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Introduction: The cardiothoracic ratio (CTR) based on postero-anterior chest
X-rays (P-A CXR) images is one of the most commonly used cardiac
measurement methods and an indicator for initially evaluating cardiac
diseases. However, the hearts are not readily observable on P-A CXR images
compared to the lung fields. Therefore, radiologists oftenmanually determine the
CTR’s right and left heart border points of the adjacent left and right lung fields to
the heart based on P-A CXR images. Meanwhile, manual CTR measurement
based on the P-A CXR image requires experienced radiologists and is time-
consuming and laborious.

Methods: Based on the above, this article proposes a novel, fully automatic
CTR calculation method based on lung fields abstracted from the P-A CXR
images using convolutional neural networks (CNNs), overcoming the
limitations to heart segmentation and avoiding errors in heart
segmentation. First, the lung field mask images are abstracted from the
P-A CXR images based on the pre-trained CNNs. Second, a novel
localization method of the heart’s right and left border points is proposed
based on the two-dimensional projection morphology of the lung field mask
images using graphics.

Results: The results show that the mean distance errors at the x-axis direction of
the CTR’s four key points in the test sets T1 (21 × 512 × 512 static P-A CXR images)
and T2 (13 × 512 × 512 dynamic P-A CXR images) based on various pre-trained
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CNNs are 4.1161 and 3.2116 pixels, respectively. In addition, themeanCTR errors on
the test sets T1 and T2 based on four proposed models are 0.0208 and 0.0180,
respectively.

Discussion: Our proposed model achieves the equivalent performance of CTR
calculation as the previous CardioNet model, overcomes heart segmentation, and
takes less time. Therefore, our proposed method is practical and feasible and may
become an effective tool for initially evaluating cardiac diseases.

KEYWORDS

cardiothoracic ratio, chest X-ray images, lung field segmentation, edge detection,
convolutional neural network, graphics

1 Introduction

X-ray is the most widely used primary imaging technique for
routine chest and bone radiography as it is widely available, low cost,
has fast imaging speed, and easy to acquire (Liu et al., 2022). Because
of its fast imaging (seconds after exposure), X-ray has become the
preferred imaging device to improve the work efficiency and
facilitate the diagnosis of critically ill and/or emergency patients
in clinical practice (Howell, 2016; Seah et al., 2021).

The relationship analysis between the heart and lungs has been a hot
topic in clinical or scientific research (Yang et al., 2022). The
cardiothoracic ratio (CTR) is one of the most commonly used cardiac
measurement methods and a commonly used indicator for evaluating
cardiac enlargement (Saul, 1919; Hada, 1995; Chang et al., 2022).
Specifically, various etiologies, such as pathological changes in the
heart itself and increased adaptability secondary to hemodynamic
changes leading to left and right heart enlargement, will increase the
CTR. Chest X-rays (CXRs), as an economical and convenient routine
examination, can better display the situation of the chest, lung tissue,
pulmonary blood vessels, heart, chest blood vessels, etc., providing a
reliable basis for clinical diagnosis (Howell, 2016; Seah et al., 2021; Liu
et al., 2022). Although cardiac enlargement should be diagnosed through
echocardiography, follow-up and treatment can be based on the postero-
anterior (P-A) CXR images. P-A CXR must be performed for the initial
cardiac examination (Hada, 1995). In addition, theCTR is also a predictor
of heart failure progression in asymptomatic patientswith cardiac diseases
(Nochioka et al., 2023). Therefore, the accurate CTR measurement of
these vulnerable populations is crucial for precision healthcare.

Manual CTR measurement based on the P-A CXR image requires
experienced radiologists and is time-consuming and laborious.
Therefore, with the rapid development of artificial intelligence, such
as convolutional neural networks (CNNs), automatic CTR calculation
methods or models based on P-A CXR images have been successively
proposed in recent years (Li et al., 2019; Saiviroonporn et al., 2021; Jafar
et al., 2022). Li et al. proposed a computer-aided technique that is more
reliable and time- and labor-saving than the manual method in CTR
calculation. In addition, Pairash et al. verified that the AI (artificial
intelligence)-onlymethod could replace themanual CTRmeasurement.
Meanwhile, Abbas et al. proposed a CardioNet model that achieved
acceptable accuracy and competitive results across all datasets.
However, the above methods or models in references 9–11 are still
limited by heart segmentation. Although heart segmentation techniques
based on P-A CXR images have made significant progress (Lyu and
Tian, 2023), whether the CTR calculation requires the specific
morphology and structure of the heart remains to be studied.

Anatomically, the heart is located within the chest cavity between
the left and right lungs. Specifically, about one-third of the heart is on
the right side of the midline, about two-thirds is on the left side, and the
apex is on the lower left front (Weinhaus and Roberts, 2005). The
transverse diameter of the heart in the cardiothoracic ratio refers to the
sum of the maximum distances from the left and right cardiac margins
to the midline. However, the heart in the P-A CXR images is not
prominent. Therefore, if the heart segmentation needs to be more
precise, the error of this heart segmentation may fail to calculate the
CTR automatically based on the P-A CXR images.

