p < 0.001 upon comparing data points immediately after and 1 h
subsequent to each run). Furthermore, a diminution in myoglobin
concentration was recorded in the WBC group 1 h post-second run
compared to the control group (p = 0.03) as depicted in Figure 3.

3.4.2 CK activity
Differential CK activities are delineated in Figure 4. Time-

dependent interactions with group treatments were identified.
The first downhill runs prompted substantial elevations in CK
activity 24 h post-exercise in both cohorts (p < 0.001 after the
initial run for both groups). Twenty fourhours after the second
run, there were only significant increase in CK activity in CON
group (p < 0.001). Additionally, a lower CK activity was observed
24 h post-second run in the WBC group compared to CON
(p = 0.038).

3.4.3 LDH activity
The serum LDH activity levels are detailed in Figure 5. Statistical

analysis revealed no significant discrepancies.

3.4.4 UA concentration
Figure 6 presents the data for uric acid concentrations where no

significant variations between the groups were detected.

3.4.5 cfDNA concentration
Variations in plasma cfDNA concentrations are summarized in

Figure 7. The influence of the time-group interaction was found to
be statistically insignificant (p = 0.92). However, there was a
significant main effect of time (p < 0.001), with cfDNA
concentrations increasing immediately post-exercise in both
cohorts after the first (p < 0.001) and the second run (p = 0.05).
The cfDNA concentrations immediately after the second run were
lower compared to those after the first run in both groups
(p < 0.001).

3.4.6 Assessment of post-exercise pain intensities
Figure 8 illustrates the recorded pain intensities following the

squat exercises. The analysis of variance for pain scores post-exercise
revealed no statistically significant interaction effect between time
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points and treatment groups (p = 0.85). However, a significant main
effect of time was observed (p < 0.001), indicating an escalation in
reported pain scores subsequent to the exercise, with peak levels
occurring at 24 h post-exercise.

4 Discussion

The results of this study suggest that the use of whole-body
cryotherapy prior to eccentric exercise may confer a protective
benefit against post-exercise muscle damage.

In our study, WBC augmented the recognized effect of
adaptation to repeated eccentric exercise (Park and Lee, 2015) as
demonstrated by a smaller rise in blood myoglobin concentration
and creatine kinase activity following the second exercise bout in
both groups. This effect was more pronounced in the WBC-treated

group. These findings align with the notion that inadequate muscle
adaptation to eccentric exercise can lead to more severe myocyte
damage (Hyldahl et al., 2017; Chen et al., 2019; Margaritelis et al.,
2021). These results suggest a common mechanism underlying the
regulation of eccentric work muscle damage by preceding it by
exercise and WBC.

Exceeding the tolerance of physical load during muscle work
may lead to mechanical damage to cellular structures, including the
sarcolemma, which results in an increase in its permeability and the
entry of, among others, muscular proteins into the blood. Myoglobin
and creatine kinase are specific intracellular proteins that serve as
primary biochemical markers indicative of muscle cell damage
(Brancaccio et al., 2010; Chalchat et al., 2022). Resistance exercise
increases myoglobin concentration and CK activity in both men and
women, with women showing a faster inflammatory response and
greater prolonged damage response (Heavens et al., 2014). The

TABLE 2 Blood morphology.

Variable CON WBC p-value

RBC (106/µL) 4.48 ± 0.21 4.56 ± 0.18 0.81

HGB (g/dL) 13.43 ± 0.46 13.54 ± 0.72 0.93

HCT (%) 38.2 ± 2.24 39.24 ± 1.62 0.91

PLT (103/µL) 255.2 ± 41.4 253.9 ± 48.6 0.92

LEUC (103/µL) 5.63 ± 1.23 5.49 ± 1.21 0.93

NEUT (%) 47.83 ± 6.24 48.34 ± 6.41 0.87

LYMPH (%) 35.16 ± 5.34 36.42 ± 5.43 0.89

MONO (%) 9.43 ± 2.42 9.37 ± 2.34 0.92

EOS (%) 2.63 ± 1.14 2.46 ± 1.39 0.88

BASO (%) 0.56 ± 0.42 0.63 ± 0.54 0.93

Values are means ± SD; RBC, red blood cells; HGB, hemoglobin; HCT, hematocrit; PLT, platelets; LEUC, leukocytes; NEUT, neutrophils; LYMPH, lymphocytes; MONO, monocytes; EOS,

eosinophils; BASO, basophils; CON, control group; WBC, Whole-body cryotherapy group.

TABLE 3 Physiological parameters and lactate level.

