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1 Introduction

Blood flow restriction resistance exercise (BFR-RE) is a rapidly expanding exercise
methodology demonstrated to increase muscle mass and performance (Loenneke et al.,
2012). While traditional recommendations for muscle hypertrophy suggest resistance
training above 70% of the one repetition maximum (1RM) load (American College of
Sports Medicine, 2009), BFR-RE purports similar increases in muscle strength and size with
as little as 20% of the 1RM (Abe et al., 2005). This is accomplished by the restriction of blood
flow to the exercising muscle through the application of a pressure device, typically a
pneumatic cuff, proximally on the desired limb (Sato, 2005; Loenneke et al., 2012). The
ischemic nature of BFR-RE causes the accumulation of metabolites in the muscle
interstitium, which thereby stimulates muscle growth (Takada et al., 2012).

BFR-RE is widely practiced by bodybuilders and athletes, as it increases muscle strength
and mass at low levels of physical exertion. As such, it has recently moved into the clinic as a
rehabilitation method, especially for patients incapable of high-intensity exertion and who
may otherwise struggle with muscle rehabilitation. The efficacy of BFR-RE in
musculoskeletal rehabilitation has been demonstrated (Hughes et al., 2017), and recent
interest has focused on the utility of BFR-RE for cardiovascular rehabilitation
(Angelopoulos et al., 2023; da Cunha Nascimento et al., 2020; Kambic et al., 2023;
Wong et al., 2018). Concerns have been raised regarding the safety of BFR-RE in all
populations, citing a potentially increased risk of adverse cardiovascular events induced by
activation of the exercise pressor reflex (EPR—muscle metaboreflex and muscle
mechanoreflex) secondary to arterial occlusion (Spranger et al., 2015; Cristina-Oliveira
et al., 2020). Of particular note are patients with cardiovascular disease who generally have
exaggerated EPR responses during exercise (Spranger et al., 2015). While patients with
cardiovascular disease could potentially benefit from BFR-RE due to their inability to
tolerate high-intensity exercise, a comprehensive understanding of the cardiovascular
responses to BFR-RE is crucial to its safe application in the clinic.

2 Cardiovascular responses to BFR-RE

Multiple studies have assessed the efficacy of BFR-RE, at both low- and high-intensity
(as a percentage of 1RM), in stimulating muscle hypertrophy and increasing muscle
strength (Lowery et al., 2014; Pearson and Hussain, 2015; Centner et al., 2019;
Grønfeldt et al., 2020; Kataoka et al., 2022), but fewer such studies have assessed the
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hemodynamic changes with BFR-RE, which would be implicated in
any EPR response (Lemos et al., 2022; Pedon et al., 2022). Of the
BRF-RE studies that measure hemodynamics, a wide range of
cardiovascular responses are reported. This is largely due to the
nonstandard nature in which BFR-RE is currently applied (e.g., low-
vs. high-load, arm vs leg, type of occlusion device, occlusion
pressure, intermittent vs. continuous occlusion). While efforts
have been made to integrate the muscle performance-related
findings of BFR-RE studies (Pearson and Hussain, 2015; Hughes
et al., 2017; Grønfeldt et al., 2020) and create a standard protocol for
its application (Patterson et al., 2019), there remains a lack of
unification of the cardiovascular responses to BFR-RE. Recent
meta-analyses (Lemos et al., 2022; Pedon et al., 2022) have
analyzed extant BFR-RE studies in which cardiovascular
responses were measured and concluded that BFR-RE does not
meaningfully impact the cardiovascular system.

Lemos et al. (2022) compared BFR-RE studies that investigated
cardiovascular responses to low-load BFR-RE vs low- and/or high-
load unrestricted, or free-flow, resistance exercise (FF-RE). The
Authors concluded that low-load BFR-RE elicits blunted cardiac
output and heart rate responses when compared to high-load FF-RE.
By and large, the studies included in this meta-analysis (n = 17)
measured cardiovascular responses to BFR-RE during rest and post-
exercise (with the cuff deflated). However, two studies included in
the analysis measured cardiovascular responses during BFR-RE.
Brandner et al. (2015) showed that systolic blood pressure (SBP),
diastolic blood pressure (DBP), and heart rate (HR) were
significantly elevated during intermittent BFR-RE compared with
low-load FF-RE. Similarly, Vieira et al. (2013) reported that SBP,
DBP, and HR were significantly greater during BFR-RE when
compared to low-intensity FF-RE. While both of these studies are
included in the meta-analysis, the aforementioned BFR-RE data
during exercise were not reported or commented on. This may be
attributed to the design of the analysis, in which reportable acute
cardiovascular response data are collected pre- and post-exercise.