Based on the above, a novel, fully automaticCTR calculationmethod
based on the lung field should be proposed to overcome the limitations
to heart segmentation. Specifically, we train a robust and standard
segmentation model of pathological lungs based on multi-center
training datasets of the P-A CXR images and image enhancement
techniques for extracting lung fields in P-A CXR images. Then, the
CTR is automatically calculated based on the lung field based on
graphics. Our contributions in this paper are briefly described as follows:

(1) We propose a fully automatic CTR calculation method based
on lung fields abstracted from the P-A CXR images using
CNNs, overcoming the limitations to heart segmentation,
avoiding errors in heart segmentation, and taking less time.

(2) We propose a novel localization method of the heart’s right and
left border points based on the two-dimensional projection
morphology of the lung field mask images using graphics.

(3) The proposed automatic CTR calculation method based on
lung fields abstracted from the P-A CXR images may become
an effective tool for initially evaluating cardiac diseases.

2 Materials and methods

2.1 Materials

Here, 789 (635 + 54 + 72 + 15 + 13) sets of the P-A CXR images
from public CXR datasets, the Google website, and a case of P-A CXR
video are collected in the study for training the CNNs of lung field
segmentation and automatic CTR calculation. Specifically, 21 P-A
CXR images are used as a test set for evaluating lung field
segmentation models. In addition, these 21 P-A CXR images and
13 dynamic P-A CXR images are used to calculate the CTR.

Figure 1 intuitively shows the detailed distribution of these 789 P-A
CXR images in each dataset. Specifically, the dataset used in this
study includes six sub-datasets (D1–D6). The public dataset D1

Frontiers in Physiology frontiersin.org02

Yang et al. 10.3389/fphys.2024.1416912

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1416912


(The Shenzhen set — Chest X-ray database) includes 635 static P-A
CXR images (324 normal cases and 311 cases with manifestations of
tuberculosis). The public dataset D2 (The Shenzhen set— Chest X-ray
database) includes 54 static P-A CXR images (47 normal cases and
7 cases with manifestation of tuberculosis). The public dataset
D3 [NIAID TB portal program dataset (Online)] and D4 [kaggle.
RSNA Pneumonia Detection Challenge (Online)] include 72 static P-A

CXR images (7 cases with the manifestation of tuberculosis, 60 cases
with the manifestation of pneumonia, and 5 normal cases). The public
dataset D5 includes 15 static P-A CXR images collected from the
Google website.

In addition, dataset D6 includes 13 dynamic P-A CXR images from
the case of CXR video that were collected during free breathing.
Specifically, the CXR video was collected from a female participant

FIGURE 1
Distribution of the dataset in this study. (A) Distribution of case classification in each dataset and (B) distribution of abnormal cases in each dataset.

FIGURE 2
Automatic cardiothoracic ratio algorithm schematic diagram. (A) Lung field segmentation and (B) cardiothoracic ratio calculation.
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aged 53 using a digital X-ray imaging system (manufacturer: Lanmage,
collection mode: sequence point slice, exposure parameters: 78 KV,
200 mA, 50 ms, and flat panel detector: IRAY) for chest photography.
The ethics committee of the National Clinical Research Center for
RespiratoryDiseases in China approved this study. The subject has been
provided written informed consent to the second affiliated hospital of
Guangzhou Medical University before chest photography.

More specifically, the public CXR datasets D1 and D2 are
collected from the website https://www.kaggle.com/datasets/kmader/
pulmonary-chest-xray-abnormalities?select=ChinaSet_AllFiles.
Meanwhile, the public CXR datasets D3 and D4 are collected from the
websites https://data.tbportals.niaid.nih.gov/ and https://www.kaggle.
com/c/rsna-pneumonia-detection-challenge/data, respectively.

2.2 Methods

Figure 2 intuitively shows the schematic diagram of the automatic
cardiothoracic ratio algorithm. Specifically, the proposed fully
automatic CTR calculation method based on lung field abstracted
from the P-A CXR images includes lung field segmentation and
cardiothoracic ratio calculation. Figure 2A shows that the lung field
mask images are abstracted from the P-A CXR images based on the
trained CNNswith the connected domain (CD) algorithm.Meanwhile,
Figure 2B shows the automatic CTR calculation method based on the
lung field mask images.

2.2.1 Lung field segmentation
The organ segmentation model of medical images based on CNNs

has become an indispensable technology for quantitative analysis
(Conze et al., 2023; Jiang et al., 2023; Ma et al., 2024). CNNs have
even been applied to the lung segmentation of rats for measuring lung
parenchyma parameters (Yang et al., 2021). In addition, automatic lung
field segmentation in routine imaging is a data diversity problem not a
methodology problem (Hofmanninger et al., 2020).