Variables CON WBC p-value

VO2max [l/min] 2.49 ± 0.29 2.63 ± 0.50 0.38

VO2max [ml/(kg × min)] 42.33 ± 4.74 42.14 ± 5.87 0.92

60% VO2max [l] 1.49 ± 0.17 1.57 ± 0.30 0.39

60% VO2max [ml] 25.40 ± 2.84 25.29 ± 3.52 0.92

Vdownill run [km/h] 9.27 ± 1.64 9.49 ± 1.39 0.70

VEmax [l/min] 87.62 ± 14.63 95.74 ± 20.36 0.28

HRmax [1/min] 193.62 ± 5.19 194.21 ± 6.39 0.79

LA 1 Pre [mmol/l] 2.47 ± 1.07 2.49 ± 1.18 0.96

LA 1 3ʹ [mmol/l] 2.89 ± 2.08 3.37 ± 2.57 0.73

LA 2 Pre [mmol/l] 1.64 ± 0.58 1.64 ± 1.09 0.98

LA 2 3ʹ [mmol/l] 1.44 ± 0.98 1.70 ± 1.01 0.88

Values are means ± SD VO2max, maximal oxygen uptake; Vdownill run, velocity of downhill run; VEmax, maximal pulmonary ventilation; HRmax, maximal heart rate; LA, lactate

concentration before both downhills run and 3 min after the runs; CON, control group; WBC, Whole-body cryotherapy group.
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FIGURE 3
Myoglobin concentration. Myoglobin concentrations (mean ± SEM) in serum for the control (CON) and whole-body cryotherapy (WBC) groups was
measured at the following time points: before the first run (Pre 1), 5 min after the first run (Post 1), 1 h after the first run (Post 1 1 h), 24 h after the first run
(Post 1 24 h), before the second run (Pre 2), 5 min after the second run (Post 2), 1 h after the second run (Post 2 1 h), and 24 h after the second run (Post
2 24 h). aaa p ≤ 0.001 from corresponding pre-exercise values in CON group; bbb p ≤ 0.001 from corresponding pre-exercise values in WBC group;
c p ≤ 0.05 from corresponding CON group values; ddd p ≤ 0.001 from corresponding Post 1 CON group values; eee p ≤ 0.001 from corresponding Post
1 values WBC.

FIGURE 4
CK activity. Creatinine kinase (CK) activity (mean ± SEM) in serum for the control (CON) andwhole-body cryotherapy (WBC) groups wasmeasured at
the following time points: before the first run (Pre 1), 5 min after the first run (Post 1), 1 h after the first run (Post 1 1 h), 24 h after the first run (Post 1 24 h),
before the second run (Pre 2), 5 min after the second run (Post 2), 1 h after the second run (Post 2 1 h), and 24 h after the second run (Post 2 24 h). aaa p ≤
0.001 from corresponding pre-exercise values in CON group; bbb p ≤ 0.001 from corresponding pre-exercise values inWBC group; c p ≤ 0.05 from
corresponding CON group values; ddd p ≤ 0.001 from corresponding Post 1 CON group values; eee p ≤ 0.001 from corresponding Post 1 values WBC.
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FIGURE 5
LDH activity. Lactate dehydrogenase (LDH) activity (mean ± SEM) in serum for the control (CON) and whole-body cryotherapy (WBC) groups was
measured at the following time points: before the first run (Pre 1), 5 min after the first run (Post 1), 1 h after the first run (Post 1 1 h), 24 h after the first run
(Post 1 24 h), before the second run (Pre 2), 5 min after the second run (Post 2), 1 h after the second run (Post 2 1 h), and 24 h after the second run
(Post 2 24 h).

FIGURE 6
UA concentration. Uric acid (UA) concentration (mean ± SEM) in serum for the control (CON) and whole-body cryotherapy (WBC) groups was
measured at the following time points: before the first run (Pre 1), 5 min after the first run (Post 1), 1 h after the first run (Post 1 1 h), 24 h after the first run
(Post 1 24 h), before the second run (Pre 2), 5 min after the second run (Post 2), 1 h after the second run (Post 2 1 h), and 24 h after the second run
(Post 2 24 h).
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FIGURE 7
cfDNA Concentration. cfDNA concentrations (mean ± SEM) in serum for the control (CON) and whole-body cryotherapy (WBC) groups was
measured at the following time points: before the first run (Pre 1), 5 min after the first run (Post 1), 1 h after the first run (Post 1 1 h), 24 h after the first run
(Post 1 24 h), before the second run (Pre 2), 5 min after the second run (Post 2), 1 h after the second run (Post 2 1 h), and 24 h after the second run (Post
2 24 h). a p ≤ 0.05 from corresponding pre-exercise values in CON group; b p ≤ 0.05 from corresponding pre-exercise values inWBC group; aaa p ≤
0.001 from corresponding pre-exercise values in CON group; bbb p ≤ 0.001 from corresponding pre-exercise values in WBC group; ddd p ≤ 0.001 from
corresponding Post 1 CON group values; eee p ≤ 0.001 from corresponding Post 1 values WBC.

