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Contactless physiological signal measurement has great applications in various
fields, such as affective computing and health monitoring. Physiological
measurements based on remote photoplethysmography (rPPG) are realized by
capturing the weak periodic color changes. The changes are caused by the
variation in the light absorption of skin surface during systole and diastole stages
of a functioning heart. This measurement mode has advantages of contactless
measurement, simple operation, low cost, etc. In recent years, several deep
learning-based rPPG measurement methods have been proposed. However, the
features learned by deep learning models are vulnerable to motion and
illumination artefacts, and are unable to fully exploit the intrinsic temporal
characteristics of the rPPG. This paper presents an efficient spatiotemporal
modeling-based rPPG recovery method for physiological signal
measurements. First, two modules are utilized in the rPPG task: 1) 3D central
difference convolution for temporal context modeling with enhanced
representation and generalization capacity, and 2) Huber loss for robust
intensity-level rPPG recovery. Second, a dual branch structure for both
motion and appearance modeling and a soft attention mask are adapted to
take full advantage of the central difference convolution. Third, a multi-task
setting for joint cardiac and respiratory signals measurements is introduced to
benefit from the internal relevance between two physiological signals. Last,
extensive experiments performed on three public databases show that the
proposed method outperforms prior state-of-the-art methods with the
Pearson’s correlation coefficient higher than 0.96 on all three datasets. The
generalization ability of the proposedmethod is also evaluated by cross-database
and video compression experiments. The effectiveness and necessity of each
module are confirmed by ablation studies.
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1 Introduction

The continuous development of modern society is constantly
improving the living standards of people. However, in the
meantime, the incidence rate of cardiovascular disease is
increasing, which may be caused by the increased work pressure
and faster pace of life. The detection of human physiological
indicators is of great importance for sensing both affect and
health status (Loh et al., 2022; Gupta et al., 2022). However,
traditional physiological measurement methods are mostly
contact-based, which have the following shortcomings: They are
not applicable in some specific application scenarios, such as
analyzing the cognitive pressure experienced by interpreters
during simultaneous translation, monitoring the psychological
states of criminal suspects during interrogation, etc. Moreover,
contact measurement requires active cooperation of the tested
person. When there is a deviation in the position of the
measuring instrument in contact with the skin, it can easily cause
a large deviation in the measurement results (Zaunseder et al., 2017;
Kumar et al., 2023). In addition, although the electrocardiograph
provides accurate measurements, it is relatively expensive and
requires to be operated by professionals, which is not suitable for
daily physiological measurements.

Plethysmography is the detection of the cardio-vascular pulse
wave accomplished by methods such as variations in air pressure or
impedance (Verkruysse et al., 2008). Remote photo-
plethysmography (PPG) uses light reflectance. This technology
can provide contactless monitoring of human cardiac activities
by capturing the pulse-induced periodic weak color variations on
the skin surface through a conventional camera (McDuff, 2022;
Wang et al., 2017; Gupta et al., 2020; Ryu et al., 2021). It is based on
the principle that the blood absorbs more light than the surrounding
tissues and, therefore, changes in blood volume (caused by systole
and diastole stages of the heart) affect transmission and reflectance
(Song et al., 2020). Although this pulse-induced variation is subtle, it
can be remotely measured on the human face with normal ambient
light and a consumer-level camera from a distance of several meters
(Verkruysse et al., 2008). The rPPG has many advantages, such as
contactless measurement, simple operation, low cost, etc. It provides
a new solution for physiological signal measurement and its
applications in affective computing (Dasari et al., 2021).

Thanks to the prospective development of computer vision
techniques, the subtle change in skin appearance caused by
cardiac activities can be detected by low-cost cameras
(Verkruysse et al., 2008). Classic signal processing has proved the
feasibility of rPPG-based heart rate measurement with the initial
success of prototype methods (Yue et al., 2020). However, these
methods often show degradation in the presence of artifacts, such as
movements, lighting variations, and different skin tones (Shao et al.,
2021). With the extensive applications of deep learning in various
research fields, such as biometrics (Labati et al., 2022), affective
computing (Jung and Sejnowski, 2022), and internet-of-things (Yao
et al., 2018), recent studies have also begun to focus on deep
learning-based rPPG due to its better representation ability
(McDuff, 2022). Several deep learning models, such as
convolutional neural network (both 2D and 3D (Zhan et al.,
2020)) and recurrent neural network (gated recurrent unit (GRU)
(Niu et al., 2019a) and long short-term memory (LSTM) (Hill et al.,

2021)), have been successfully applied in the rPPG recovery tasks.
However, deep learning-based rPPG can still not effectively model
the spatio-temporal information (Ren et al., 2021).