The SegNet, U-Net, and its improved networks have been
widely applied in organ segmentation of medical images. Based
on the above, we train four traditional and basic CNNs to test
whether different CNN lung field segmentation models have
differences in CTR calculation, including SegNet
(Badrinarayanan et al., 2017), U-Net (Ronneberger et al.,
2015), and its two improved networks, ResU-Net++ (Jha et al.,
2019) and AttU-Net (Wang et al., 2021).

The training process of four lung field segmentation models
based on CNNs is detailed below. First, the 755 P-A CXR images’
lung field label images (ground truth) are labeled and examined by
three experienced radiologists using the software Labelme (v5.1.0)
and ITK-SNAP (v4.0.2). Second, each CNN is trained by 755 P-A
CXR images (755 × 512 × 512 × 1) with their lung field label images
(ground truth). Specifically, 755 CXR cases include 371 normal
cases, 380 abnormal cases with the manifestation of tuberculosis
(N = 320) and pneumonia (N = 60), and 15 unclear cases. In
addition, data augmentation techniques were adopted to avoid

FIGURE 3
Schematic diagram of the automatic cardiothoracic ratio calculation is based on the images of the lung edge.
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overfitting, further improving the robustness and generalization
ability of the lung field segmentation models in the training
process (Chlap et al., 2021). The standard cross entropy loss
function is selected to calculate the model’s loss and dynamically

adjust each CNN’s parameters. Finally, the CD algorithm
(Zhao et al., 2010) is applied to the lung field mask images
generated by each CNN to eliminate non-lung field masks not
connected to the lung field masks.

FIGURE 4
Visualized lung field segmentation results of the test set T1 based on various trainedCNNmodels. (A) Twenty-one static P-ACXR images; (B) twenty-
one static P-ACXR imageswith their lung field label images (ground truth); (C) twenty-one static lung fieldmask images based on SegNet; (D) twenty-one
static lung field mask images based on U-Net; (E) twenty-one static lung field mask images based on ResU-Net++; and (F) twenty-one static lung field
mask images based on AttU-Net.

FIGURE 5
Visualized evaluation metrics of various trained CNN models on the test set T1. (A) Accuracy; (B) precision; (C) recall; (D) dice; (E) IoU; and (F)
95th HD.
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2.2.2 Automatic CTR calculation
Figure 3 intuitively shows the schematic diagram of the automatic

cardiothoracic ratio algorithm. First, the right and left lungs are
identified based on lung field mask images. Specifically, the largest

and the second largest lung field areas in each lung field mask image
are identified as the right and left lung mask images, respectively.
Second, edge detection is performed separately on left and right lung
images, obtaining the right and left lung mask edge images. Finally,

FIGURE 6
Visualized lung field segmentation results of the test set T2 based on various trained CNNmodels. (A) Thirteen dynamic P-A CXR images; (B) thirteen
dynamic lung field mask images based on SegNet; (C) thirteen dynamic lung field mask images based on U-Net; (D) thirteen dynamic lung field mask
images based on ResU-Net++; and (E) thirteen dynamic lung field mask images based on AttU-Net.
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the right and left thoracic inner edge points (D2
′ andD3

′) and right and
left heart border points (E1 and E2) are located based on the images of
the right and left lung mask edge for the CTR calculation. The source
code is available on the website: https://github.com/YingjianYang/
Automatic-Cardiothoracic-Ratio-Calculation.

Then, the right and left cardiophrenic angles C1 and C2 are
configured as detection starting points for the right and left cardiac
margins. Two straight lines are drawn perpendicular to the y-axis based
on the y2 and y3 coordinates of C1 (x2, y2) and C2 (x3, y3). The
intersection points C1

′ and C2
′ of these two straight lines with the right

and left lungmask edge are configured as the termination points for the
right and left cardiac margins. The heart’s right border E1 is located by
calculating the maximum distance from all pixels on the right side
along the right lung mask edge from the right cardiophrenic angles C1,

and the intersection points C1
′ to the preset line O-O′. Meanwhile, the

heart’s left border E2 is located by calculating the maximum distance
from all pixels on the left side along the left lungmask edge from the left

cardiophrenic angles C2 and the intersection pointsC2
′ to the preset line

O-O′. Furthermore, the above algorithm’s Equations 1–6 are provided.
O − O′: a0x + b0y + c0 � 0, (1)

E1 x, y( ) ←maxDC1−C1
′

������→
� max dr1 pr1( ), dr2 pr2( ), dr3 pr3( ), ..., drn prn( )( )
� max dr1 xr1, yr1( ), dr2 xr2, yr2( ), dr3 xr3, yr3( ), ..., drn xrn, yrn( )( )

