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Objective: Recognizing emotions from electroencephalography (EEG) signals
is a challenging task due to the complex, nonlinear, and nonstationary
characteristics of brain activity. Traditional methods often fail to capture
these subtle dynamics, while deep learning approaches lack explainability.
In this research, we introduce a novel three-phase methodology integrating
manifold embedding, multilevel heterogeneous recurrence analysis (MHRA),
and ensemble learning to address these limitations in EEG-based emotion
recognition.

Approach: The proposed methodology was evaluated using the SJTU-SEED IV
database. We first applied uniform manifold approximation and projection
(UMAP) for manifold embedding of the 62-lead EEG signals into a lower-
dimensional space. We then developed MHRA to characterize the
complex recurrence dynamics of brain activity across multiple transition
levels. Finally, we employed tree-based ensemble learning methods to
classify four emotions (neutral, sad, fear, happy) based on the extracted
MHRA features.

Main results: Our approach achieved high performance, with an accuracy of
0.7885 and an AUC of 0.7552, outperforming existing methods on the same
dataset. Additionally, our methodology provided the most consistent recognition
performance across different emotions. Sensitivity analysis revealed specific
MHRA metrics that were strongly associated with each emotion, offering
valuable insights into the underlying neural dynamics.

Significance: This study presents a novel framework for EEG-based emotion
recognition that effectively captures the complex nonlinear and nonstationary
dynamics of brain activity while maintaining explainability. The proposed
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methodology offers significant potential for advancing our understanding of
emotional processing and developing more reliable emotion recognition
systems with broad applications in healthcare and beyond.
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heterogeneous recurrence analysis, emotion recognition, multi-channel EEG, dynamic
system, ensemble learning

1 Introduction

The brain, one of the most intricate systems of the body, has
been a subject of great interest for researchers aiming to unravel its
complexities (Wolpaw and Birbaumer, 2006). The complexity of
underlying nature (genetics) and the effect of nurture (life choices
and experiences) creates an infinite number of possible stimuli and
interactions, resulting in an evolving dynamic system within the
brain. Understanding this dynamic system is crucial due to its
pivotal role in various domains, including cognition, behavior,
sleep, neurological disorders, and emotion (Lindquist et al., 2012;
Akhand et al., 2023). To thoroughly explore this dynamic system,
advanced technologies like functional magnetic resonance imaging
(fMRI) and electroencephalography (EEG) have been employed to
measure brain activity and study interactions with the environment
(Jellinger, 2003; Haynes and Rees, 2006; Tong and Pratte, 2012).
Recently, EEG has become available as a wearable technology,
making it an ideal choice for continuous monitoring of neural
processes and brain activity.

Emotions are complex psychophysiological processes, yet
universally, they are experienced similarly by all people. Thus,
the study of emotion recognition has garnered significant
attention in various fields, such as neurology, computer science,
cognitive science, and psychology (Lindquist et al., 2012; Akhand
et al., 2023). Prior research has leveraged the time-domain, (Liu
et al., 2021; Chen D. et al., 2023), frequency-domain, (Gao et al.,
2019; Houssein et al., 2022; Akhand et al., 2023), or time-frequency
domain methods (Yuvaraj et al., 2023) to extract the features within
EEG signals to identify emotions. Recent research (Chang et al.,
2022; Yang et al., 2022) has focused on leveraging artificial
intelligence and neural network models to enhance the accuracy
and efficiency of emotion classification based on EEG data (Li
J. et al., 2021; Tian et al., 2021). Dan et al. introduced a
clustering-promoting semi-supervised method to enhance the
performance of emotion recognition (Dan et al., 2021). Wang
et al. established a convolutional neural network (CNN)
framework for emotion recognition (Wang et al., 2020). These
advancements not only contributed to the field of neuroscience
but also have practical applications in human-computer interaction
and mental health diagnoses (Chai et al., 2018). Thus, EEG has
become an important technology for objective emotion recognition
(Peng et al., 2023).

Recent developments in EEG-based emotion recognition have
focused on improving classification accuracy and robustness
through various techniques such as feature fusion, dynamic
functional connectivity analysis, and deep learning architectures.
Fusing frequency-domain features and brain connectivity features
has shown promising results in cross-subject emotion recognition
(Chen et al., 2022a). Dynamic functional connectivity analysis has

also been employed to capture the time-varying characteristics of
brain networks during emotional states (Liu et al., 2019). Novel deep
learning architectures, such as deep CNNs (Chen J. et al., 2019),
multi-scale masked autoencoders (Pang et al., 2024), transformer-
and attention-based CNNs (Li C. et al., 2021; Si et al., 2023) have
been proposed to enhance emotion recognition performance.
Domain adaptation techniques have also been explored to
facilitate the transfer of emotion recognition models across
different subjects (Chen et al., 2022b). In addition to emotion
recognition, EEG-based approaches have been applied to related
fields, such as P300 wave detection, driving fatigue detection, and
biometric authentication, where self-attentive channel-connectivity
capsule networks (Chen C. et al., 2023; Wang et al., 2023) and
attention-based multiscale CNN with dynamical graph
convolutional network (GCN) (Wang et al., 2021) have
demonstrated improved performance. Systems like E-Key (Xu
et al., 2023a) combine biometric authentication with driving
fatigue detection. EEG studies have also examined the effects of
aging, task difficulty, and training on working memory capacities,
highlighting EEG’s diverse applications in cognitive research (Xu
et al., 2023b).

Despite the progress made in EEG-based emotion recognition,
several challenges remain. First, the nonlinear and nonstationary
characteristics of EEG signals pose significant difficulties (Bazgir
et al., 2018). Most machine learning based methodologies, such as
linear discriminant analysis (Chen DW. et al., 2019), generalized
linear regression (Li et al., 2019a), or Fast Fourier Transform (FFT)
(Murugappan and Murugappan, 2013), often rely on linear
assumptions, which fail to capture the nuanced nonlinear and
nonstationary characteristics of EEG. Second, the complexity of
multiple EEG electrodes capturing the interaction of brain activity
and large volumes of data is another challenge. Deep learning
models can address this complexity; however, they suffer from
the “black box” problem while requiring substantial
computational resources. Third, EEG signals present challenges
in both temporal and spatial domains. While many studies focus
on the temporal aspects of emotions (Liu et al., 2010; Zheng et al.,
2019a), spatial information is equally important when adapting
these methodologies in the future to neurological, sleep, or
psychological disorders. Lastly, emotions are interconnected over
time, with current emotional states being influenced by past
emotions and potentially impacting future experiences (Thornton
and Tamir, 2017). These transitions, between past, present, and
future, have not been well studied using EEG signals.

To tackle these challenges, this paper presents an innovative
three-phase methodology that characterizes and quantifies complex
dynamic transitions of brain activities in multiple granularities while
retaining high resolution to detect emotions from multi-channel
EEG. In the first phase, manifold learning techniques are utilized to
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embed the dimensionality of high-dimensional 62-lead EEG signals
into a more manageable lower-dimensional space. This embedding
preserves the complex spatiotemporal characteristics of the signals,
offering rich insights into brain activity while enhancing
computational efficiency. In the second phase, we propose a
novel multilevel heterogeneous recurrence analysis to characterize
the nuanced, nonlinear, and nonstationary dynamic characteristics
of the EEG signals at different granularities within the state-space
domain. Our approach results in a quantification of dynamic
patterns characterizing underlying brain activity, which cannot be
achieved by other methods. The final phase employs ensemble
supervised learning models that utilize metrics that quantify
dynamic features and patterns within the EEG to classify each
emotion. Ensemble learning not only improves overall
performance but also provides a robust framework to prevent
potential overfitting and account for variability in EEG data. This
phase explains the decision-making processes underlying emotion
classification. Experimental results show that our proposed
methodology achieved accuracy and area under the receiver
operating characteristic (ROC) curve (AUC) values of 0.7885 and
0.7552, respectively. These results surpass state-of-the-art studies
using the same dataset. Moreover, our methodology provides the
most consistent performance across different emotions compared to
other models. Lastly, our method provides subtle quantifications
and rich insights into the dynamic features of brain activity related
to emotions.

