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Introduction: Hepatic cystic echinococcosis (HCE) is a widely seen parasitic
infection. Biological activity is crucial for treatment planning. This work aims to
explore the potential applications of a deep learning radiomics (DLR) model,
based on CT images, in predicting the biological activity grading of hepatic cystic
echinococcosis.

Methods: A retrospective analysis of 160 patients with hepatic echinococcosis
was performed (127 and 33 in training and validation sets). Volume of interests
(VOIs) were drawn, and radiomics features and deep neural network features
were extracted. Feature selection was performed on the training set, and
radiomics score (Rad Score) and deep learning score (Deep Score) were
calculated. Seven diagnostics models (based on logistic regression algorithm)
for the biological activity grading were constructed using the selected radiomics
features and two deep model features respectively. All models were evaluated
using the receiver operating characteristic curve, and the area under the curve
(AUC) was calculated. A nomogram was constructed using the combined model,
and its calibration, discriminatory ability, and clinical utility were assessed.

Results: 12, 6 and 10 optimal radiomics features, deep learning features were
selected from two deep learning network (DLN) features, respectively. For
biological activity grading of hepatic cystic echinococcosis, the combined
model demonstrated strong diagnostic performance, with an AUC value of
0.888 (95% CI: 0.837–0.936) in the training set and 0.876 (0.761–0.964) in
the validation set. The clinical decision analysis curve indicated promising
results, while the calibration curve revealed that the nomogram’s prediction
result was highly compatible with the actual result.
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Conclusion: The DLR model can be used for predicting the biological activity
grading of hepatic echinococcosis.
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1 Introduction

Echinococcosis is a widespread zoonosis that remains a
significant public health concern. The two most prevalent forms
of this illness, caused by Echinococcu granulosus (E.granulosus) and
Echinococcus multilocularis (E.multilocularis), respectively, are
alveolar echinococcosis (AE) and cystic echinococcosis (CE)
(Deplazes et al., 2017; Faucher et al., 2017; Wen et al., 2019;
Yimit et al., 2023). With space-occupying growth for CE and
“cancer-like” infiltration growth for AE lesion, the liver is the
intermediate host’s most targeted organ. If ignored or poorly
managed, AE mortality might approach 90% within 15 years
after the first diagnosis. Although mortality for CE is lower than
AE, it might significantly increase in individuals who do not receive
effective therapy (Kantarci et al., 2012; McManus et al., 2012; Meinel
et al., 2018). Of the estimated two to three million cases of
echinococcosis globally, most are cystic (Craig et al., 2007).

Clinical judgment heavily relies on the viability assessment of
parasite lesions. The World Health Organization Informal Working
Group on Echinococcosis (WHO-IWGE) reports that the current
method for determining lesion activity ultrasonography and positron
emission tomography (PET) scan for parasitic lesion surgical
pathology is the gold standard. However, the majority of patients
in places with little resources do not have access to or cannot afford
this treatment particularly PET scans (Bold et al., 2018). So, it seems
sense to look for less expensive, more accessible substitute method.

CT, as a regular imaging modality plays a pivotal role in the
comprehensive management of hepatic cystic echinococcosis by
facilitating accurate diagnosis, staging, treatment planning,
monitoring response to therapy, guiding interventional
procedures, and assessing postoperative outcomes. Its detailed
imaging capabilities contribute significantly to the effective
management and improved prognosis of patients with this
parasitic infection (Rinaldi et al., 2014; Graeter et al., 2016).

Radiomics is an emerging technology that combines a large
amount of medical image data with human physiological and
pathological information, and analyzes medical images to achieve
quantitative identification and prediction of diseases (Lambin et al.,
2012). Deep learning, a machine learning technique rooted in artificial
neural networks, has the capability to autonomously learn and extract
significant features from vast amounts of data, leading to its extensive
applications. In the field of medical imaging, radiomics and deep
learning technologies have been widely employed for the diagnosis,
treatment, and prognosis evaluation of various diseases including lung
cancer, breast cancer, and stroke (Bera et al., 2022; Chen et al., 2022).
In previous studies, radiomics and deep learning weremore often used
as an independent technology for clinical model construction. In fact,
radiomics can be combined with deep learning to construct a DLR
combined model. The DLR model can use both human prior manual
features (radiomics features) and human unknown deep features

extracted by deep neural networks, which makes the feature set
more abundant. Recent research has shown promising outcomes
using the DLR model. For instance, an international multicenter
study utilized the DLR model o estimate the count of lymph node
metastases, achieving an AUC value of 0.822 (0.756–0.887) in the
validation set (Dong et al., 2020).