� max

a0xr1 + b0yr1 + c0
∣∣∣∣ ∣∣∣∣������

a20 + b20
√ ,

a0xr2 + b0yr2 + c0
∣∣∣∣ ∣∣∣∣������

a20 + b20
√ ,

a0xr3 + b0yr3 + c0
∣∣∣∣ ∣∣∣∣������

a20 + b20
√ , ...,

a0xrn + b0yrn + c0
∣∣∣∣ ∣∣∣∣������

a20 + b20
√

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (2)

where the vector DC1−C1
′

������→ � (dr1(pr1), dr2(pr2), dr3(pr3),
..., drn(prn)) presents the Euclidean distances dri of these
coordinates (pr1,pr2,pr3, ...,prn) � ((xr1,yr1),(xr2,yr2),(xr3,yr3),
...,(xrn,yrn)) to the preset line O-O′, and i = 1, 2, . . ., n. These
coordinates (xr1,yr1), (xr2,yr2),(xr3,yr3), ...,(xrn,yrn) are extracted

FIGURE 7
Typical key point detection results of a normal case in the test set T1 based on various trained CNNmodels. (A) SegNet; (B) U-Net; (C) ResU-Net++;
and (D) AttU-Net.
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from all pixels in the left lung edge from the right cardiophrenic angles
C1 and the intersection pointC1

′ on the left side of the preset lineO-O′.
The parameters a0,b0,c0 are the coefficients of the preset line O-O′.
E2 x, y( ) ←maxDC2−C2

′
������→

� max dl1 pl1( ), dl2 pl2( ), dl3 pl3( ), ..., dln pln( )( )
� max dl1 xl1, yl1( ), dl2 xl2, yl2( ), dl3 xl3, yl3( ), ..., dln xln, yln( )( )
� max( a0xl1 + b0yl1 + c0

∣∣∣∣ ∣∣∣∣������
a20 + b20

√ ,
a0xl2 + b0yl2 + c0
∣∣∣∣ ∣∣∣∣������

a20 + b20
√ ,

a0xl3 + b0yl3 + c0
∣∣∣∣ ∣∣∣∣������

a20 + b20
√ , ...,

a0xln + b0yln + c0
∣∣∣∣ ∣∣∣∣������

a20 + b20
√ ), (3)

where the vector DC2−C2
′

������→ � (dl1(pl1), dl2(pl2), dl3(pl3),
..., dln(pln)) presents the Euclidean distances dli of these
coordinates (pl1, pl2, pl3, ..., pln) � ((xl1, yl1), (xl2, yl2), (xl3, yl3),
..., (xln, yln)) to the preset line O-O′, and i = 1, 2, . . ., n. These
coordinates (xl1, yl1), (xl2, yl2), (xl3, yl3), ..., (xln, yln) are extracted
from all pixels in the left lung edge from the left cardiophrenic angles
C2 and the intersection point C2

′ on the right side of the preset line
O-O′.

In addition, the preset line O-O′ is perpendicular to the x-axis
(b1 = 0), so the formula (Liu et al., 2022) is converted to Equation 4.
Based on Equation 4, Equations 2, 3 are further simplified to
Equations 5, 6.

O − O′: aox + co � 0, (4)

FIGURE 8
Typical key point detection results of a tuberculosis case in the test set T1 based on various trained CNN models. (A) SegNet; (B) U-Net; (C) ResU-
Net++; and (D) AttU-Net.
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E1 x, y( ) ←maxDC1−C1
′

������→
� max dr1 pr1( ), dr2 pr2( ), dr3 pr3( ), ..., drn prn( )( )
� max dr1 xr1, yr1( ), dr2 xr2, yr2( ), dr3 xr3, yr3( ), ..., drn xrn, yrn( )( )
� max

aoxr1 + co| |��
a2o

√ ,
aoxr2 + co| |��

a2o
√ ,

aoxr3 + co| |��
a2o

√ , ...,
aoxrn + co| |��

a2o
√( )

� max
aoxr1 + co| |

ao| | ,
aoxr2 + co| |

ao| | ,
aoxr3 + co| |

ao| | , ...,
aoxrn + co| |

ao| |( ) ,

(5)
E2 x, y( ) ←maxDC2−C2

′
������→ � max dl1 pl1( ), dl2 pl2( ), dl3 pl3( ), ...,(

dln pln( )) � max dl1 xl1, yl1( ), dl2 xl2, yl2( ), dl3 xl3, yl3( ), ..., dln xln, yln( )( )
� max

aoxl1 + co| |��
a2o

√ ,
aoxl2 + co| |��

a2o
√ ,

aoxl3 + co| |��
a2o

√ , ...,
aoxln + co| |��

a2o
√( )

� max
aoxl1 + co| |

ao| | ,
aoxl2 + co| |

ao| | ,
aoxl3 + co| |

ao| | , ...,
aoxln + co| |

ao| |( ).
(6)

Finally, the distance between the right and left heart border
points is configured as the maximum transverse diameter of the
chest Δx1. In addition, the distance between the right thoracic
inner edge point and the left thoracic inner edge point D3

′ is
configured as the maximum transverse diameter of the heart
Δx2. Subsequently, the ratio of the heart’s maximum transverse
diameter and the chest’s maximum transverse diameter Δx2 was
configured as the CTR calculation. Furthermore, the above
algorithm’s Equations 7–9 are rovided.