A method of modeling spatio-temporal information by
generating a feature map, called STMap (Niu et al., 2019b; Niu
et al., 2020; Lu et al., 2021), requires preprocessing including face
detection, facial landmarks localization, face alignment, skin
segmentation, and color space transformation, which are
considerably complicated. Besides, some existing methods directly
regress a value, such as heart rate, as the final output instead of
recovering the whole waveform, whereas the waveform could be
helpful for further analysis of more refined physiological indicators.
Furthermore, various loss functions such as L1 loss (mean absolute
error, MAE) (Niu et al., 2019a), L2 loss (root mean of squared errors,
RMSE) (Tsou et al., 2020), negative Pearson correlation coefficient
(Yu et al., 2020a), or more complicated losses with different
combinations of these losses exist (Lu et al., 2021). However, the
comparison of different loss functions is rarely studied.

Motivated by the above discussion, this paper aims to realize
robust contactless physiological signal measurements. Thereby, we
propose an rPPG waveform recovery method based on efficient
spatiotemporal modeling. It is achieved through a three-
dimensional central difference convolution (3D-CDC) operator
(Yu et al., 2021) with a dual branch structure composed of
motion and appearance branches, as well as a soft attention mask
that assigns higher weights to the skin regions with stronger
physiological signals. The 3D-CDC can effectively describe
intrinsic patterns through the combination of gradient and
intensity information. Moreover, to the best of our knowledge,
we introduce Huber loss (Wang et al., 2022) for the first time in
the rPPG task, which combines the advantage of both L1 and
L2 losses, and shows better performance than using these losses
separately.

This paper is an extended version of our conference paper (Zhao
et al., 2021). The following are the main differences with respect to
(Zhao et al., 2021): 1) We propose a multi-task 3D-CDC for pulse
wave and respiration wave joint measurement in addition to heart
rate measurement; 2) Ablation studies are performed to show the
effectiveness of each module, e.g., 3D-CDC, dual branches
architecture, and soft attention mask; 3) Robustness of the
proposed method with respect to video compression is evaluated
and compared with other methods; 4) Extended quantitative and
qualitative analyses are provided. The current paper includes
additional experiments, data, and interpretation, which have
added value to the work proposed in (Yu et al., 2020a).

Our main contributions are as follows:

• An accurate rPPG measurement method based on a 3D-CDC
attention network for efficient spatio-temporal modeling is
proposed. The utilized 3D-CDC operator can extract temporal
context by aggregating temporal difference information.

• Huber loss is adapted as the loss function for rPPG
measurements. By evaluating different loss functions and
their combinations, we show that better performance is
achieved with Huber loss alone by focusing on the intensity
level constraint.

• A multi-task variant of the proposed method for joint
measurement of cardiac and respiratory activities is
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developed. It has the advantage of sharing information
between related physiological signals, which can further
improve accuracy while reducing computational costs.

• Extensive experiments show superior performance on public
databases. Both cross-database evaluation and ablation studies
are conducted, as well as the effects of video compression are
evaluated, which proves the effectiveness and robustness of the
proposed method.

The rest of the paper is organized as follows: Section 2 provides
the related work and Section 3 gives details about the framework and
each module. Section 4 introduces the evaluation settings and
implementation details. Section 5 provides the performance of
the proposed models on public databases and rigorous ablation
studies. Finally, the paper is concluded in Section 6.

2 Related work

2.1 Signal separation-based rPPG

The remote physiological signal detection method based on
rPPG is favored by researchers because it is non-invasive and can
obtain physiological signals without any direct contact with the
subject’s skin. The underlying mechanism is the delivery of blood
flow to the whole body due to the periodic contraction and
relaxation of the heart, resulting in blood volume changes in
vessels. Due to the different absorption and reflection capabilities
of blood vessels and other tissues for different wavelengths of light,
subtle color changes occur in skin areas with a rich vascular
distribution, such as the face or palm. When a part of human
skin tissue containing pulsatile blood is observed with a remote color
camera, the camera measured signal of the skin surface would have a
certain color variation over time, both due to the motion-induced
intensity/specular variations and pulse-induced subtle color changes
(Wang et al., 2017). Instead of the specular variations, the diffuse
reflection component is associated with the absorption and
scattering of light in skin tissues, which contains the pulse signal.