In another retrospective study (Jiang et al., 2021), the authors
developed a DLR model for predicting pathological complete
response after neoadjuvant chemotherapy based on ultrasound
images of breast cancer. The model accurately determined pCR
status, yielding an area under the receiver operator characteristic
curve of 0.94 (95% confidence interval, 0.91–0.97) in the validation
set, and was well calibrated. However, there are no reports on DLR
method in the grading diagnosis model of echinococcosis biological
activity. In this research, our aim is to construct a prediction model
for the biological activity grading of hepatic cystic echinococcosis.

2 Materials and methods

The study conducted at The First People’s Hospital of Kashi
Prefecture and received ethical approval from the institutional
review board of The First People’s Hospital of Kashi Prefecture.
Since the study was retrospective, written informed consent was
deemed unnecessary.

2.1 Patients

We have collected 160 patients who received surgery and
confirmed with hepatic cystic echinococcosis pathologically in The
First People’s Hospital of Kashi Prefecture between March 2016 to
August 2021. The following were inclusion criteria: 1) confirmed with
hepatic cystic echinococcosis active or non-active pathologically and
clinically 2) patients who did not receive any clinical intervention
(chemotherapy or surgery) 3) CT scan was performed; imaging and
clinical data were available. The following were exclusion criteria: 1)
patients did not underwent surgical treatment, no pathologic
confirmation 2) clinical and imaging data were not available 3) has
hepatic surgery or anti-parasitic treatment before Figure 1.
Demonstrates inclusion and exclusion workflow.

2.2 Image acquisition

The Siemens CT scanner was used on all patients. The
CT settings were: 5 mm/s bed entry speed, 120 kV
voltage, with180–240 mA current, thin slice thickness of
2–3 mm, slice distance of 2–3 mm, and typical slice thickness
of 10 mm.
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FIGURE 1
Demonstrates inclusion and exclusion workflow.

FIGURE 2
Workflow chart of the study. (A) VOI delineation, (B), Radiomics signature construction, (C) Deep learning signature construction, (D) DLR
nomogram construction.
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2.3 Segmentation of the volume of interests

The work flow chart of our research is shown in Figure 2. The
data was uploaded to the artificial intelligence research platform of
Huiying Medical Technology (Beijing) Co., Ltd. A semi-automatic
method was employed to delineate the hepatic hydatid lesion on
the CT image. Each slice’s associated lesion must be delineated. A
physician with 3 years of expertise in chest CT image diagnosis
(radiologist 1) completed all of the drawing work, when multiple
lesions were encountered, we selected the largest of them for lesion
delineation, and a physician with 10 years of experience in chest
CT image diagnosis (radiologist 2) assessed the findings. The VOI
was manually segmented based on the lesion boundary, carefully
excluding areas of necrosis, cystic degeneration, hemorrhage,
calcification, and edema to minimize misidentification as
parasitic lesion. The data that passed the review were used for
feature extraction, and the data that failed the review were
discussed and redrawn by the two doctors. All data were
randomly grouped, and the training and validation set had
127 and 33 cases respectively.

Figure 2 the workflow of the Deep Learning Radiomics (DLR)
model construction.