Pedon et al. (2022) compared BFR-RE studies that investigated
cardiovascular responses to low-load BFR-RE vs low- and/or high-
load FF-RE. The Authors concluded that there was no difference in
cardiovascular responses between low-load BFR-RE and low-load
FF-RE. Similar to Lemos et al. (2022), a majority of the studies
included in the meta-analysis (12 of 15) measured and compared
cardiovascular responses during rest and post-exercise (with the cuff
deflated). However, three studies included in the analysis measured
cardiovascular responses during BFR-RE. Staunton et al. (2015)
measured cardiovascular responses during low-load BFR-RE
compared with low-load FF-RE. The study reported that SBP,
DBP, and HR were significantly elevated during the final 30 s of
exercise (with the blood pressure cuff still inflated). These are the
only cardiovascular data during BFR-RE included in the meta-
analysis. Takano et al. (2005) measured cardiovascular responses
during BFR-RE and showed that SBP, DBP, and HR were
significantly elevated during low-intensity BFR-RE when
compared with low-intensity FF-RE. However, Pedon et al.
(2022) only included data comparing peak BFR-RE
cardiovascular responses to rest. Finally, Poton and Polito (2016)
measured cardiovascular responses during BFR-RE and showed that
SBP, DBP, and HR were significantly elevated during set three (out
of 3) of low-intensity BFR-RE when compared with low-intensity

FF-RE. However, Pedon et al. (2022) only included the first two sets
of BFR-RE where there were no significant differences in any
hemodynamic parameters.

While the aforementioned meta-analyses concluded that BFR-
RE does not meaningfully impact the cardiovascular system, in
contrast, a comprehensive systematic analysis investigating the
effects of BFR-RE on hemodynamics concluded that low-
intensity BFR-RE significantly increases SBP, DBP, and HR when
compared to low-intensity FF-RE (Neto et al., 2017). However, it
was also concluded that these changes are within the normal range
and thus this method may be considered safe and viable for special
populations, such as the elderly and cardiac patients. Concerningly,
the vast majority of data assessed from these studies were collected
pre- and post-exercise.

3 The muscle metaboreflex

Caution against widespread implementation of BFR training in
the clinic has been raised (Spranger et al., 2015), given that BFR
exercise induces the accumulation of muscle metabolites (Takano
et al., 2005; Suga et al., 2009), muscle metabolites elicit the muscle
metaboreflex (Boushel, 2010), and the EPR augments cardiovascular
responses during exercise (Boushel, 2010). By design, Pedon et al.
(2022) and Lemos et al. (2022) did not analyze cardiovascular
response data to during BFR-RE, and therefore these meta-
analyses were also unable to assess to what extent, if any, the
muscle metaboreflex is engaged during BFR-RE. Thus, the
conclusions of these studies that the cardiovascular responses to
BFR-RE are either blunted or no different than FF-RE may be
misleading.

Importantly, a few studies have collected hemodynamic data
during BFR-RE that show significantly exaggerated cardiovascular
responses (notably SBP, DBP, and HR) when compared with FF-RE
(Takano et al., 2005; Brandner et al., 2015; Staunton et al., 2015;
Poton and Polito, 2016). Other studies have also reported
significantly elevated cardiovascular responses between sets
(Downs et al., 2014; Scott et al., 2018; Franz et al., 2020) and
immediately following BFR-RE (Barnett et al., 2016; Jessee et al.,
2017; Bell et al., 2018; Hori et al., 2020), both during sustained cuff
inflation. While post-exercise is distinct from exercise, maintaining
arterial occlusion immediately following exercise is a method of
isolating the muscle metaboreflex–termed post-exercise muscle
ischemia (PEMI) (Spranger et al., 2013). More specifically,
muscle metabolites that accumulate during ischemic exercise
(such as BFR-RE) elicit the muscle metaboreflex, and if arterial
occlusion is sustained following exercise, the metabolites are trapped
within the muscle interstitium and thus the reflex remains engaged
(Alam and Smirk, 1937). PEMI is traditionally performed with
complete arterial occlusion and, during PEMI, arterial blood
pressure remains elevated for as long as the ischemia is
maintained (Alam and Smirk, 1937). Hori et al. (2020)
demonstrated that the muscle metaboreflex is elicited during
BFR-RE as SBP was significantly elevated during a suprasystolic
PEMI maneuver.