In summary, this research introduces a novel recurrence
analysis-based methodology for EEG-based emotion recognition
that effectively captures the complex nonlinear and nonstationary
dynamics of brain activity while maintaining explainability. The rest
of this paper is organized as follows: Section 2 is a brief background
relevant to our methodology; Section 3 describes the dataset
employed to formulate our approach; Section 4 outlines the
proposed methodology, structured in three distinct phases;
Section 5 details the outcomes of our study; and Section 6 offers
an in-depth discussion of the insights gained and conclusions drawn
from our investigation.

2 Research background

In this section, we introduce the foundational concepts and
background of our novel methodology, multilevel heterogeneous
recurrence analysis (MHRA). We begin by discussing the basic
principles of recurrence analysis (RA) and its evolution into
heterogeneous recurrence analysis (HRA). Then, we review the
development and application of HRA to complex transitions,
which is further developed and refined into MHRA.

2.1 Recurrence analysis

Recurrence, defined as a situation where the state of a system at a
certain time is very similar to its state at one or more previous times,
is a fundamental feature of complex systems (Hatami et al., 2019).
From Poincaré’s initial descriptions of recurrence in the 1890s and
the subsequent introduction of Recurrence Analysis (RA) by
Webber and Zbilut in the 1980s (Khoo et al., 1996), the

development of this analytical method has continuously evolved.
In the early 2000s, Norbert Marwan and his colleagues made
significant contributions to refining and applying RA, thereby
enhancing its use across a variety of scientific fields, including
geophysics (Eroglu et al., 2014; Lucarini et al., 2016), physiology
(Khoo et al., 1996; Webber and Zbilut, 2005), meteorology
(Bouabdelli et al., 2020), economics (Mosavi et al., 2020), and
engineering (Shu et al., 2021). Consequently, RA has become one
of the most widely used tools for analyzing dynamic complex
systems. Note that the recurrence can be mathematically defined
as Ri,j in Eq. 1, indicating whether a recurrence exists between
system states si and sj. If the proximity of si and sj, measured by
‖si − sj‖, is smaller than a predefined threshold ϵ, then a recurrence
exists between si and sj (Eckmann et al., 1987; Marwan et al., 2007a;
Marwan, 2008).

Ri,j � H ϵ − si − sj
���� ����( ) (1)

whereH(x) is a Heaviside function, in whichH(x) � 1 if x≥ 0, and
H(x) � 0 otherwise; (Eckmann et al., 1987) st is the system state at
time t. The recurrence of the system over a period of observation
window is then represented as a symmetric matrix R � Rij,∀i, j{ },
which can be geometrically visualized as a Recurrence Plot (RP),
typically shown as a dot plot where each axis represents the entire
observation period and a dot plotted in the coordinate (i, j) indicates
a recurrence exists between time i and j. This visualization not only
highlights the frequency of recurrence but also reveals patterns and
structures indicative of the dynamical behavior of the system, such
as stability, periodicity, or chaotic dynamics (Eckmann et al., 1987).
With analyzing the sophisticated geometric patterns in the RP, the
nonlinear, nonstationary, and dynamic system characteristics are
then quantified and characterized, known as Recurrence
Quantification Analysis (Webber and Zbilut, 2005; Webber and
Marwan, 2015). Notably, Marwan et al. generalized RP from a two
dimensional matrix to a four dimensional tensor to capture the
recurrence patterns within spatial data (Marwan et al., 2007b). RA
has achieved tremendous success in various fields, for instance, it has
been used to improve the normalization of electromyography signals
(Avdan et al., 2023) detect series arc faults in photovoltaic systems
(Amiri et al., 2022) and analyze histopathological images (Wang and
Chen, 2022). Additionally, Donner et al. leveraged network topology
to interpret the recurrence matrix R, thereby developing a novel
analytical framework known as the recurrence network (RN). This
approach provides another perspective for effectively parsing the
dynamic features of complex systems (Donner et al., 2010; Donner
et al., 2011). Notably, our previous work developed an innovative
RN to analyze the complex patterns in spatial data, which has
already been implemented in characterizing surface roughness in
ultra-precision machining (Chen et al., 2018) and in detecting
invasive ductal carcinoma in breast cancer (Chen CB. et al., 2023).

2.2 Heterogeneous recurrence analysis

Traditional RA, including RP and RN, treats recurrence
homogeneously, which presents limitations when characterizing
nuanced dynamic features. To improve RA, Yang et al. developed
HRA, which addresses the heterogeneity of recurrence and
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dramatically enhances the analytical capabilities (Yang and Chen,
2014; Chen and Yang, 2015; Chen and Yang, 2016). HRA
differentiates recurrences based on the properties of system
states, categorizing each state st into K different groups, denoted
as L(st) � k ∈ 1, 2, . . . , K{ } for all t. It is crucial to note that the
states within one category share similar system properties, while
states in different categories exhibit distinct system properties.
Heterogeneous recurrence is mathematically represented as Eq. 2:

Ωij � L si( ) ·H 0 − L si( ) − L sj( )����� �����( ) (2)

where L(st) indicates the category of state st for all t, ‖ · ‖ represents
the norm, and H(·) denotes a Heaviside function. This approach
means that if si and sj belong to the same category L(st), a
recurrence exists between si and sj in category L(si). This
method not only enhances the resolution of single-state
recurrences but also reveals the sophisticated dynamics of
transitions, which are often limited by conventional RA.
Furthermore, HRA employs the Iterated Function System (IFS),
an iterative projection function used to construct fractals, to project
a sequence of transitions into a fractal space. This utilization of a
fractal structure’s geometric features allows for a detailed
characterization of complex dynamic properties associated with
transitions (Yang and Chen, 2014). The analysis and
quantification of these geometric structures, termed
Heterogeneous Recurrence Quantification Analysis (HRQA),
enable HRA to provide greater resolution in characterizing
complex dynamic patterns. HRA has been successfully
implemented to characterize complex systems in various fields,
including finance (Zhang et al., 2023) medicine (Chen and Yang,
2015; Chen and Yang, 2016; Cheng et al., 2016; Chen et al., 2020;
Avdan et al., 2024) physics (Yang and Chen, 2014) and engineering
(Kan et al., 2016; Yang et al., 2020; Peng and Chen, 2023). Notably,
Chen et al. extended the HRA to develop Spatial HRA (SHRA) for
investigating complex recurrence patterns in spatial data. SHRA has
been implemented in medical imaging (Yang et al., 2020; Van
Booven et al., 2024a; Van Booven et al., 2024b) and additive
manufacturing (Chen R. et al., 2019; Chen, 2019). However,
while HRA can effectively characterize subtle nonlinear dynamic
properties including complex transitions of a system, there has been
little development of systematically investigating system dynamics
across multiple scales, which could reveal additional system
characteristics (Chen et al., 2017; Chen C-B. et al., 2019). To
address this gap, we developed a novel HRA-based methodology
to more precisely define multilevel transitions.