2.4 Feature extraction and selection

Radiomics features were extracted from each Volume of Interest
(VOI) across four categories. The first category included first-order
statistical features, which reflected the overall information of VOI,
like kurtosis, variance, energy, skewness, and uniformity. The
second category was shape features, which reflected the 2D size
and shape of each VOI, such as sphericity, surface area, maximum
2D diameter, etc. The gray-level run-length matrix (GLRLM), gray-
level dependence matrix (GLDM), gray-level co-occurrence matrix
(GLCM), neighborhood gray-level dependence matrix (NGLDM),
and gray-level size zone matrix (GLSZM) were among the textural
features that made up the third category in this study. The intensity
and texture characteristics created by filtering and wavelet
transforming the original CT images were included in the fourth
category of higher-order statistical features. We retrieved
1,688 features overall from each VOI using Huiying Medical
Technology’s Radcloud platform.

We chose the MedicalNet transfer project as the transfer
learning model in this study (Chen et al., 2019) and adjusted the
output the ResNet model in the MedicalNet project to facilitate the
output of the deep features. The specific adjustment was to add
linear classification, convolutional and pooling layer before the
original the output the ResNet model. The deep features were
extracted from the last convolutional layer of the model.

The MedicalNet project has amassed a medical image dataset
from various projects, thereby creating a relatively extensive dataset.
Leveraging this dataset, a series of 3D-ResNet pre-trained models
have been provided. 3D-ResNet mainly consists of four residual
blocks with shortcut connections, simulating the computational
neurons and links in the brain. In this study, we used 3D-
ResNet-34 and 3D-ResNet-50 as pre-trained models. Compared
with traditional 2D models, 3D models can learn high-level features
of three-dimensional space on CT images. At the same time, due to

the small amount of data in this project, in order to avoid overfitting,
3D-ResNet-34 and 3D-ResNet-50 with fewer parameters are more
suitable than 3D-ResNet- 101 and 3D-ResNet152. During the fine-
tuning, we freeze the parameters of the vast majority of network
layers and only train the last residual module and the classification
layer. In addition, we employed the Adam optimizer with a learning
rate of 0.0001 and the cross-entropy loss function. We conducted
20 epochs of training and selected the epoch with the lowest
validation set loss as our final model. Our work was
implemented using the Pytorch 1.8.0, and the models were
trained on a NVIDIA 3060Ti GPU.

In this study, optimal features were selected from the training
set. Before the feature selection procedure, all radiomics and
deep characters were standardized using the Standard Scaler
function, which normalizes the features by subtracting the mean
and dividing by the standard deviation. Despite this, there
remained a large number of radiomics and deep features. To
get rid of duplicate features, we applied the variance threshold
algorithm (with a variance threshold of 0.8) and the Select-K-
Best technique. P-values less than 0.05 were utilized by the
Select-K-Best method to identify the best characteristics. To
cut down on a lot of duplication and irrelevant information,
the least absolute shrinkage and selection operator (LASSO)
regression approach was employed. Using least average mean
square error (MSE) and 10-fold cross-validation in the training
set with a maximum iteration of 2000, the ideal α—the coefficient
of regularization in the LASSO algorithm—was chosen. Then, in
the LASSO model produced by the whole training set with the
ideal α, radiomics and deep features with non-zero coefficients
were chosen.

y � 1
2pN

( )p y − Xw
���� ����2 + αp w‖ ‖

Where X is the features, N is the sample number, y is the sample
vector marker, and α p w is the regularization term.

2.5 Rad_Score and Deep_Score building

The Rad_Score and Deep Score for each patient were calculated
using a specific formula. These scores represent comprehensive
encapsulations of the radiomics features and deep features,
respectively, and were utilized for subsequent model
construction. The formula for calculating Rad_Score is:

Rad Score � Intercept + radiomics features 1 × coefficient 1+
. . . radiomics features i × coefficient i

+ . . . radiomics features n × coefficient n

where n is the total number of optimal radiomics features,
Intercept is the LASSO algorithm intercept, coefficient_i is the
LASSO algorithm coefficient of the i-th feature, and radiomics_
feature_i is the i-th optimal feature.

The formula for calculating Deep_Score is:
Deep_Score = Intercept + deep_features_ 1 × coefficient_ 1 +

deep_features_i × coefficient_i + deep_features_n × coefficient_n
here n is the total number of optimal deep features, Intercept is the
LASSO algorithm intercept, coefficient_i is the LASSO algorithm
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coefficient of the ith feature, and deep_feature_i is the ith optimal
deep feature.