Δx1 � xE1 − xE2

∣∣∣∣ ∣∣∣∣ � x
maxD

C1−C1′
����→ − x

maxD
C2−C2′
����→∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
� xmax dr1 pr1( ),dr2 pr2( ),dr3 pr3( ),...,drn prn( )( ) − xmax dl1 pl1( ),dl2 pl2( ),dl3 pl3( ),...,d ln p ln( )( )
∣∣∣∣∣ ∣∣∣∣∣

� xmax dr1 xr1 ,yr1( ),dr2 xr2 ,yr2( ),dr3 xr3 ,yr3( ),...,drn xrn ,yrn( )( )
∣∣∣∣∣
×−xmax dl1 xl1 ,yl1( ),dl2 xl2 ,yl2( ),dl3 xl3 ,yl3( ),...,d ln x ln ,y ln( )( )

∣∣∣∣∣
� x

max
a1xr1+c1| |��

a2
1

√ ,
a1xr2+c1| |��

a2
1

√ ,
a1xr3+c1| |��

a2
1

√ ,...,
a1xrn+c1| |��

a2
1

√( ) − x
max

a1xl1+c1| |��
a2
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Δx2 � xD2
′ − xD3

′
∣∣∣∣ ∣∣∣∣, (8)

CTR � Δx1

Δx2
, (9)

where xE1 and xE2 represent the horizontal coordinates x(E1)
and x(E2) of the right and left heart border points E1 and E2,
respectively. Similarly, xD2

′ and xD3
′ represent the horizontal

coordinates x(D2
′) and x(D3

′) of the right and left thoracic inner
edge points D2

′ and D3
′, respectively.

2.2.3 Experimental environment and
evaluation metrics

These four traditional and basic CNNs (SegNet, U-Net, ResU-
Net++, and AttU-Net) are trained on PyCharm 2017.3.3
(community edition) in Windows 10 Pro 64-bit with an NVIDIA
GeForce GTX 1080 Ti GPU and 16 GB RAM. Then, the pth format
of each CNN’s optimal lung field segmentation model is converted
to the pth format based on PyCharm 2017.3.3. Finally, each CNN’s
optimal lung field segmentationmodel with the pt format is called by

C++ codes based on Visual Studio 2017 for lung field segmentation
of 21 static P-A CXR images (Test set T1) and 13 dynamic P-A CXR
images (Test set T2). Similarly, the CTR algorithm is automatically
performed in Visual Studio 2017.

This study selects the six standard evaluation metrics of each
lung field segmentation model, including accuracy, precision, recall,
dice, intersection over union (IoU), and the median 95th Hausdorff
distance (HD) (Yang et al., 2023; Zeng et al., 2023). Four x-axis
direction distance errors are calculated to evaluate detected points
between the right and left heart border points and thoracic inner
edge points and their ground truths. Furthermore, the errors of
calculated CTR and its ground truth were also calculated to evaluate
the proposed method. Specifically, the evaluation metrics of the
x-axis direction distance and CTR errors are calculated by Equations
10, 11.

xerror � xDP − xGT, (10)
CTRerror � CTRC − CTRGT, (11)

where xDP represents the horizontal coordinates x(E1), x(E2),
x(D2

′), and x(D3
′) of the detection points of E1, E2, D2

′, and D3
′,

respectively. In addition, xGT represents the ground truth of the
horizontal coordinates x(E1), x(E2), x(D2

′), and x(D3
′). CTRC and

CTRGT represent the calculated value and ground truth of the CTR.

3 Results

Figures 4, 5 show the visualized lung field segmentation results
and evaluation metrics of the test set T1 based on various trained
CNN models. In addition, Figure 6 shows that the visualized lung
field segmentation results of the test set T2 are based on these trained
CNN models. These results indicate that all CNNs can perform well
in lung field segmentation for static and dynamic P-A CXR images.

Specifically, the mean accuracies (%) of these trained CNN
models are 98.93 ± 0.63, 98.93 ± 0.85, 99.02 ± 0.60, and 99.05 ±
0.69, respectively. In addition, the mean precision (%) of these
trained CNN models is 97.89 ± 1.49, 93.30 ± 1.40, 97.80 ± 1.96, and
98.36 ± 1.44, respectively. The mean recall (%) of these trained CNN
models is 97.55 ± 1.93, 97.31 ± 2.70, 98.05 ± 1.69, and 97.67 ± 2.14,
respectively. The mean dice (%) of these trained CNN models is
97.71 ± 1.56, 97.78 ± 1.63, 97.91 ± 1.46, and 97.99 ± 1.43,
respectively. The mean IoU (%) of these trained CNN models is
95.57 ± 2.91, 95.71 ± 3.05, 95.95 ± 2.74, and 96.11 ± 2.69,
respectively. Finally, the mean 95th HD of these trained CNN
models is 5.41 ± 3.81, 5.72 ± 5.02, 5.46 ± 4.51, and 5.02 ± 4.15,
respectively.