3 Data: 62-lead EEG signals

We utilized the Shanghai Jiao Tong University (SJTU) Emotion
EEG Dataset for Four Emotions (SEED-IV), a specific subset of the
broader SJTU Emotion EEG Dataset (available at https://bcmi.sjtu.
edu.cn/~seed/), to develop our methodology for emotion recognition
(Zheng et al., 2019b). The SEED-IV dataset includes both EEG and
eye movement signals associated with four distinct emotions, neutral,
sadness, fear, and happiness, collected from 15 college-aged
participants (seven males and eight females, aged 20–24, all right-
handed). Each participant was outfitted with a 62-channel EEG cap

(Compumedics Neuroscan, Australia) and eye-tracking glasses
(SensoMotoric Instruments, Germany). The data were gathered
while participants watched 72 carefully selected film clips, each
designed to elicit one of the target emotions. Each clip had a
duration of approximately 2 minutes and was shown only once to
avoid the effects of repetition. Participants attended three separate
sessions on different days, each comprising 24 trials with six trials per
emotion. Each trial began with a 5-s introductory hint, followed by a
45-s period for self-assessment, during which participants rated their
emotional experience. Data from participants who either did not
experience the intended emotion or exhibited weak emotional arousal
were excluded from the analysis. The primary objective of this
research is to identify these four emotions using dynamic features
extracted from multi-channel EEG signals. For the purposes of this
study, we focused exclusively on the raw EEG data from 62 channels,
capturing the complex brain dynamics associated with each emotional
state, while the eye movement data were not utilized in the analysis.

4 Multilevel heterogeneous recurrence
analysis for emotion recognition

This study aims to identify four emotions by analyzing the
complex spatiotemporal dynamics within high-dimensional EEG
signals. We developed a novel three-phase methodology, named
MHRA methodology, summarized in Figure 1, to accomplish this
goal. The methodology comprises the following phases: Phase 1.
Manifold Embedding: To preserve the intricate nonlinear
spatiotemporal characteristics of raw EEG data while minimizing
computational demands, we employed a manifold learning
technique. This method projects the high-dimensional EEG data
into a lower-dimensional space, thereby simplifying the dataset
while retaining its essential features. Phase 2. MHRA: To capture
the complex dynamic brain activity reflected in EEG signals, we
developed a novel MHRA. This approach systematically portrays the
multilevel dynamic characteristics of EEG data using fractal
structures and quantifies the geometric features of these fractals
to extract dynamic features for emotion recognition. Phase 3,
Supervised Ensemble Learning: To differentiate emotions based
on the dynamic properties extracted from EEG signals, we
utilized various advanced ensemble learning techniques, including
Random Forest, XGBoost, and Adaboost. The high accuracy
achieved by our proposed model highlights the crucial role these
dynamic properties play in effectively recognizing emotions. Further
details of each phase are discussed in the remainder of this section.

4.1 Phase 1: manifold embedding

Massive data sizes and high dimensionality are two notorious
obstacles in the field of data analytics. Effectively retaining data
properties while efficiently processing data is crucial. This study
analyzes data from 62-lead EEG signals, which presents significant
challenges due to their massive data size and high dimensionality.
Although these high-dimensional data offer superior spatiotemporal
resolution, the inherent complexities of these EEG signals
significantly increase the difficulties of data processing and
analysis. Particularly in terms of the highly computational
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demands they impose. Therefore, reducing analytical and
computational efforts to a manageable level while retaining
the original data’s spatiotemporal characteristics is essential.
Traditional dimensionality reduction techniques, such as
principal component analysis and singular value
decomposition, often fall short with large, complex datasets.
They tend to overlook the nonstationary, nonlinear features of
the data, leading to extended computation times and ineffective
dimension reduction outcomes that do not accurately reflect the
original data’s information (Roweis and Saul, 1979; Elgamal and
Hefeeda, 2015; Pouyet et al., 2018).

To address these challenges, we have utilized manifold
embedding, a technique within manifold learning that is
particularly effective at uncovering the low-dimensional
manifold structure embedded in high-dimensional spaces. It

allows us to map high-dimensional data onto a lower-
dimensional space efficiently, retaining the data’s intrinsic
and nonlinear properties. This simplification of the dataset
preserves essential spatiotemporal information, facilitating
further analysis (Turchetti and Falaschetti, 2019). Notably,
manifold embedding encompasses various techniques
collectively known as Nonlinear Dimensionality Reduction
(NLDR). Common methods within NLDR include Uniform
Manifold Approximation and Projection (UMAP), which
constructs a high-dimensional graph representation of the
data and then optimizes a low-dimensional graph to be as
structurally similar as possible; Locally Linear Embedding
(LLE), which preserves local properties of the data; Spectral
Embedding, which uses the eigenvalues of the graph Laplacian
to perform dimensionality reduction; Isomap, which preserves

FIGURE 1
Overview of three-phase methodology, MHRA methodology, applied to EEG for emotion recognition. Phase 1. Manifold Embedding: A manifold
learning method is applied to high-dimension EEG data to embed subtle nonlinear spatiotemporal characteristics into lower dimensions, reducing
computational demands. Phase 2. MHRA:We developed theMHRA to quantify dynamic transitions using fractal representation at multiple levels. Phase 3.
Supervised Ensemble Learning: Advanced ensemble learning methods are leveraged to analyze MHRA metrics for emotion recognition.
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geodesic distances between data points; and t-distributed
Stochastic Neighbor Embedding (t-SNE), which minimizes
the divergence between two distributions: a distribution that
measures pairwise similarities of the input objects and a
distribution that measures pairwise similarities of the
corresponding low-dimensional points in the embedding
(Meilă and Zhang, 2024).

To select the most appropriate NLDR method, we consider both
the quality of dimensional reduction and computational efficiency.
For assessing reduction quality, we utilize cross-entropy to compare
the differences between the original and reduced signals. Cross-
entropy is expressed as Eq. 3:

C l( ) � −∑
t

l st( )‖ ‖log st‖ ‖( ) (3)

where l(st) is the lower-dimensional projection of signals st
converted by function l(·), and ‖ · ‖ takes L2-norm of multi-
channel signals. The NLDR technique with the best retention of
original signals within the reduced signals will have the lowest cross-

entropy value, indicating they contain a similar amount of
information.

We evaluated each NLDR technique by analyzing a 10%
random sample of SEED-IV data across ten replications. The
performance of these manifold embeddings is presented in
Figure 2. Panel A displays the average running time, while
Panel B shows the average cross-entropy. Note that a lower
running time indicates better efficiency, and a lower cross-
entropy signifies higher information retention. For our 62-lead
EEG data, UMAP not only achieved the lowest cross-entropy but
also the best performance in terms of running time (Mcinnes
et al., 2020), as indicated by a red asterisk. We used the same
criteria, running time and cross-entropy, to determine the
optimal number of embedding dimensions, referring to the
number of dimensions in the lower-dimensional space. Our
findings reveal that as embedding dimensions increase, the
running time grows exponentially, while the improvement in
cross-entropy diminishes. Figure C demonstrates these trends in
UMAP, and it shows that the optimal performance, both in terms

FIGURE 2
Evaluation of NLDR Methods and selecting the optimal number of Embedding Dimension. Panels (A, B) compare five manifold embedding
candidates by running time and cross-entropy, respectively, indicating that UMAP is the best method for our specific dataset. Panel (C) illustrates how
running time and cross-entropy were used to identify four as the optimal number of embedding dimensions to preserve critical spatiotemporal features
within the dataset.
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of running time and cross-entropy, occurs at four embedding
dimensions. Notably, we also fine-tuned hyperparameters for all
the manifold learning methods to optimize embedding
performance. For our final selected method, UMAP, these
hyperparameters included the number of neighbors (set to 5),
the minimum distance between points in the low-dimensional
space (set to 0.1), and the spread of the data points (set to 1.0).
These settings were chosen to balance the retention of the data’s
intrinsic structure and computational efficiency. Consequently,
UMAP was selected to embed the 62-lead EEG signals into four
dimensions, effectively balancing critical spatiotemporal feature
retention with computational efficiency.

4.2 Phase 2: multilevel heterogeneous
recurrence analysis

After embedding the 62-lead EEG signals into a low-
dimensional space, we deployed the proposed MHRA to
characterize the dynamic spatiotemporal characteristics of brain
activity. The MHRA is a state-space domain method comprising
three major steps: 1. Heterogeneous state-space representation, 2.
Fractal representation, and 3. Generalized HRQA. These steps
outline a systematic and comprehensive approach to
characterizing complex dynamic systems.