2.6 Construction of the biological activity
grading model

In this study, we used features from three different categories
to build our model: i) radiomics features; ii) 3D-ResNet-34 deep
features; iii) 3D-ResNet-50 deep features. We used the optimal
radiomics features and two deep learning features based on
logistic regression algorithm to construct seven models for
diagnosing the biological activity grading, namely, RadScore
model, 3D-ResNet-34 model, 3D-ResNet-50 model, Rad_
Score and 3D-ResNet-34 model, RadScore and 3D-ResNet-
50 model, 3D-ResNet-34 and3D-ResNet-50 model and
RadScore and 3D-ResNet-34 and3D-ResNet-50 model
(Combined model).

Establishing a nomogram using Rad_Score and two Deep_
Scores (Resnet34_DL_Score, Resnet50_DL_Score) holds
significant value. To assess the degree of agreement between the
nomogra’s predictions and the actual outcomes in the training and
validation sets, a calibration curve was built. In order to evaluate the

net benefits in the training and validation sets, decision curve
analysis (DCA) was utilized.

2.7 Statistical analysis

Clinical information was statistically analyzed using R version
4.1.0. Data modeling and analysis were performed using Python
language (version 3.6.5) and the corresponding open-source
libraries Pyradiomics (version 3.0. 1) and scikit-learn (version
0.19.2). Precision, accuracy, specificity, sensitivity, and the area
under the receiver operating characteristic (ROC) curve were
used to evaluate the model’s diagnostic performance.

3 Results

3.1 Baseline characters

We collected 12 clinical features from the patients, such as sex,
symptoms (The clinical symptoms of hepatic echinococcosis
patients encompass liver-related manifestations such as right
upper abdominal pain or discomfort, palpable masses or lumps

TABLE 1 Characteristics of the CE1 patients and CE2 patients.

Characteristic Active Non-active P-value

Number 109 51

Sex (%) 0.332

Male 43 (39.4) 25 (49.0)

Female 66 (60.6) 26 (51.0)

Symptoms (%) 0.75

0 58 (53.2) 26 (51.0)

1 51 (46.8) 25 (49.0)

Comorbidities (%) 0.718

0 93 (85.3) 42 (82.4)

1 14 (12.8) 7 (13.7)

2 2 (1.8) 2 (3.9)

Age [median (IQR)] 33.00 [25.00, 45.00] 40.00 [24.00, 58.00] 0.133

Lesion diameter [median (IQR)] 10.00 [8.00, 12.00] 10.00 [8.00, 12.00] 0.945

ALT [median (IQR)] 16.70 [13.40, 25.00] 15.70 [13.00, 24.90] 0.355

Glutamyl transpeptidase [median (IQR)] 19.00 [13.00, 29.00] 19.00 [12.00, 35.00] 0.969

Albumin [median (IQR)] 40.80 [37.60, 43.90] 40.30 [37.40, 43.00] 0.371

Prothrombin time [median (IQR)] 11.90 [11.10, 12.90] 11.60 [11.10, 13.80] 0.696

RBC [median (IQR)] 4.63 [4.26, 5.07] 4.77 [4.44, 5.01] 0.284

HB [median (IQR)] 130.00 [118.00, 145.00] 132.00 [122.00, 144.50] 0.686

Reutrophil count [median (IQR)] 0.82 [0.49, 3.71] 0.69 [0.45, 2.90] 0.285

CRP [median (IQR)]

Number 0.48 [0.00, 1.05] 0.50 [0.00, 1.19] 0.83
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FIGURE 3
Selected radiomics and deep learning features. (A) Selected radiomics features, (B) Selected 3D-ResNet-34 features, (C) Selected 3D-ResNet-
50 features.

TABLE 2 Evaluation table of all models of the biological activity grading.