FIGURE 8
Assessment of post-exercise pain intensities. VAS pain scale values (mean ± SEM) for the control (CON) and whole-body cryotherapy (WBC) groups
was measured at the following time points: before the first run (Pre 1), 5 min after the first run (Post 1), 1 h after the first run (Post 1 1 h), 24 h after the first
run (Post 1 24 h), before the second run (Pre 2), 5 min after the second run (Post 2), 1 h after the second run (Post 2 1 h), and 24 h after the second run (Post
2 24 h). aaa p ≤ 0.001 from corresponding pre-exercise values in CON group; bbb p ≤ 0.001 from corresponding pre-exercise values in WBC group;
d p < 0.05 from corresponding Post 1 24 h in CON Group; e p < 0.05 from corresponding Post 1 24 h in WBC group.
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reduced blood levels of myoglobin and CK activity we observed in
the WBC group after a second downhill run, in comparison to the
control group, suggest that repeated cryogenic exposure is beneficial
for maintaining the structural integrity of myocyte membranes
subjected to stretching.

Our records show the greatest changes in blood levels of
myoglobin and creatine kinase at time points typical for
responses to eccentric exercise (Chalchat et al., 2022). In
contrast, our study likely lacks an appropriate time point to
capture the post-exercise increase in blood lactate dehydrogenase
activity because the activity of this enzyme in serum increases after a
longer period than monitored in our study (Chalchat et al., 2022).

The damage to active myocytes may stem from both mechanical
and metabolic stress, the latter contributing to oxidative stress due to
the excessive production of reactive oxygen species (Hody et al.,
2019). Evidence suggests that neutrophil infiltration following
eccentric exercise plays a role in muscle damage, inflammatory
processes, and delayed-onset muscle soreness—DOMS (Kanda et al.,
2013; Hody et al., 2019).

The potential benefits of cryotherapy for enhancing muscle
regeneration, as indicated by prior research (Lombardi et al.,
2017), might involve the mitigation of reactive oxygen species
overproduction resulting from both metabolic stress and
neutrophil infiltration post-exercise, thus leading to reduced
inflammation and muscle soreness. However, our findings do not
entirely support this.

The absence of marked differences in plasma cfDNA
concentrations and post-exercise pain intensities between the
control and WBC groups implies that WBC’s impact may be
more specific to certain indicators of muscle damage. This
selective response suggests that WBC may chiefly improve
aspects of muscle recovery directly linked to muscular insult
rather than inflammation post-exercise in women (Costello et al.,
2012; Vieira Ramos et al., 2016).

A possible mediator in the cellular response to low temperatures
could be the cold-inducible RNA-binding protein (CIRP), which can
post-transcriptionally regulate genes involved in the regulation of
metabolism, DNA repair or redox balance (Zhong et al., 2021) as
well as stress RNA-binding motif protein 3 (RBM3) involved in the
response to low-temperature (Gibson et al., 2017), activated during
rapid changes in temperature and in hypoxic conditions. In muscle
cells, an elevation in RBM3 concentration may inhibit necrosis and
apoptosis as a response to an increase in reactive oxygen species
levels (Ferry et al., 2011). It supports the theory that cryotherapy
may help reduce cellular breakdown and expedite the removal of
debris, thus promoting a more efficient muscle repair (Rose et al.,
2017). However, this requires detailed research.

Our finding of rapid release of cfDNA during eccentric exercise
in the minute range is highly indicative of a fast, active DNA-release
mechanism from immune or endothelial cells, regardless of the use
of WBC but as an effect of physical exercise. Amongst the DNA-
release mechanisms of cells, NETosis is a vital mechanism that leads
to rapid releases of DNA from neutrophils in conjunction with
activated thrombocytes within minutes, leaving the releasing cell
alive (Neuberger and Simon, 2022). This may explain the equally
intense pain in both groups, after both rounds of eccentric exercises,
caused by inflammation of similar intensity. NETosis, among other
things, involves the generation of reactive oxygen species (Matoszka

et al., 2012). In previous studies in women, 10 min after eccentric
exercise, an increase in the content of neutrophils and lymphocytes
was found, with a simultaneous increase in lipid oxidation (Wiecek
et al., 2017). Unfortunately, now we did not examine changes in the
leukocyte profile after eccentric exercise. We also did not investigate
oxidative damage to macromolecules. However, previously noted
were both an increase in neutrophil oxidative burst activity after
efforts causing damage to myocytes (Kudoh et al., 2014) as well as no
changes in this indicator despite the significant increase in the
content of neutrophils correlated with an increase in the
concentration of myoglobin and creatine kinase in the blood
after 45 min of exercise (downhill running) at an intensity of
60% VO2max (Peake et al., 2005).