4.2.1 Heterogeneous state-space representation
To capture and delineate the recurrence dynamics of a

system, we first transform time series data into a trajectory
within a state space, S, representing all possible states of the
system. Notably, each point of a d-dimensional time series is
projected as a corresponding point in the d-dimensional state-
space, denoted by st � (x1

t , x
2
t , . . . , x

d
t ) ∈ S, where each dimension

of the state space corresponds to a different measure of the
system. Consequently, the evolution of the time series data
forms a trajectory in this space, denoted as s � s1, s2, . . . , st{ },
and the geometric properties of this trajectory reveal the dynamic
characteristics of the system.

Subsequently, to achieve a higher resolution of the recurrence
properties, we constructed a heterogeneous state-space by dividing
the original state-space, S, into K subspaces, Sk, denoted as
S � ⋃k∈ 1,...,K{ }Sk. This segmentation helps differentiate
recurrences, as system states within the same subspace exhibit
similar system properties, and states in different subspaces
display distinctly different system properties. Notably, there are
many space segmentation methods that serve different purposes.
This study utilizes one of widely used space segmentation method,
Voronoi tessellation (Asghar et al., 2020), focusing on the similarity
within each subspace when segmenting heterogeneous state-spaces.
Therefore, by assigning the system states within the same subspace
the same category label, denoted as
L(st) � k,∀st ∈ Sk,∀k ∈ K � 1, . . . , K{ }, where L is a label
assignment function maps each state st to a categorical variable
k, the trajectory of evolution forms a categorical sequence that
reveals the dynamic transitions within the system. To ensure that
the trajectory retains sufficient patterns to accurately represent
sophisticated emotions, a 20-s window was employed to capture
the characteristics of brain activity in this study. Figure 3

conceptually illustrates the process of heterogeneous state-space
representation used in this study. Initially, the embedded EEG
signals are transformed into a trajectory within the state space
(shown in three dimensions for better visualization).
Subsequently, a space segmentation method, Voronoi tessellation,
is employed to create a heterogeneous state-space representation,
where each Voronoi cell represents a distinct subspace. By assigning
a category to each subspace, the EEG signals are converted into a
categorical sequence that reveals the dynamic evolution of
brain activity.

Notably, Voronoi tessellation, typically a semi-supervised
method, requires specifying the number of subspaces in advance.
Selecting an inappropriate number of subspaces can significantly
impact the effectiveness of information extraction. Determining the
optimal number of subspaces is thus crucial for accurately
representing the heterogeneous state-space. This research utilized
the Davies-Bouldin Index, a measure of clustering quality, to find the
optimal number of subspaces. Initially, as illustrated in Figure 4,
we divided the original state-space into 10 subspaces and
incrementally evaluated up to 100 subspaces. The black line
represents the Davies-Bouldin Index, the smooth blue line
indicates a fitted curve of the index values, and the grey
shading denotes the confidence interval. A lower Davies-
Bouldin Index indicates more effective clustering, with clear
separation between subspaces. The index stabilized after
45 subspaces, identifying this number as optimal for our
dataset. Accordingly, we segmented the state-space into
45 distinct subspaces to enhance the resolution of dynamic
characteristics.

4.2.2 Fractal representation
To characterize the dynamic characteristics of state transition

patterns, this study leverages the fractal topological structure to
capture the nuanced features. Fractals are mathematical
structures portrayed by self-similarity, meaning each part of
the fractal replicates the whole on a smaller scale. This
intrinsic property makes fractals particularly suited for
modeling heterogeneous recurrences, as their recursive nature
can effectively mirror the irregular and complex patterns
observed in such phenomena. By employing fractals, one can
capture the nuanced nonlinear and nonstationary variations
inherent in heterogeneous recurrences, providing a more
accurate and comprehensive understanding of their dynamics
(Yang and Chen, 2014; Cheng et al., 2016; Kan et al., 2016; Yang
et al., 2020).

Therefore, after the embedded EEG signals are converted into a
trajectory in the heterogeneous state space, revealing the system’s
evolution, the trajectory is then projected into a fractal space using
Iterated Function System (IFS). Notably, this IFS projection is a one-
to-one mapping where each trajectory forms its own fractal
structure that reveals the nuanced recurrence dynamics (as
shown in Figure 5). Each transformed point strategically captures
its transition order prior to its corresponding point in the
state sequence.

The IFS iteratively maps each element of categorical sequence, k,
which reflects the category of subspace of the corresponding
embedded EEG signals, L(st) � k ∈ K, to a unique IFS address in
the fractal circle through the following function (Eq. 4):
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FIGURE 3
Heterogeneous State-Space Representation. This flowchart illustrates how EEG signals are transformed into a trajectory within the heterogeneous
state space, and how these transitions are categorized into a dynamic sequence. The EEG signals are first transformed into a trajectory within the state
space, followed by the application of Voronoi tessellation to segment the space into distinct subspaces. Each subspace, represented as a Voronoi cell, is
assigned a specific category, illustrating the formation of a categorical sequence that captures the dynamic evolution of brain activity.

FIGURE 4
Determining the Optimal Number of Subspaces Using the Davies-Bouldin Index. This index assesses the effectiveness of different subspace
configurations, with a lower score indicating better clustering quality. The analysis suggests that 45 subspaces provide the most informative clustering in
this study.

FIGURE 5
Fractal Structure Construction. Panel (A) displays the trajectory of system evolution as a categorical sequence, and (B) illustrates the projection of
this trajectory into a unique fractal structure using an Iterated Function System (IFS). The self-similar nature of the fractal enables the investigation of
dynamic patterns across multiple scales. (C) Depicts a second-level fractal derived from (B), revealing dynamic characteristics on a different scale.

Frontiers in Physiology frontiersin.org08

Wang et al. 10.3389/fphys.2024.1425582

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1425582


I t( ) � Ix t( )
Iy t( )( ) � Φ k,

Ix t − 1( )
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� α 0
0 α

( ) · Ix t − 1( )
Iy t − 1( )( ) +

cos
2πk
K

( )
sin

2πk
K

( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,with I 0( ) � 0
0

( )
(4)

where Φ (k, I(t − 1)) maps an IFS address I(t) based on the
subspace category k at time t and incorporates the influence of all
previous states provided by I(t − 1). The circular address is
determined by two components: (1) current state and its
assigned category variable k, via the transformation
(cos(2πk/K), sin(2πk/K))T; (2) all the previous states,
adjusted by a scaling factor α, through the iterative function.
Note that α is defined as α � τ · sin(π/K)/(1 + sin(π/K)) to
ensure address remains distinct, where 0< τ < 1 (in this
study, τ � .99).

This IFS is designed to provide a self-similar fractal structure that
embeds the information from all previous states, thereby enabling the
formation of fractal patterns of spatial transitions at multiple scales.
Note that this fractal structure allows us to investigate dynamic
characteristics of transitions at multiple levels. For instance, as
shown in Figure 5B, the distribution of 15 individual subspaces,
1, 2, . . . , 15{ }, shows the recurrence variations in different subspaces,
named first-level transition; Figure 5C reveals the recurrence variations

of two-state transitions, 1 → 13{ }, 2 → 13{ }, . . . , 13 → 13{ }{ }, named
second-level transition, in a zoomed-in fractal of Figure 5B. This fractal
representation precisely captures the nuanced characteristics of
system dynamics.