Model Data set AUC Accuracy Precision Sensitivity Specificity

Radiomics Training set 0.783 (0.709–0.847) 0.709 0.847 0.701 0.725

Validation set 0.777 (0.630–0.921) 0.667 0.824 0.636 0.727

3D-ResNet-34 Training set 0.739 (0.653–0.820) 0.669 0.817 0.667 0.675

Validation set 0.628 (0.434–0.790) 0.628 0.727 0.727 0.455

3D-ResNet-50 Training set 0.797 (0.728–0.861) 0.701 0.866 0.667 0.775

Validation set 0.723 (0.514–0.877) 0.606 0.846 0.500 0.818

Radiomics and 3D-ResNet-34 Training set 0.819 (0.741–0.883) 0.795 0.851 0.851 0.675

Validation set 0.810 (0.655–0.946) 0.848 0.870 0.909 0.727

Radiomics and 3D-ResNet-50 Training set 0.827 (0.763–0.889) 0.748 0.824 0.805 0.625

Validation set 0.806 (0.654–0.938) 0.818 0.864 0.864 0.727

3D-ResNet-34 and 3D-ResNet-50 Training set 0.868 (0.808–0.918) 0.764 0.880 0.759 0.775

Validation set 0.731 (0.533–0.880) 0.670 0.800 0.727 0.636

Combined model Training set 0.888 (0.837–0.936) 0.780 0.893 0.770 0.800

Validation set 0.876 (0.761–0.964) 0.818 0.900 0.818 0.818
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in the liver region, and abnormal liver function including jaundice
and elevated transaminases. Additionally, systemic symptoms can
include fever, fatigue, weight loss, reduced appetite, nausea, and
vomiting), comorbidities, age, diameter of the lesion, ALT, glutamyl
transpeptidase, albumin, prothrombin time, RBC, HB, neutrophil
count and CRP level. The results of the statistical analysis indicated
that there was no significant difference in these characteristics
between the two groups. The statistical outcomes of these twelve
characteristics across different metastatic groups are presented
in Table 1.

3.2 Selected results of radiomics and
deep features

From the VOI of each patient, we obtained 1,688 radiomic
features 3D-ResNet-34 and 3D-ResNet-50 deep learning features.
We applied feature selection algorithms to identify the optimal

features. Finally, we selected 12 radiomics features, 6 3D-ResNet-
34 deep learning features and 10 3D-ResNet-50 deep learning
features as the optimal features set (Figure 3).

3.3 Evaluation of the predication models

We used the optimal radiomics features and two deep learning
model features based on logistic regression algorithm to construct
seven models. Table 2 shows the specific evaluation metrics of all
models, and Figures 4, 5 show the ROC curves of all 245 models.

Among themodels with single input as predictors for diagnosing
the biological activity grading, the radiomics model,
3D-ResNet-34 model and 3D-ResNet-50 model had AUC values
of 0.777 (95% CI: 0.630–0.921), 0.628 (95% CI: 0.434–0.790) and
0.723 (95% CI: 0.514–0.877) in the validation set; accuracy of 0.667,
0.628, 0.606; precision of 0.824, 0.727, 0.846; sensitivity of 0.636,
0.727, 0.500; specificity of 0.727, 0.455, 0.818, respectively. Among

FIGURE 4
ROC curves of radiomics, 3D-ResNet 34 and 3D-ResNet 50. (A) ROC curve of radiomics model, (B) ROC curve of 3DResNet 34 model, (C) ROC
curve of 3DResNet 50 model.
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the three models, the radiomics model demonstrated the best
diagnostic performance, achieving a balanced identification
of CE1 and CE2.

In the case of the diagnostic models that utilized two inputs to
predict the biological activity grading, the validation set AUC values
were as follows: 0.810 (95% CI: 0.655–0.946) for the RadScore
and3D-ResNet-34 model, 0.806 (95% CI: 0.654–0.938) for the
RadScore and3D-ResNet-50 model, and 0.731 (95% CI:
0.533–0.880) for the 3DResNet-34 and 3D-ResNet-50 model.
Additionally, the accuracy, precision, and specificity values were
0.848, 0.818, and 0.670, respectively; sensitivity, 0.864, and 0.727,
respectively; and specificity, 0.727, 0.727, and 0.636, respectively.
The combined models, which used two inputs as predictors,
demonstrated a significant improvement in diagnostic
performance compared to the models that used a single input as
a predictor. Notably, the combined model that incorporated both

radiomics and deep learning features exhibited the best
performance.