The amount of oxygen consumption during exercise, is generally
lower in women compared to men when normalized to body weight,
which, along with sex differences in substrate utilization during
exercise, could also affect muscle damage and repair mechanisms
(Santisteban et al., 2022). Similarly to other studies (Wiecek et al.,
2017), we did not find in women any changes in antioxidant defense
after eccentric exercise, measured by uric acid levels, regardless of
whether WBC was used.

This is a surprising result. According to previous results, an
increase in antioxidant potential after WBC was expected, although
previous studies included mainly men whomanifested, among other
things, after a series of WBC treatments an increase in antioxidant
defense by increasing the concentration of GSH (Wojciak et al.,
2024) an increase in the activity of antioxidant enzymes (superoxide
dismutase) (Wojciak et al., 2020) and nitric oxide synthase (Wiecek
et al., 2021).WBC treatments performed in men during muscle-
damaging activities reduced the generation of reactive oxygen
species (H2O2 and NO) and pro-inflammatory proteins
(Zembron-Lacny et al., 2020).

The probable cause of the different results are gender
differences in the pro-oxidant-antioxidant balance. Although it
is indicated that, in general, women have a higher antioxidant
potential than men (Kander et al., 2017), however, the
concentration of uric acid (one of the antioxidants) is higher in
men (Wiecek et al., 2017). At the same time, during eccentric
exercise, unlike men, women generate more reactive oxygen
species (Wiecek et al., 2017), which may reduce the antioxidant
effect of WBC use. However, a full interpretation is not possible,
due to the limitation of the determination of oxidative stress
markers in our studies only to uric acid.

The authors indicate that cryotherapy treatments aimed at
accelerating recovery must be applied within a sufficiently short
time frame to inhibit the cell-damaging response. In this context, the
use of cryotherapy before exercise that damages muscles may prove
beneficial. This underlines the complexity of metabolic responses to
WBC and suggests that different mechanisms, such as reduced
oxidative stress or altered adrenergic activation, might play roles
under varying physiological conditions (Christmas et al., 2018)

The lack of difference in pain assessment between groups post-
exercise, contrary to expectations, might indicate that the analgesic
effects of WBC are more pronounced with either more frequent
sessions or different exercise modalities. This observation aligns
with the findings from Jastrząbek et al. (2013) and suggests a
nuanced interaction between cryotherapy protocols, pain
perception, and exercise type.
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The current study extends the understanding of gender-specific
responses to WBC, addressing a significant gap in the literature,
which has predominantly focused on male participants. This
research corroborates and expands upon findings from Ferreira-
Junior et al. (2014), by illustrating that pre-exercise cryotherapy
could be an effective strategy for enhancing recovery and reducing
exercise-induced muscle damage in young female.

In considering the influence of various factors on exercise
responses and reactions to cryogenic temperatures—including
somatic structure, health status, diet, physical performance, and
exercise intensity—we endeavored to either eliminate or control
these variables. There were no notable differences in initial body
composition, hematological measures, or graded exercise test
outcomes between the control group and the whole-body
cryotherapy group. Subsequent to the initial exercise session, our
evaluation of biomarkers related to muscle disruption did not show
any significant divergence between the two groups. To confirm that
exercise intensity remained within aerobic thresholds, lactate
concentrations were measured before exercising and 3 min post-
exercise, substantiating the predominance of aerobic metabolism
during the activity. Participants adhered to a consistent diet for the
duration of the study. As the menstrual cycle did not affect the levels
of muscle damage and inflammatory markers in the blood following
eccentric exercise, women were included in the study at random
phases of their menstrual cycle and participated for four
consecutive weeks.

One limitation of our study is the small sample size, which may
affect the generalizability of our findings. Additionally, the study did
not include an examination of leukocyte profiles or measurements of
inflammatory and oxidative stress markers, which would have
provided a more comprehensive understanding of the
physiological responses to exercise and cryotherapy.

In conclusion, while this study reinforces the beneficial role of
WBC in reducing specific muscle damage markers following
eccentric exercise, it also highlights the necessity for further
research. To understand the mechanism accompanying the
reduction in CK and myoglobin levels after a downhill run
preceded by 20 WBC treatments, it would be necessary to
examine the role of inflammatory mediators involved both in
muscle regeneration and the cellular response to cryotherapy
(Dugué, 2015; Zuo et al., 2019). Future studies should explore
the optimal timing and frequency of WBC sessions, its long-term
effects on different types of muscle fibers, and its efficacy across
diverse athletic and clinical populations, including both genders to
fully harness its therapeutic potential.
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