The task of rPPG algorithms is to derive the pulse signal from
the RGB signals captured by the camera. Blazek et al. (Blazek et al.,
2000) proved that blood pulse signals could be measured with a
remote near-infrared imaging system. A similar technique was
presented shortly after using a visual band camera (Wu et al.,
2000). This concept was further developed by successful
replications of this work in (Verkruysse et al., 2008). Verkruysse
et al. first proved the feasibility of using a low-cost camera to detect
the human heart rate (Verkruysse et al., 2008), and obtained the
heart rate signal by analyzing a facial video taken under visible light.
Many subsequent studies began to pay attention to artifact
elimination during rPPG measurements, such as movement,
facial expression, skin tone, illumination variations, etc.

In terms of eliminating the illumination artifacts, there are
mainly two solutions: one is to directly separate the light change
signal from the pulse signal through signal separation methods, and
the other is to consider the non-skin background area except the face
area as the artifacts reference (Nowara et al., 2020). Anti-motion
interference methods can be roughly divided into 1) blind source
analysis methods that separate the components of motion signals

(Poh et al., 2010), 2) methods based on color models, such as
CHROM (De Haan and Jeanne, 2013), POS (Wang et al., 2017), etc.,
which distinguish motion signals from pulse signals by analyzing
skin color models, 3) methods based on motion compensation that
include global and local motion compensation to eliminate the
influence of head translation and rotation (Cheng et al., 2016).

However, it was found in practical applications that the signal
separation-based methods can only aim at a specific interference,
and cannot effectively deal with the coexistence of multiple
interferences in a real scene. To further improve the robustness
of non-contact rPPG pulse wave recovery, and also to explore the
feasibility of rPPG recovery method based on deep learning, the
research trend has changed from signal separation-based methods to
data-driven methods.

2.2 Data-driven rPPG

The widespread use of deep learning in computer vision has led to
the development of numerous contactless heart rate measuring
techniques. Chen et al. proposed a convolutional attention network
that employed normalized difference frames as input to predict the
derivative of the pulse wave signal (Chen and McDuff, 2018). Niu et al.
generated spatio-temporal map representation by aggregating
information in multiple small regions of interest, and the spatio-
temporal map was cascaded with ResNet to predict the heart rate
(Niu et al., 2019a). Yu et al. designed the spatiotemporal networks
PhysNet (Yu et al., 2020a) and rPPGNet (Yu et al., 2019) for pulse wave
signal recovery, introduced the temporal difference information into the
ordinary three-dimensional convolution network, and subsequently
constrained the convergence of the model with a self-defined loss
function (Yu et al., 2020b). Nowara et al. (2020) used the inverse
operation of the attention mask to estimate the artifacts, and used it as
the input of sequence learning to improve the estimation.

Transformer is becoming the preferred architecture for many
computer vision tasks. By fully utilizing the self-attention
mechanism to break through the space limitation of convolution
computing, two recent rPPG works preliminarily showed that the
transformer structure could match performance with the most
advanced convolution network (Yu et al., 2022). However,
whether it can exceed the performance of convolution network
on large data sets remains to be studied (Kwasniewska et al., 2021).
More recent works explore Transformer architecture with
multimodal sources (e.g., RGB and NIR) (Liu et al., 2023),
different color spaces (Liu et al., 2024), as well as multistage
framework (Zhang et al., 2023; Zou et al., 2024a). Furthermore, a
very recent sequence model backbone Mamba was also been
investigated in the rPPG task (Zou et al., 2024b).

In addition, the training model based on generative adversarial
network can generate realistic rPPG waveforms. For example,
PulseGAN (Song et al., 2021) used conditional generative
adversarial network to optimize the waveforms obtained with
signal separation methods. Dual-GAN (Lu et al., 2021) used dual
generative adversarial networks to model the background artifacts
for better pulse wave recovery. However, this method involved facial
landmark detection, ROI extraction, color space transformation, and
other preprocessing. The complexity of preprocessing steps limits
the real-time application in natural scenes.
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In addition, there have also been attempts to use meta-learning
methods (Lee et al., 2020). Liu et al. (2020) proposed a meta-learning
framework, which used model-agnostic meta-learning algorithms
for learning, and utilized signal separation-based methods to
generate pseudo labels. However, due to the limitations of
supervised learning, the performance of existing methods in cross
databases evaluation and practical applications would be degraded.
The learned spatiotemporal features are still vulnerable to lighting
conditions and movements, and are unable to fully exploit the
extensive temporal context to improve spatiotemporal
representation. Therefore, introducing an enhanced temporal
feature learning module might be a workable solution.