Among the models with three factors as predictors, the model
achieved an AUC value of 0.876 (0.761–0.964), an accuracy of 0.818, a
precision of 0.900, a sensitivity of 0.818, and a specificity of 0.818 in the
validation set. The combinedmodel with three inputs demonstrated the
best diagnostic performance among all models, with both sensitivity
and specificity exceeding 80%, and precision reaching 90%. By merging
the Rad_Score and Deep_Scores in the training set, a nomogram based
on the combined model was created (Figure 6A). The calibration curve
showed that in both the training and validation sets, the actual biological
activity grading result was compatible with the anticipated probability of
the nomogram (Figure 6B). According to DCA (Figure 7), when the
threshold was more than 0. One in the training set and greater than
0.45 in the validation set, the nomogrammodel outperformed the other
models in terms of net benefit.

FIGURE 5
ROC curves of radiomics and 3D-ResNet 34, Radiomics and 3D-ResNet 485 50, 3D-ResNet 34 and 3D-ResNet 50 and combined model. (A) ROC
curve of radiomics and 3DResNet 34 model, (B) ROC curve of Radiomics and 3DResNet 50 model, (C) ROC curve of 3DResNet 34 and 3DResNet 50
model, (D) ROC curve of combined model.
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4 Discussion

In this study, we retrospectively constructed a non-invasive
prediction model for biological activity grading (active and non-
active) based on artificial intelligence methods using CT images. By
extracting high-throughput radiomics features and two 3D-RestNet
deep learning features from the hepatic hydatid lesion area, we
performed multifactor logistic regression modeling and a
nomogram to diagnose the grading of hepatic hydatid activity.
The final radiomics feature combined with deep learning feature
diagnosis model (the combined model) achieved a good diagnostic
performance, with an AUC of 0.876 (0.761–0.964) in the validation
set and 0.888 (95% CI: 0.837–0.936) in the training set.

The parasitic infection known as liver hydatidosis, or hepatic
hydatid cyst, has been passed on by the tapeworm larvae
Echinococcus granulosus. This illness is widespread in poor
nations all over the world and poses an existential threat to

public health in areas where it is prevalent. Humans get the
parasite’s larvae most commonly via consuming contaminated
food, drink, or environment that has been exposed to the
parasite’s eggs (Agudelo Higuita et al., 2016; Li et al., 2020).
Echinococcus granulosus larvae mostly inhabit dogs, with sheep,
goats, and cattle acting as intermediary hosts. By consuming the
parasite’s eggs, humans unintentionally become intermediate hosts.
The parasite’s larvae then travel through the portal vein to the liver,
where they develop into hydatid cysts (Kern et al., 2017).

Accurate distinguishing between active and non-active hepatic
echinococcosis is crucial for appropriate management and treatment
decisions (International classification of ultrasound images, 2003).
The management approach for active and non-active hepatic
echinococcosis exhibits notable disparities. Active disease
typically necessitates a combination of medical therapy and
surgical intervention to mitigate disease progression and
associated complications. Conversely, non-active manifestations

FIGURE 6
(A) Constructed Nomogram; (B) calibration curve.
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may warrant vigilant monitoring or less invasive therapeutic
modalities (Apaer et al., 2021).

Active hepatic echinococcosis imposes a heightened
susceptibility to adverse outcomes, including cyst rupture,
secondary infection, and systemic dissemination of the parasitic
agent. Consequently, patients with active disease often face a graver
prognosis, particularly if complications have ensued. Furthermore,
active disease carries an augmented risk of recurrence post-
treatment compared to its non-active counterpart (Bhutani and
Kajal, 2012; Joliat et al., 2015).

Precise discernment of disease activity enables healthcare
providers to customize treatment strategies aimed at mitigating
recurrence risk and optimizing patient outcomes. Moreover,
accurate identification of parasite activity facilitates effective
patient-provider communication, facilitating the development of
comprehensive treatment and follow-up plans tailored to individual
patient needs (Balli et al., 2019).