Meanwhile, Figures 7–10 show the typical key point detection
results of a tuberculosis case, a normal case in test set T1, and a
dynamic case in test set T2 based on various trained CNN models.
Specifically, the typical key points include the right and left thoracic
inner edge points (D2

′ and D3
′) and heart border points (E1 and E2).

To quantitatively evaluate the key points detection results of
Figures 7–9, Table 1 reports the mean distance errors at the x-axis
direction of key points in the test sets T1 and T2 based on various
trained CNNmodels. In addition, Figures 10, 11 show the visualized
mean distance errors at the x-axis direction of key points on the test
set T1. The mean with SD plots of Figures 10, 11 is drawn based on
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the absolute values of these distance errors at the x-axis direction of
key points.

Specifically, mean distance errors at the x-axis direction of key
points in the test set T1 based on the four trained CNN models are
3.8213 pixels, 4.1788 pixels, 4.3808 pixels, and 4.0833 pixels,
respectively. Meanwhile, mean distance errors at the x-axis
direction of key points in the test set T2 based on the four
trained CNN models are 3.4423 pixels, 2.7115 pixels,
2.7310 pixels, and 3.9615 pixels, respectively. Mean distance
errors at the x-axis direction of key points in the sets T1 and
T2 of all trained CNN models are 4.1161 pixels and
3.2116 pixels, respectively. The mean distance error at the x-axis
direction of key points in the test sets T1 and T2 based on various
trained CNNmodels is approximately 3.6639 [≈(4.1161 + 3.2116)/2]
pixels. Therefore, the deviation degree at the x-axis direction is about
0.72% (3.6639/512) on all 512 × 512 P-A CXR images.

Subsequently, Table 2 compares the mean CTR error in the test
sets T1 and T2 based on the previous methods (CardioNet) (Jafar
et al., 2022) and our proposed models. In addition, Figure 12 shows
the visualized CTR of the test sets T1 and T2 based on
various models.

Specifically, the mean CTR values in the test set T1 based on
these models are 0.446, 0.454, 0.457, 0.452, and 0.458. In addition,
the mean CTR values in the test set T2 based on these models are
0.615, 0.622, 0.644, 0.634, and 0.612. More specifically, the ground
truths of CTR in the test sets T1 and T2 are determined by these
three experienced radiologists. Mean CTR errors in the test set
T1 based on these models are 0.030, 0.022, 0.019, 0.024, and 0.018. In
addition, mean CTR errors in the test set T2 based on these
models are 0.031, 0.024, 0.002, 0.012, and 0.034. Meanwhile,
mean CTR errors in the test sets T1 and T2 based on these
models are 0.0305 [(0.030 + 0.031/2)], 0.0230 [(0.022 + 0.024/2)],

FIGURE 9
Typicalkeypointdetection resultsofadynamiccase in thetest setT1basedonvarious trainedCNNmodels. (A)SegNet; (B)U-Net; (C)ResU-Net++;and (D)AttU-Net.
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0.0105 [(0.019 + 0.002/2)], 0.0180 [(0.024 + 0.012/2)], and
0.0260 [(0.018 + 0.034/2)]. Therefore, the experimental results
show that our proposed model achieves the equivalent
performance of CTR calculation as the previous CardioNet model.

Table 3 compares the mean segmentation time, mean CTR
calculation time, and mean total time of the test sets T1 and
T2 based on previous and our proposed models. Specifically,
these trained CNN models run on the GPU for segmenting the
lung field and/or heart, and then, the CTR calculation algorithm
based on the lung field and/or heart mask images runs on the CPU.
The previous CardioNet takes more mean segmentation time, mean
CTR calculation time, and mean total time of the test sets T1 and
T2 than our proposed model. However, when the GPU runs the

segmentation task for the first CXR image, it requires an amount of
time to configure and load the corresponding model. For example, it
takes 4,897/4,885 ms (CardioNet),951/979 ms (SegNet), 2,249/
2,350 ms (U-Net), 2,182/2,226 ms (ResU-Net++), and 2,144/
2,158 ms (AttU-Net), when the GPU runs the segmentation task
for the first CXR image of the test set T1/T2.

4 Discussion

This section conducts the following discussion and points out
this study’s limitations and the future direction based on the
experimental results.

FIGURE 10
Visualized mean distance errors at the x-axis direction of key points on the test set T1. (A) Distribution map of key points’ distance errors based on
SegNet; (B)mean with an SD plot of key points’ distance errors based on SegNet; (C) distribution map of key points’ distance errors based on U-Net; (D)
mean with an SD plot of key points’ distance errors based on U-Net; (E) distribution map of key points’ distance errors based on ResU-Net++; (F) mean
with an SD plot of key points’ distance errors based on ResU-Net++; (G) distribution map of key points’ distance errors based on AttU-Net; and (H)
mean with an SD plot of key points’ distance errors based on AttU-Net.