2.3 Spatio-temporal modeling

The rPPG signal contains temporal information that changes
with the cardiac cycle, therefore, the modeling of spatio-temporal
information is crucial. Early spatiotemporal deep learning networks
directly extracted motion characteristics between frames using 3D
convolution. Tran et al. (2015) suggested a homogeneous, small-
scale C3D neural network to replace 3D convolution. Christoph
et al. proposed a network called SlowFast, which consisted of a slow
pathway that executed at a low frame rate and a fast pathway that
executed at a high frame rate (Feichtenhofer et al., 2019). Liu et al.
(2020) introduced a temporal shift module into the convolution
network for rPPG-based physiological measurements on a mobile
platform. Ouzar et al. (2023) end-to-end pulse rate estimation
method based on depthwise separable convolutions.

The 3D-CDC (Yu et al., 2021; Yu et al., 2020c) was proposed as an
innovative approach to replace 3DCNN. It was realized by a unified 3D
convolution operator that incorporated spatio-temporal gradient
information to deliver a more robust and discriminative modeling
capability. The CDC has been adapted for tasks such as gesture
recognition and face anti-spoofing, and has achieved the state-of-
the-art performance. Yu et al. (2021) combined 3D-CDC with
neural architecture search to perform gesture recognition. The
difference between the aforementioned work and our work
described in this paper is that the former uses 3D-CDC as a
searchable convolution component. The neural architecture search

usually needs large databases to support the search; however, for
rPPG tasks, only relatively small data sets are available. Therefore, in
this paper, the 3D-CDC module is directly applied to extract spatio-
temporal representation, and subsequently combined with a dual
branch structure and a soft attention mask to further take advantage
of the rPPG-intrinsic temporal characteristics.

3 Methods

3.1 General framework

As Figure 1 shows, a multi-task 3D temporal central difference
convolutional attention network with Huber loss was proposed to
achieve robust pulse and respiration wave recovery. In particular, the
normalized video frame difference is used as the input for motion
representation based on the optical model of skin reflection, and a
separate appearance branch is introduced to assign higher weights to
the skin regions with stronger physiological signals. Temporal 3D-
CDC is adapted as the backbone to capture rich temporal context.
Multi-task measurement variant with Huber loss is then used to
output the final prediction. The preprocessing of regions of interest
extraction is not required in the proposed framework. The attention
mechanism between two branches is deployed to achieve a similar
function. As the distribution of physiological signals is not uniform
in the whole facial area, the attention mechanism can learn soft-
attention masks and assign higher weights to skin areas with
stronger signals, which is beneficial for accuracy improvement.

3.2 Architecture

3.2.1 Skin reflection modeling
The principle of rPPG is that when the light source irradiates

skin tissues, the reflected light intensity would change with the
variation of the measured substance (Wang et al., 2017). The
measured substance here refers to the variation of blood volume
in the blood vessel. The transmitted light intensity detected by the
camera contains the corresponding physiological information of the
tissue. Specifically, the skin reflections can be modeled as follows:

FIGURE 1
A multi-task 3D temporal central difference convolutional attention network for remote physiological measurements.
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Vk t( ) � I t( ) · Vs t( ) + Vd t( )( ) + Vn t( ) (1)
where Vk(t) is the RGB value of the kth skin pixel, I(t) is the light
intensity related to the light source, camera distance, and skin tissue
absorption, Vn(t) is the random quantization noise of the camera,
and Vs(t) and Vd(t) represent the specular reflection and diffuse
reflection of the skin, respectively. These reflections contain
stationary and time-varying components. After expanding the
two components given in Equation 1, Vk(t) can be rewritten as

Vk t( ) � I0 1 + Ψ NP t( ), P t( )( )︸������︷︷������︸
Intensity varaition

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠·

C︸︷︷︸
Constant

+Φs NP t( ), P t( )( )︸�������︷︷�������︸
specular componets

+ P t( )︸�︷︷�︸
diffuse componets

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ + Vn t( )
(2)

where I0 denotes the static component of light intensity,Ψ(NP(t), P(t))
is the intensity variation detected by the camera, andΦs(NP(t), P(t)) is
the time-varying part of the specular reflection. The desired pulse wave
signal is indicated by P(t), and NP(t) indicates variations caused by
non-physiological changes, such as changes in background light, head
movement, speech, facial expression, etc.