In recent years, artificial intelligence algorithms have rapidly
developed and achieved many successes in medical image data
mining, such as the application of radiomics in 26such as clinical
auxiliary diagnosis, surgical path planning, lesion segmentation and
measurement, etc. In previous studies, Ren (Ren et al., 2021)
established a radiomics model to predict the biological activity of
hepatic hydatid based on MRI images, and the optimal
322 diagnostic model had a prediction performance of AUC =
0.830 ± 0.053 in the validation set.

The features extracted in radiomics mainly include shape
features, texture features, intensity features and filtering
features, with thousands of quantitative features. However, the
quantitative features of radiomics have some limitations, as their
design completely depends on human prior knowledge, which
makes it very likely that radiomics features do not contain
important features that humans have not discovered. Therefore,
the features of deep learning with self-learning ability are
particularly necessary. Deep learning networks can mine hidden
features that reflect the prediction events from a higher level, and
can extract quantifiable higher-level hidden features that humans
do not know. The DLR method that combines deep learning
features with radiomics features will enrich the feature set of
the diagnostic model and ensure the reliability of the model
from the dimension of data input (Shao et al., 2021; Zhou
et al., 2021).

Deep learning models trained from scratch are prone to
overfitting when applied to a specific clinical problem with
limited data. In the medical field, using pre-trained convolutional
neural networks (CNN) as feature extractors has been considered an
effective way to overcome this difficulty. Transfer learning can
transfer the image feature extraction method from the pre-
trained model to a new model, with advantages such as better
generalization and ease of replication (Shin et al., 2016; Lopes
and Valiati, 2017; Zhu et al., 2019; Hu et al., 2021). There are
few open-source medical image pre-trained models available, which

FIGURE 7
Decision curve.
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leads to the previous DLR studies using 2D pre-trained networks.
Such as Yihuai Hu who extracted six pre-trained CNN deep learning
features from CT images and used support vector machine as a
classifier to study esophageal squamous cell carcinoma pathological
complete response to neoadjuvant radiochemotherapy, with a
prediction performance of AUC value of 0.805 in the test set. 2D
pre-trained models lack the exploration of 3D features on medical
images compared to 3D pre-trained models, and cannot describe the
continuity of lesion features between medical image slices. In this
study, we used 3D pre-trained deep learning networks to extract 3D
deep learning features using transfer learning methods, and
combined with traditional radiomics features to construct a
model for distinguishing hepatic hydatid activity grading,
achieving a satisfactory result.

The model proposed in this study has practical implications in
clinical practice, aiding radiologists and treating physicians in
making decisions regarding patient management. By assisting in
determining the need for discharge with medication, follow-up care,
or further diagnostic assessments and treatment, the model can
enhance diagnostic support and efficiency in abdominal CT
analyses. This has the potential to optimize patient care by
reducing unnecessary examinations and facilitating timely and
effective treatment interventions.

4.1 Limitations

However, this study still has some limitations. First, the
small number of patients included in the study due to the
difficulty of collecting cases, in addition data imbalance,
which affects model performances, in our further studies, we
will incorporate more cases to tackle the problems. Second, this
study did not include data from external centers to evaluate the
DLR model with external validation, and we plan to collect data
from external centers to improve this study in the future. Third,
in this study, model explanation techniques were not utilized.
However, in our upcoming research, we plan to employ these
techniques to address the black-box nature of deep learning
models. Fourth, due to the relatively small sample size in this
study, issues such as overfitting or underfitting are inevitable. In
our future studies, we plan to increase the sample size to mitigate
these challenges.

In summary, we established a non-invasive prediction model for
hepatic hydatid activity grading based on the DLR methods, and
achieved good predictive performance. Our prediction model will
help identify the grading of hepatic hydatid activity and guide
personalized treatment plans.

5 Conclusion

We achieved good performance in predicting the activity of
hepatic echinococcosis patients using the classifier based on the DLR
model derived fromCT images. Our model is a potential clinical tool
that can assist in guiding personalized treatment plans for
the patients.
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