TABLE 1 Mean distance errors at the x-axis direction of key points in the sets T1 and T2 based on various trained CNN models.

Network/test set Mean error of
point D2’ (pixels)

Mean error of
point D3’ (pixels)

Mean error of
point E1 (pixels)

Mean error of
point E2 (pixels)

Mean (pixels)

SegNet/T1 4.333 5.857 2.095 3.000 3.8213 4.1161

U-Net/T1 4.810 6.048 2.381 3.476 4.1788

ResU-Net++/T1 4.476 6.571 2.095 4.381 4.3808

AttU-Net/T1 4.762 6.333 2.143 3.095 4.0833

SegNet/T2 3.615 3.154 1.923 5.077 3.4423 3.2116

U-Net/T2 3.308 2.615 3.154 1.769 2.7115

ResU-Net++/T2 3.462 2.385 1.769 3.308 2.7310

AttU-Net/T2 4.769 2.846 1.385 6.846 3.9615
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4.1 Dynamic lung field segmentation driven
by CNNs with static P-A CXR images

TheCNN lungfield segmentationmodel trained by inspiratory chest
computed tomography (CT) images has been applied to the lung field
segmentation of inspiratory and expiratory chest CT images, achieving
good performance (Deng et al., 2024; Wang et al., 2024). Similarly, the
lung field segmentation model trained on CNNs based on static P-A
CXR images also demonstrated good performance in lung field
segmentation of dynamic P-A CXR images. Therefore, this provides
a necessary foundation for quantitative analysis of dynamic P-A CXR
images, such as the CTR calculation. Specifically, CNNs have also played
a crucial role in semantic segmentation, where the goal is to assign a class
label to each pixel in an image, enabling pixel-level understanding and
overcoming the limitations of the traditional approaches (Robert, 2024).
In addition, a robust and standard segmentation model of pathological
lungs is crucial for quantitative analysis of the lungs based on P-A CXR
images. However, generalizing lung field segmentation models based on
P-A CXR images has always been a significant engineering problem in
clinical applications (Rajaraman et al., 2024). The main reason for this

engineering problem is the lack of cross-center P-A CXR images and
their diversity. The data augmentation technology enriches the training
set of the static P-A CXR images and relieves the engineering problem of
generalization in lung field segmentation models (Hasan et al., 2024;
Kiruthika and Khilar, 2024). Therefore, the static P-A CXR images form
a single center, limiting the generalization of lung field segmentation
models. Meanwhile, the diversity of pathological static P-A CXR images
in the training set is also essential for improving the generalization of
lung field segmentation models, enabling CNNs to learn more prior
knowledge. The static P-A CXR images of the cross-center and the
diversity and data augmentation techniquesmay fundamentally solve the
generalization problem of lung field segmentation models.

4.2 The lung field morphology for automatic
and precise CTR calculation

The positional relationship between the lung field and the heart
on the P-A CXR images is the basis for calculating the CTR based on
the lung field. Specifically, the right and left cardiophrenic angles C1

FIGURE 11
Visualized mean distance errors at the x-axis direction of key points on the test set T2. (A) Distribution map of key points’ distance errors based on
SegNet; (B)mean with an SD plot of key points’ distance errors based on SegNet; (C) distribution map of key points’ distance errors based on U-Net; (D)
mean with an SD plot of key points’ distance errors based on U-Net; (E) distribution map of key points’ distance errors based on ResU-Net++; (F) mean
with an SD plot of key points’ distance errors based on ResU-Net++; (G) distribution map of key points’ distance errors based on AttU-Net; and (H)
mean with an SD plot of key points’ distance errors based on AttU-Net.

TABLE 2 Comparison of the mean CTR error in the test sets T1 and T2 based on previous and our proposed models.

Model Mean CTR/T1 Mean CTR/T2 Mean T1 error Mean T2 error Mean error

CardioNet Jafar et al. (2022) 0.446 0.615 0.030 0.031 0.0305

Ours (SegNet) 0.454 0.622 0.022 0.024 0.0230

Ours (U-Net) 0.457 0.644 0.019 0.002 0.0105

Ours (ResU-Net++) 0.452 0.634 0.024 0.012 0.0180

Ours (AttU-Net) 0.458 0.612 0.018 0.034 0.0260
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and C2 are two relatively prominent points on the P-A CXR images
after careful observation and analysis of the P-A CXR images. This
provides a certain possibility for automatically calculating the CTR
based on the P-A CXR images. Significantly, the right cardiophrenic
angle C1 is the farthest point from the line connecting the right apex
pulmonis A1 and costophrenic angle B1, which helps determine the

highest point D1 on the right hemi-diaphragm from the
costophrenic angle B1 to the right cardiophrenic angles C1.
Meanwhile, the right and left heart border points E1 and E2 are
closely adjacent to the left and right lung fields and form inward
indentations on the opposite sides of the left and right lung fields on
the P-A CXR images. Therefore, this facilitates the location of the

FIGURE 12
Visualized CTR of the test sets T1 and T2 based on variousmodels. (A)CTR distributionmap of the test set T1; (B)meanwith an SD plot of CTR on test
set T1; (C) CTR distribution map of the test set T2; and (D) mean with an SD plot of CTR on test set T2.