Notably, different trajectory patterns form various fractal

structures that reveal diverse dynamic characteristics of the

corresponding systems. As demonstrated in Figure 6, trajectories

of three different dynamic systems, including random, Lorenz, and

Rossler attractors, along with their corresponding fractal structures

in the first- and second-level transitions are quite different. It is

noteworthy that systems with more randomness typically yield a less

informative fractal structure, whereas systems with specific patterns

yield a more distinctive fractal structure that is characteristically

unique. Thus, analyzing the topological structure of multilevel

fractals increases the resolution of dynamic system properties.
However, fractal representation is sensitive to the categorical labels,

which are presented as a sequence of consecutive positive integers from
1 to K, each indicating a specific subspace within the state-space. As
Figure 7 illustrates, even when the same trajectory underlies the same
heterogeneous state-space structure, various fractal structures can
emerge due to different subspace label assignments. This variability
significantly influences the effectiveness of dynamic characterization.
Therefore, since the dynamic characteristics of the system are derived by
analyzing the fractal topology and complexity, optimizing subspace
label assignments is crucial for achieving the most accurate fractal
representation.

FIGURE 6
Trajectories of Dynamic Systems with Corresponding Fractal Structures. This figure illustrates the trajectories and fractal patterns of three dynamic
systems: (A) random attractor, (B) Lorenz attractor, and (C)Rossler attractor. The top layer figures indicate the trajectories of the systems, the second- and
third-layer figures illustrate the corresponding fractal structures of first- and second-level transitions. The topological structures of fractals characterize
the dynamic properties of the systems.
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However, determining the optimal subspace label assignment
is a challenging task. For example, to evaluate all possible
45 subspace assignments would be 45! (approximately
1.1962e+56) scenarios, making it impractical to exhaustively
test all permutations to find the best assignment. To address
this challenge, we propose a novel Genetic Algorithm (GA) to
achieve a heuristic solution for optimizing subspace label
assignment, as illustrated in Algorithm 1. GA is a type of
evolutionary algorithm which generates solutions to problems
inspired by natural selection (Holland, 1992).

INPUT:

S: Initial sequence from which to create the

trajectory

K: Number of distinct labels (derived from S if

not provided)

l.size: Size of the sample Pool

slt: Number of instances to select for reproduction

pm: Mutation probability

ga.iter: Number of iterations for the

genetic algorithm

1 BEGIN:

2 //Initialize GA parameters

3 GAobj � GNW(S,K)//Create network structure

representing the trajectory of S

4 //Generate initial population

5 SamplePool � GAinit(K,l.size)//Create a sample pool

of sequence for GA

6 //Genetic algorithm main loop

7 FOR iter � 1 TO ga.iter DO

8 //Evaluate fractal dimension of each instance in

the sample pool

9 FOR EACH instance IN SamplePool DO

10 fitness[instance] � Fitness(instance,GAobj)
11 END FOR

12 //Select top individuals for reproduction

13 Selected � select top(fitness,slt)
14 //Update sampling pool through reproduction

and mutation

15 SamplePool � reproduce and mutate(Selected,pm)
16 //Optional: Convergence check to break loop early

17 IF check convergence(fitness) DO
18 BREAK

19 END IF

20 END FOR

21 //Determine the best solution

22 BestSolution � find best(SamplePool)
23 RETURN BestSolution

Algorithm 1. Genetic Algorithm for Optimizing Label Arrangements.

*Fitness function returns the fractal dimension of the fractal
structure generated by the input instance.

In this study, we modified the GA as follows:

• Initial Population: Started with 50,000 random subspace label
assignments, each offering a unique labeling approach within
the EEG state-space.

• Evaluation: Each assignment is assessed for fractal complexity
to gauge effectiveness in describing the underlying
trajectory structure.

• Selection and Generation: Post-evaluation, another
50,000 assignments are generated using genetic crossover
and mutation techniques to explore new solutions.

• Optimization: Assignments with the highest fractal
complexity, indicative of effective system dynamics capture,
are selected.

• Iteration: This cycle of generation, evaluation, and
optimization continues until a fractal complexity threshold
is reached or no further improvements are observed.

Note that fractal complexity in this study is measured using the
Minkowski fractal dimension, which involves covering the fractal
with boxes of a specific size and counting the number needed to
completely cover the fractal. This process is repeated with
progressively smaller boxes (Hunt et al., 1939). The Minkowski
fractal dimension for a fractal F can be mathematically expressed as
Eq. 5:

dimbox F( ) � lim
ε→0

log ξ ε( )
log 1

ε

(5)

where ξ denotes the number of boxes with a side length of ε. A higher
Minkowski dimension suggests a more complex fractal, implying
that it retains richer information.

4.2.3 Generalized heterogeneous recurrence
quantification analysis

The fractal representation clusters the system’s trajectory at
multiple scales with fractal structures, which demonstrate the
heterogeneous recurrence dynamics of a system on the two-
dimensional coordinates. To effectively capture this heterogeneity in
system recurrences, a new measurement approach has been developed
that employs the fractal structure for quantifying these heterogeneous
recurrences (Yang and Chen, 2014; Chen and Yang, 2015; Chen and
Yang, 2016). Rather than treating all recurrences uniformly, this
method, known as HRQA, specifically characterizes recurrent
patterns based on the diverse states or transitions that are mapped
onto the fractal structure, thereby enhancing the analytical capabilities
of recurrence quantifiers. Chen and Yang derived a series of HRQA
methodologies based on this fractal representation (Yang et al., 2020).
However, traditional HRQAmethods encounter scalability issues when
attempting to quantify transitions at different levels. In response to this
challenge, this research introduces a generalized HRQA system that
addresses scalability issues to assess system recurrences. This advanced
system allows for a more nuanced analysis of the dynamics inherent
within different level transitions.

To quantify the fractal representation, the first step is to identify
the sets of states falling into different level transitions in the fractal
representation. Since the IFS assigns unique addresses in the circles to
clusters of state sets, we define these heterogeneous recurrence sets
Ck1 ,k2 ,..,kN as Eq. 6:

Ck1 ,k2 ,..,kN � f k1|k2, . . . , kN( ): L st( ) � k1,L st−1( ) � k2, . . . ,{
L st−N+1( ) � kN,∀kt ∈ K} (6)
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Here, the subscript k1, k2, .., kN represents an Nth-level
transition sequence. For instance, Ck1 � L(st) � k1{ } represents
the recurrence set of first-level transition, and Ck1 ,k2 �
L(st) � k1,L(st−1) � k2{ } represents the recurrence set of the
second-level transition. Notably, we also define Cϕ as zero-level
transition to represent overall transitions without specifying any
transition pattern. This allows for the investigation and
quantification of the system dynamics from a comprehensive
system perspective. To simplify, we will use N to indicate the
k1, k2, .., kN in the subsequent discussion. The generalized HRQA
metrics are depicted in the following section.

4.2.3.1 Heterogeneous recurrence rate (HRR)

HRR N( ) � ═C/L( )2

(7)

HRR quantifies the proportion of a specificNth-level transitionN
occurred in an observed sequence. Note that ═C represents the cardinality
of Ck1 ,k2 ...,kN and L indicates the length of the observed sequence.

4.2.3.2 Heterogeneous recurrence mean (Hmean)
To scale the HRQA for different Nth-level transition, we

define an adjusted distance dNi,j for two addresses i and j for
each Ck1 ,k2 ...,kN as dNi,j � di,j/αN, where di,j is the original distance,
α is the scaling factor in Eq. 4, andN indicates the transition level.
Then the generalized central tendency, variance tendency,
skewness, and kurtosis of one local fractal cluster for Nth-level
transition are quantified as in Eqs 8–13 shown below,
respectively.