For safety reasons, BFR-RE is generally performed with 40%–
80% (Scott et al., 2015) of complete arterial occlusion (i.e., arterial
occlusion pressure (AOP)) (Jessee et al., 2016). Therefore, the
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muscle metaboreflex is unlikely to be fully engaged as metabolites
are not completely trapped within the muscle interstitium.
Nonetheless, studies have reported significantly elevated SBP
between sets (Downs et al., 2014; Scott et al., 2018; Franz et al.,
2020) and immediately following a bout of BFR-RE (Barnett et al.,
2016; Jessee et al., 2017; Bell et al., 2018; Hori et al., 2020), both
during sustained cuff inflation. Both of these settings mimic PEMI
and these findings further point to muscle metaboreflex activation
during BFR-RE. Supporting this result, a novel technique was
developed for approximating SBP during BFR-RE. Immediately
post-BFR-RE, cuff occlusion pressure is increased until an AOP
is established (given as SBP increases, a higher cuff pressure must be
generated to prevent perfusion). Using this approach, studies have
demonstrated a significant increase in SBP, expressed as a relative
increase in AOP (Barnett et al., 2016; Jessee et al., 2017; Bell et al.,
2018). This increase is further exacerbated by increasing initial cuff
occlusion pressure or muscle load (Jessee et al., 2017), suggesting this
response is correlated with the intensity of BFR-RE.

4 Discussion

The majority of studies assessing the cardiovascular responses to
BFR-RE fail to address the hemodynamic changes during BFR-RE,
capturing only pre- and post-exercise data (Lemos et al., 2022;
Pedon et al., 2022). In addition, these studies are lacking in
standardization of protocol design, especially in the type,
intensity, occlusion pressure, time under tension, and limb of
exertion. Overall, this has prevented meaningful conclusions
regarding the hemodynamic consequences of BFR-RE.

BFR training has been shown to be an effective treatment
modality for orthopedic rehabilitation patients (Hughes et al.,
2017), paving the way for increased interest in its use in patients
with cardiovascular disease (da Cunha Nascimento et al., 2020;
Kambic et al., 2023; Wong et al., 2018). While several studies have
investigated the utility of BFR exercise in coronary artery disease
(Kambič et al., 2019; Kambič et al., 2021) and hypertension (Araujo
et al., 2014; Chulvi-Medrano, 2015; Cezar et al., 2016; Pinto and
Polito, 2016; Barili et al., 2018), most of these studies only assessed
cardiovascular responses pre- and post-BFR exercise, not during
BFR exercise. For example, Araujo et al. (2014) reported that low-
intensity BFR-RE in hypertensive women reduced post-exercise SBP
more than moderate-intensity BFR-RE. The study concluded that
low-intensity BFR-RE may be a useful therapy for reducing blood
pressure in hypertensive individuals. Importantly, the study
additionally reported that SBP was substantially higher during
BFR-RE when compared with FF-RE. Pinto and Polito (2016)
reported exaggerated cardiovascular responses (SBP, DBP, and
HR) during low-intensity BFR-RE in hypertensive women
compared with high-intensity FF-RE. In a subsequent study, this
group reported no differences in cardiovascular responses during
low-intensity BFR-RE in hypertensive women compared with high-
intensity FF-RE (Pinto et al., 2018). Interestingly, the study reported
that SBP and DBP were substantially elevated during the recovery
period immediately following BFR-RE when compared with FF-RE,
suggesting BFR-RE-induced muscle metaboreflex activation.

Finally, a systematic review on the cardiovascular responses to
BFR exercise in hypertensive subjects concluded that no
definitive recommendation can be made due to the inadequate
methodological design of the studies (da Cunha Nascimento
et al., 2020). Therefore, the findings and recommendations of
these studies should be critically examined.

In summary, while there has been a considerable amount of
research on the cardiovascular responses to BFR-RE, most studies
have not investigated the cardiovascular responses elicited during
exercise with arterial occlusion. The overextension of pre- and post-
exercise BFR-RE hemodynamic data as a surrogate for the
cardiovascular responses during BFR-RE could result in
misleading conclusions. Rest and recovery data cannot be used to
establish the safety of BFR-RE, especially for clinically vulnerable
populations. A complete understanding of the cardiovascular
responses during BFR-RE is prerequisite when considering the
application of BFR-RE for individuals with cardiovascular disease
(e.g., hypertension, heart failure, and peripheral artery disease) who
generally exhibit exaggerated muscle metaboreflex and
cardiovascular responses during traditional FF-RE (Hammond
et al., 2000; Smith et al., 2005; Crisafulli et al., 2007; Leal et al.,
2008; Tsuchimochi et al., 2010; Mizuno et al., 2011; Li and Xing,
2012; Muller et al., 2012; Greaney et al., 2014). Thus, future studies
shouldmodify and standardize current methodologies to capture the
real-time cardiovascular responses to BFR-RE.
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