TABLE 3 Comparison of the mean segmentation time, mean CTR calculation time, andmean total time of the test sets T1 and T2 based on previous and our
proposed models.

Model Mean segmentation time of T1/
T2 (ms)

Mean CTR calculation time of T1/
T2 (ms)

Mean total time of T1/
T2 (ms)

CardioNet Jafar et al.
(2022)

347.126/368.638 14.238/13.071 361.364/381.709

Ours (SegNet) 58.333/91.769 7.000/6.923 65.333/98.692

Ours (U-Net) 123.333/196.077 8.048/6.231 131.381/202.308

Ours (ResU-Net++) 184.476/257.000 6.476/6.462 190.952/263.462

Ours (AttU-Net) 118.190/188.385 6.571/6.077 124.761/194.462
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right and left heart border points E1 and E2 on lung mask edges from
the right and left cardiophrenic angles C1 and C2 to the intersection
points C1

′ and C2
′, respectively. Based on the above, the two-

dimensional projection morphology of the lung field enables
automatic and precise CTR calculation, overcoming the
limitations to heart segmentation and avoiding errors in heart
segmentation. In addition, our proposed models take less time to
calculate the CTR, which benefits that the proposed models only
segment the lung field compared with the previous CardioNet
model. Our proposed model achieves the equivalent performance
of CTR calculation as the previous CardioNet model (Jafar
et al., 2022).

4.3 Providing the possibility for the analysis
and evaluation of dynamic CTRs

Dynamic CTRs can directly reflect the relationship between the
changes in the maximum transverse diameter of the chest during
the respiratory process and the maximum transverse diameter of
the heart at different cardiac cycles. Actually, the chest can be
imaged by autonomously controlling breathing while performing a
chest X-ray. However, the heartbeat process cannot be
autonomously controlled while chest X-rays are performed.
Therefore, the models developed above may provide evidence of
the possibility of analyzing and evaluating dynamic CTRs.
Specifically, the corresponding P-A CXR images of the different
cardiac cycles can be obtained by controlling the breathing state at
any moment during the breathing process, such as deep inhalation,
deep exhalation, or breath holding. Subsequently, dynamic CRTs
for different cardiac cycles can be calculated for clinical analysis
and evaluation. Meanwhile, like inspiratory and expiratory chest
CT images (Deng et al., 2024; Wang et al., 2024), P-A CXR images
of the different cardiac cycles can be obtained by controlling the
holding of breath to achieve deep inhalation and exhalation, to
analyze the difference in CTR between deep inhalation and
exhalation.

4.4 Limitations and future research
directions

Although we propose an automated CTR calculation technique
based on lung field models from an engineering perspective, our
research still has certain limitations. First, the pathological lung
image types used for training CNNs are insufficient. Second, we only
explain the principle of automatically calculating the CTR based on
the lung fields based on graphics and achieve the detection of
dynamic CTRs. However, we do not have sufficient dynamic P-A
chest X-ray images to further analyze the association between
dynamic CTRs and specific lung or heart diseases from a clinical
perspective, for example, differences in dynamic CTRs under
different GOLD classifications in chronic pulmonary heart
disease caused by chronic obstructive pulmonary disease. Based
on the above, we encourage researchers to collect more dynamic P-A
CXR images of different lung diseases to improve the lung field
segmentation model further and hope to discover more clinically
significant facts based on dynamic CTRs.

5 Conclusion

We propose an automatic CTR calculation model based on
lung fields abstracted from P-A CXR images without heart
segmentation. First, the lung field mask images are abstracted
from the P-A CXR images based on the pre-trained CNNs. Second,
a novel localization method of the heart’s right and left border
points is proposed based on the two-dimensional projection
morphology of the lung field mask images using graphics. The
results show that the mean distance errors at the x-axis direction of
the CTR’s four key points in the test sets T1 and T2 based on these
pre-trained CNNs are 4.1161 and 3.2116 pixels, respectively. In
addition, the mean CTR errors on the test set T1 and T2 based on
four proposed models are 0.0208 and 0.0180, respectively. Our
proposed model achieves the equivalent performance of CTR
calculation as the previous CardioNet model and takes less
time. Therefore, our proposed method is practical and feasible
and may become an effective tool for initially evaluating
cardiac diseases.
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