HMean N( ) � ∑═C
i� 1∑═C

j� i+ 1d
N
i,j

═C ═C − 1( )/2
(8)

4.2.3.3 Heterogeneous recurrence variance (HVar)

HVar N( ) � ∑═C
i� 1

∑═C
j� i+ 1 dN

i,j −HMean N( )( )2
═C ═C − 1( )/2

(9)

4.2.3.4 Heterogeneous recurrence skewness (HSkew)

HSkew N( ) � ∑═C
i� 1

∑═C
j � i + 1

dNi,j −HMean N( )( )3

═C ═C− 1( )/2

HVar N( ) 3
2

(10)

FIGURE 7
Impact of Subspace Label Assignment on Dynamic Feature Characterization. Both panels (A, B) display identical trajectories within the same
heterogeneous state-space structure, yet they have different subspace label assignments. These differences lead to the distinct fractal structures shown
in the lower layers of each panel, with varying fractal dimension values. Fractal dimension is used here to quantify the complexity of fractal structures,
where higher values indicate increased complexity and greater detail retention across scales.

TABLE 1 Number of LASSO selected HRQA metrics for each emotion.

Emotion Number of selected metrics

Neutral 216

Sad 270

Fear 89

Happy 108
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4.2.3.5 Heterogeneous recurrence kurtosis (HKurtosis)

HKurtosis N( ) � ∑═C
i� 1

∑═C
j � i + 1

dNi,j −HMean N( )( )4

═C ═C − 1( )/2
HVar N( )2 (11)

4.2.3.6 Heterogeneous recurrence entropy (HENT)

HENT N( ) � −∑B
b�1
Pr b( ) ln Pr b( )( ) (12)

4.2.3.7 Heterogeneous recurrence gini index (HGini)

HGini N( ) � 1 −∑B
b�1
Pr b( )2 (13)

Note that the calculation ofHENT(N ) utilizes Shannon entropy,
based on the probability distribution derived from the distance matrix
dNi,j. The histogram of distancematrix dN is segmented into B qual bins,
ranging from 0 to max(dN). Consequently, for every bin b up to B, the
probability of b is defined as Eq. 14:

Pr b( ) � 1
═C ═C − 1( )#

b − 1
B

max dN( ) < dN
i,j ≤

b

B
max dN( ){ } (14)

We deployed the proposed generalized HRQA to quantify
the fractal representations derived from the embedded EEG. In
this research, we addressed different resolutions of dynamic
to the second-level transitions. A total 7 + 45 × 7 +
452 × 7 � 14497 HRQA metrics that delineate complex
dynamic brain activity were then extracted for emotion
recognition.

4.3 Phase 3: supervised ensemble learning

The final phase of our methodology is to develop a supervised
machine learning model that classifies the outcome using HRQA
metrics as the input. We chose ensemble learning for its ability to
handle complex, nonlinear patterns and relationships within the
data while achieving high accuracy in classifying the outcome. We
evaluated three decision-tree-based ensemble machine learning
algorithms, the adaptive boosting method (Adaboost), random
forest classification (Random Forest), and extreme gradient
boosting (XGBoost), for accurately identifying the four emotions.

Decision-tree-based ensemble machine learning methods
effectively handle complex nonlinear relationships by integrating
multiple decision trees. These methods continuously refine the
model by adding new trees specifically designed to correct errors
identified in existing trees. The methods evaluated in our
methodology differ primarily in their training approaches:
XGboost and Adaboost use boosting to focus on correcting

mispredictions by adjusting data weights, while Random Forest
employs bagging, sampling equally across data points. These
ensemble strategies surpass single tree models by leveraging a
majority vote from various trees, thus expanding the solution
space and reducing overfitting through averaged outcomes.

Although tree-based models are effective at capturing complex
relationships in data, their efficiency and performance can be
significantly influenced by the number of predictors. These
models are particularly sensitive to the inclusion of irrelevant or
noisy predictors, which can increase model complexity and lead to a
higher risk of overfitting, where the model learns the noise in the
training data rather than the underlying patterns (Hu and Li, 2022).
To overcome this issue, we employed the Least Absolute Shrinkage
and Selection Operator (LASSO) for variable selection to reduce the
number of HRQA metrics used in developing our emotion
recognition models.

LASSO is particularly effective for models burdened by high-
dimensional data, as it helps in reducing the risk of overfitting by
imposing a constraint on the sum of the absolute values of the model
parameters. This regularization process not only shrinks less
important feature coefficients to zero but also simplifies the
model by retaining only those variables that significantly
contribute to the predictive power (Roth, 2004).

We executed the LASSO algorithm 30 times and selected metrics
that consistently had non-zero coefficients across these runs. Table 1
illustrates the final number of HRQA metrics selected for each
emotion. Our results indicate that the emotions ‘Neutral’ and ‘Sad’
are associated with a broader range of dynamic characteristics of
brain activity, while ‘Fear’ and ‘Happy’ are linked to relatively
fewer features.

To identify the four emotions based on their dynamic
characteristics extracted from LASSO selected HRQA metrics, we
tailored a classification model for each specific emotion. We
evaluated three supervised ensemble learning methods, AdaBoost,
XGBoost, and Random Forest, for emotion recognition. For each
method we used the One-vs-All (OvA) strategy, where each emotion
was classified independently as the positive class against all others
grouped as the negative class. To ensure the robustness and
reliability of our models, we adopted a rigorous testing protocol.
The data was randomly split into a training dataset (90% of the total
dataset) and a testing dataset (remaining 10% of the total dataset) to
prevent any potential bias in model training. Then the training
dataset was used to develop three different models (AdaBoost,
XGBoost, and Random Forest) for each emotion (neutral, sad,
fear, happy); this process was repeated 30 times with each model
to ensure stability and consistency in the results. After training the
model, the testing dataset was used to validate the performance of
each model. Performance was quantitatively assessed by comparing
the predicted labels against the actual labels from the testing set,
calculating both the average and the standard deviation. In addition,
we conducted sensitivity analyses on the emotion recognition
models to investigate which dynamic characteristics are strongly
associated with specific emotions. This analysis helped identify key
features that significantly influence the models’ ability to accurately
classify different emotional states.

We assessed the effectiveness of ensemble learning models for
emotion recognition using two performance metrics: accuracy and
AUC. Accuracy is defined as (TP + TN)/(TP + TN + FP + FN),
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where True Positives (TP) represent actual positives correctly
predicted as positive, True Negatives (TN) represent actual
negatives correctly predicted as negative, False Positives (FP)
indicate actual negatives incorrectly predicted as positive, and
False Negatives (FN) refer to actual positives incorrectly
predicted as negative. The ROC curve is plotted with false
positive rate (1-specificity) on the x-axis against the true positive
rate (sensitivity) on the y-axis at various threshold settings.
Specifically, sensitivity � TN/(TN + FP) and specificity �
TP/(TP + FN). AUC represents the area under the ROC curve,
providing a single measure of overall model performance across all
classification thresholds. It is particularly valuable in the presence of
biased datasets, as it evaluates the model’s ability to discriminate
between classes without being influenced by class imbalance
(Nahm, 2022). A higher AUC value indicates better model
performance, with 1.0 representing perfect discrimination and
0.5 indicating no discriminative power beyond random chance.

To achieve optimal performance, we applied grid search
combined with 10-fold cross-validation to fine-tune the
hyperparameter settings for the supervised ensemble learning
methods, including Adaboost, Random Forest, and XGBoost. The
hyperparameters yielding the highest F1 score (calculated as 2·TP/
(2·TP + FP + FN)) on the validation dataset were selected. This
comprehensive tuning process involved exhaustively searching
through a predefined set of hyperparameters to find the optimal
combination, ensuring that each model was finely adjusted to
achieve the best possible performance. For Adaboost, we created
an ensemble of 500 weak learners without resampling with
replacement and used the Breiman method for adjusting weights.
For Random Forest, we built 800 trees, each considering 30 features
at each split, and used a 0.5 threshold for classification. For XGBoost,
we trained 500 deep trees to solve a binary classification problem
using logistic regression.

5 Results

We developed a comprehensive methodology consisting of three
phases to identify four emotions by analyzing the corresponding
complex dynamic characteristics in EEG. In this section, we
discussed the performance of the proposed methodology in three
perspectives. We initially compared the performance of three
ensemble learning models: AdaBoost, Random Forest, and
XGBoost. Then, we discussed the performance of each individual
emotion identification model under XGBoost. Finally, an overall
performance comparison with other models using the same dataset
was conducted.

5.1 Model performance of AdaBoost,
random forest, and XGBoost

To evaluate which ensemble learning model had the best
performance for emotion recognition, accuracy and AUC was
calculated for each specific emotion then averaged for each
model. Table 2 demonstrates that XGBoost and Random Forest
consistently achieved high accuracy and AUC, signifying excellent
stability across multiple trials, whereas AdaBoost did not. Since both

Random Forest and XGBoost achieved at least 0.75 in both accuracy
and AUC, this suggests that dynamic transition properties of brain
activity extracted from high-dimensional EEG signals using the
MHRA methodology, can effectively recognize emotions. Given
that accuracy was our primary performance criterion, XGBoost
with an average accuracy of 0.7885 and an AUC of 0.7552 was
selected as the best model for emotion recognition.

5.2 Performance of XGBoost for
each emotion

Figure 8 demonstrates the AUC curves for the XGBoost model’s
performance in recognizing four distinct emotions. The curves
reflect the varying levels of the model’s discriminatory ability for
each emotion. The AUC for ‘Sad’ shows the highest value at 0.7931,
indicating that the model is most effective at distinguishing ‘Sad’
from non-sad emotional states. ‘Neutral’ also demonstrates a robust
performance with an AUC of 0.7814. However, the AUCs for ‘Fear’
and ‘Happy’ are lower, at 0.7165 and 0.7299 respectively, suggesting
challenges in the model’s ability to consistently differentiate these
emotions from others. The lower AUC for ‘Fear’ indicates a
particular difficulty in discrimination, which could be due to the
nuanced nature of fear as an emotion. Conversely, despite ‘Happy’
having the highest accuracy, its AUC indicates less consistency in
distinguishing happiness, likely due to overlapping features with
other emotions.

In this section, we demonstrated the performance of XGBoost
into each emotion model, as shown in Table 3. The results indicate
that all the emotion models can achieve at least 0.77 for accuracy and
at least 0.71 for the AUC. The model excels in recognizing ‘Happy’
emotions, achieving the highest accuracy of 0.8127. The accuracies
and AUCs for ‘Neutral’ and ‘Sad’ are relatively higher and more
consistent, suggesting more reliable performance for these emotions.
Conversely, the AUCs for ‘Fear’ and ‘Happy’ are lower and show
greater variability, reflecting differences in the model’s ability to
consistently distinguish these emotions from others. The small
standard deviations associated with these metrics across all
emotions underscore the model’s stability and reliability in
performance across multiple iterations or subsets of the dataset.

5.3 Performance comparison to other
methodologies

To evaluate the performance of our methodology relative to
other methodologies, Table 4 compares our performance to other
methodologies using the same dataset: EmotionMeter, (Zheng et al.,
2019b), BiHDM, (Li et al., 2019b), RGNN, (Zhong et al., 2019),

TABLE 2 Performance of each ensemble model of all four emotions.

Method Accuracy AUC

Adaboost 0.7498 (0.0118) 0.5444 (0.0631)

Random Forest 0.7518 (0.0140) 0.7666 (0.0177)

XGBoost 0.7885 (0.0116) 0.7552 (0.0207)

*Mean (Standard Deviation).
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Fractal-SNN, (Li et al., 2024), Saliency-basedCNN, (Delvigne et al., 2022),
MetaEmotionNet, (Ning et al., 2024), ST-SCGNN, (Pan et al., 2024), and
MISNet (Gong et al., 2024). Our methodology not only outperformed all
of these models in overall accuracy (0.7885) but also demonstrated the
most stable performance among the repeated experiments, as
indicated by the lowest standard deviation (0.0207).

Notably, our methodology provided the most consistent
recognition performance across different emotions, with
average accuracies ranging from 0.7757 to 0.8127. This
consistency highlights the robustness and effectiveness of our
approach in capturing the subtle dynamics of brain activity. In
contrast, other methods showed varying strengths across specific
emotions. For example, EmotionMeter is more effective in
identifying ‘Happy’ and ‘Neutral’, BiHDM is more accurate in
recognizing ‘Neutral’ and ‘Sad’, RGNN and MetaEmotionNet are
specifically sensitive to ‘Sad’ and ‘Happy’, respectively, and
MISNet performs better in ‘Sad’ and ‘Happy’. This implies
that previous models struggle to grasp the nuanced activities

in the brain, likely due to their inability to fully capture the
complex characteristics of EEG signals. Collectively, this
indicates that complex brain activity can be effectively
characterized using dynamic recurrence properties with our
novel MHRA methodology.

These results highlight the robustness and effectiveness of our
approach in handling the complex, nonlinear, and nonstationary
characteristics of EEG signals. Our methodology’s ability to
maintain high accuracy across all emotions and its stable
performance in repeated experiments underscore its reliability
and potential for real-world applications. By comparing our
findings with the relevant literature, it is evident that MHRA not
only advances the state of the art in emotion recognition but also
provides a versatile method for analyzing complex brain dynamics.
This comprehensive analysis reinforces the value of our
contributions to the field and demonstrates the superiority of our
approach over existing methods.

In addition to achieving the highest accuracy in emotion
recognition, our methodology offers profound insights into the
specific dynamic features that drive emotional responses,
thereby enhancing our understanding of complex brain
activity. We demonstrate that variations in the distribution of
MHRA metrics are key indicators for emotion recognition,
providing robust evidence of our model’s superiority over
traditional ‘black box’ methods. For example, Figure 9
presents a sensitivity analysis of how specific HRQA
metrics vary in value across each emotion. Specifically, each
panel is one unique HRQA that corresponds to a dynamic
property that characterizes a specific transition between
different subspaces within the constructed heterogeneous
state-space.

FIGURE 8
The ROC curves for the XGBoost classifier applied to the testing set using the One-vs-All (OvA) strategy for four separate emotions. The emotions
“Neutral” and “Sad” exhibit relatively higher AUC values, indicating more reliable performance in distinguishing these emotions. Conversely, “Fear” and
“Happy” demonstrate lower AUC values, reflecting the model’s reduced consistency in differentiating these emotions from others.

TABLE 3 Performance of XGBoost method for each emotion.

Emotion Proportion (%) Accuracy AUC

Neutral 27.09 0.7790 (0.0009) 0.7814 (0.0164)

Sad 27.27 0.7868 (0.0102) 0.7931 (0.0196)

Fear 24.49 0.7757 (0.0137) 0.7165 (0.0251)

Happy 21.15 0.8127 (0.0130) 0.7299 (0.0215)

Average 25.00 0.7885 (0.0116) 0.7552 (0.0207)

*Mean (Standard Deviation).

The bold values indicate the average performance of the four emotion models.
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Panel A displays the HVar in the transition from subspace #21 to
subspace #39. Here, the ‘Neutral’ emotion exhibits the highest
average, suggesting significant variability during these transitions.
Panel illustrates the HEnt during transitions from subspace #25 to
subspace #40, with ‘Sad’ recording the highest average, indicating
pronounced entropy in these transitions. Panel C depicts the HRR

between subspaces #45 and #34. Here, ‘Fear’ stands out with the
highest average, reflecting a notable recurrence rate. Finally, Panel D
tracks inequality HGini in the transitions from subspace #35 to
subspace #31, where ‘Happy’ demonstrates the highest average,
highlighting significant inequality in these transitions. Each bar
chart is accompanied by a 95% confidence interval, providing a

TABLE 4 Accuracy of MHRA in emotion recognition (individual and overall) vs. other methods.

Authors Methodology Neutral Sad Fear Happy All (mean/s.d.)

Zheng et al. (2019) EmotionMeter 0.7800 0.6300 0.6500 0.8000 0.7058/0.1701

Li et al. (2019) BiHDM 0.7443 0.7273 0.5813 0.6350 0.6903/0.0866

Zhong et al. (2020) RGNN 0.7516 0.9192 0.7185 0.7435 0.7384/0.0802

Li et al. (2023) Fractal-SNN - - - - 0.6833/--------

Delvigne et al. (2023) Saliency based CNN - - - - 0.7442/0.0476

Ning et al. (2024) MetaEmotionNet 0.5393 0.6312 0.5052 0.7415 0.6120/0.0830

Pan et al. (2024) ST-SCGNN - - - - 0.7637/0.5777

Gong et al. (2024) MISNet 0.7071 0.8300 0.6319 0.8169 0.7460/0.0930

Wang et al. (2024) MHRA 0.7790 0.7868 0.7757 0.8127 0.7885/0.0207

The bold values shows the results of this research.

FIGURE 9
Sensitivity Analysis of Four selected HRQA Metrics. The four panels (A–D) display four selected HRA metrics for four emotions, respectively.
Specifically, Panel A shows HVar_41_39 has the highest value in “Neutral,” Panel B demonstrates HEnt_25_40 has the highest value in “Sad,” Panel C
illustrates HRR_45_34 has the highest value in “Fear,” and Panel D presents HGini_35_31 has the highest value in “Happy.” Each panel highlights a metric
where one emotion scores significantly higher on average than the others, demonstrating the metric’s potential to distinctly identify that emotion
from the rest.
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clear visual representation of how distinct MHRA metrics correlate
with each emotional state.

These findings not only confirm the efficacy of our model in
identifying and interpreting emotions but also provide a
methodology for investigating the subtle spatiotemporal dynamics
underlying brain activity related to various emotions. By analyzing
these HRQA metrics, we may infer the neural mechanisms involved
in emotion recognition. For instance, the high value of entropy
(HEnt), referring to a high level of uncertainty, in ‘Sad’ could signify
chaotic neural activity patterns associated with emotional distress or
cognitive load. The high value of recurrence rate (HRR), referring to
a high tendency to revisit similar patterns, in ‘Fear’ suggests a
specific pattern of repetitive neural activations, possibly related to
the brain’s heightened state of alertness and threat detection.

By correlating these dynamic features with known neural
processes, our approach offers deeper insights into how different
emotional states manifest in the brain’s activity. This enhanced
understanding can contribute to developing more effective
interventions and therapeutic strategies for emotional and mental
health disorders. Thus, our methodology not only advances the field
of emotion recognition but also provides a valuable tool for
exploring the neural underpinnings of emotions.

6 Discussion

Understanding how emotions are processed and represented in
the brain enhances our basic scientific knowledge of neurological
functions. By studying EEG patterns associated with different
emotions, researchers can uncover the underlying neural
mechanisms that govern emotional responses and how these might
differ among individuals or across different contexts. However, the
complex, nonlinear, and nonstationary characteristics of EEG signals
pose significant challenges for many traditional methods in this field.
Numerous studies on EEG-based emotion recognition rely on deep
learning techniques, as these state-of-the-art neural network-based
methods are adept at detecting subtle patterns within complex EEG
signals (Jafari et al., 2023). Nonetheless, the lack of transparency in
deep learning algorithms represents a substantial barrier, as physicians
tend to be cautious by nature, and patients are hesitant to entrust their
health to a ‘black box’ algorithm. In this study, we introduced a three-
phase methodology, including manifold embedding, MHRA, and
supervised ensemble learning, designed to address these concerns
by characterizing the dynamic features of brain activity for emotion
recognition while also preserving a degree of explainability.

We employed the proposed MHRA methodology to the SJTU-
SEED IV database, in Phase 1, we utilized UMAP for data
embedding to address the challenge of high dimensional data.
The 62-lead EEG signals were transformed into four-dimensional
embedded signals that retain dynamic spatiotemporal
characteristics but significantly reduced computational demands
to a manageable level for further analyses. In Phase 2, the
embedded EEG data underwent our novel MHRA to capture the
recurrence dynamics of brain activity at high resolution. This
approach not only provides a more nuanced understanding of
the complex nonlinear and nonstationary EEG patterns, but also
extracts robust dynamic features for emotion recognition.
Importantly, our generalized HRQA metrics systematically

quantify recurrences across different transition levels, offering a
scalable framework for analyzing dynamic EEG properties. Finally,
in Phase 3 we employed advanced ensemble learning methods and
demonstrated their effectiveness in classifying emotions using
LASSO selected HRQA metrics. The superior performance of our
models, especially XGBoost, suggests that dynamic transition
characteristics are powerful predictors for emotion recognition.
Our models achieved accuracy and AUC values of 0.7885 and
0.7552, respectively, both outperforming previous studies using
the same dataset. Additionally, our sensitivity analysis identified
specific HRQA metrics strongly associated with each emotion,
providing valuable insights into the neural dynamics underlying
emotional processing that cannot be obtained using “black box”
algorithms alone.

The major contribution of this research is the development of
MHRA, a novel technique leveraging the recurrence theorem to
characterize dynamic brain activity across multiple granularities.
Unlike traditional methods, MHRA captures the complex,
nonlinear, and nonstationary properties of EEG signals,
providing a detailed framework for analyzing intricate brain
activity patterns. By utilizing HRQA metrics, MHRA offers an
interpretable analysis of EEG data, aiding researchers in
understanding the neural mechanisms of emotions. This
transparency is crucial for building trust and facilitating the
adoption of our methodology in clinical and research settings.
The insights from our MHRA approach have significant
implications for advancing studies in cognitive neuroscience,
affective computing, neurofeedback therapy, human-computer
interaction, and educational neuroscience. Traditional
approaches often struggle with the nonlinear and
nonstationary nature of EEG signals, while deep learning
models lack explainability. Our methodology overcomes these
challenges, offering both high performance and interpretability,
thus advancing the field of emotion recognition and providing an
effective solution for analyzing complex brain dynamics. Our
methodology offers several key advantages. First, it effectively
addresses the limitations of traditional linear methods by
analyzing complex nonlinear nonstationary EEG signals.
Second, MHRA offers interpretability by using HRQA metrics
to explain features of complex systems. This transparency is
crucial for building trust and facilitating adoption in clinical
settings. Third, the tree-based ensemble learning methods not
only achieve high accuracy to recognize emotions but also exhibit
robustness in capturing nonlinear relationships of dynamic
properties.

Despite these strengths, our study has some limitations that will
be explored in future research. The SJTU-SEED IV database, while
comprehensive, does not fully capture the diversity or unique
emotional experiences across different populations. Investigating
the generalizability of our methodology to other EEG datasets and
real-world scenarios is an important next step. Additionally,
integrating our approach with other modalities, such as facial
expressions or other physiological signals such as eye
movements, could further enhance the accuracy and robustness
of emotion recognition. Furthermore, our research can facilitate a
deeper understanding and characterization of brain activities, with
potential applications in pediatric sleep studies, the development of
objective metrics for PTSD, and non-invasive early detection of
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neurodegenerative diseases. Future research could benefit from
incorporating more advanced techniques to retain the
spatiotemporal characteristics of 62-lead EEG signals, such as
integrating attention mechanisms with MHRA to provide more
effective characterization of neural dynamics. By pursuing these
directions, we aim to refine the existing methodology and broaden
its applicability, thus advancing the field of emotion recognition and
its practical applications in neuroscience and healthcare.

In conclusion, this study presents a novel three-phase
methodology that includes manifold embedding, MHRA, and
ensemble learning for EEG-based emotion recognition. Our
approach not only achieves high performance but also offers
interpretable insights into the dynamic properties underlying four
emotions. This methodology has significant impact on the field to
advance our ability to analyze nonlinear nonstationary, dynamic
data of complex systems with potential applications in healthcare,
human-computer interaction, and beyond.
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