The aim of any rPPG-based method is to extract P(t) from Vk(t).
To further simply Equation 2, spatial averaging of pixels is first applied
to reduce the camera quantization errorVn(t). This is accomplished by
using bicubic interpolation to downscale each frame to L-by-L pixels.
The choice of L involves making a trade-off between reducing the
camera noise and maintaining spatial resolution (Wang et al., 2015).
Subsequently, any product between varying terms, such as
Ψ(NP(t), P(t)) · P(t), is neglected because the fixed components
are significantly larger than the time-varying components.
Furthermore, the constant term varies based on the subjects’ skin
tone and lighting conditions, and is usually dominant, which can be
reduced by taking the first order derivative of Equation 2 on both sides.
After applying the above simplifications, we obtain

V′
k t( ) � I0 · ∂Ψ NP t( ), P t( )( )

∂t
+ I0 · C · ∂Φs NP t( ), P t( )( )

∂t

+I0 · ∂P t( )
∂t

(3)

It can be gathered from Equation 3 that Vk(t) still depends on
the observed stationary light intensity I0. The spatial distribution of
I0 is irrelevant to physiology, but is different in different video
recording setups due to different distances to the light source and
uneven skin contours (Chen and McDuff, 2018). The intensity I0
can be removed by dividing V′

k(t) by the temporal mean of Vk(t) as
V′

k t( )
Vk t( ) �

1
C
· ∂Ψ NP t( ), P t( )( )

∂t
+ ∂Φs NP t( ), P t( )( )

∂t
+ 1
C
· ∂P t( )

∂t
(4)

Following (Chen and McDuff, 2018), the discrete-
approximation form of Equation 4 can be written as

V′
k t( )

Vk t( ) ≈
Vk t + Δt( ) − Vk t( )
Vk t + Δt( ) + Vk t( ) (5)

which is the normalized frame difference and Δt is the
sampling interval.

Based on these deductions, a machine learning model would be
suitable to capture the complex relationship between Vk(t) and
P(t). The normalized difference between consecutive frames can
serve as the input of the motion branch of the learning model as
illustrated in Equation 5. The motion representation thereby
captures the physiological processes in a variety of lighting
conditions. Subsequently, the appearance information in facial
videos can be used to guide where and how the physiological
processes should be approximated.

3.2.2 Efficient spatio-temporal modeling
The rPPG is a periodic time-varying signal and, therefore, the

spatio-temporal representation of facial video is the core step in
rPPG signal extraction. The 3D convolution can naturally be used as
a spatio-temporal information extractor. Compared with
conventional 3D convolution, temporal 3D-CDC concentrates on
the differences in temporal gradient by including the temporal
gradient data into a single 3D convolution operation. This results
in calculation of the central difference from the adjacent local spatio-
temporal region (Yu et al., 2020d). The 3D-CDC contains two main
steps with a tendency to converge towards the center-oriented
temporal gradient of the sampled values, which can be expressed
as Equation 6:

3DCDC l0( ) � ∑
ln∈C

ω ln( ) · x l0 + ln( ) + θ · −x l0( ) · ∑
ln∈R

ω ln( )⎛⎝ ⎞⎠ (6)

where x is the input feature map, C denotes the local receptive field
cube, ω are the learnable weights, l0 represents the current location
on the feature map, and ln enumerates the locations in C and
adjacent time steps in R. The hyperparameter θ tradeoffs the
importance of intensity and gradient information. The 3D-CDC
can provide a more discriminative and reliable modeling capability
without any extra parameters.

3.2.3 Dual branch and soft attention
The first order derivative during the reflection modeling is used

to remove the constant terms that are generally associated with the
subjects’ skin tone and lighting conditions. The proposed model
could partially reduce the dependence of the learned model on skin
tones and lamp spectra in the training data. In the motion
representation, however, each pixel is assumed to be equally
weighted in skin reflection modeling. Although the use of
normalized frame difference helps to reduce the influence of
background pixels to a certain extent, it would still cause an
increase in artifacts and affect the rPPG measurement. Previous
studies have used custom regions of interest for rPPGmeasurement.
However, this usage requires additional preprocessing such as facial
landmark detection or skin detection. Not all skin pixels contribute
equally to rPPG measurement because physiological signals are not
evenly distributed in skin regions. Therefore, it would be beneficial
to add an attention module to assign a higher weight to skin areas
with a stronger physiological signal representation.

As the differential operation in the motion representation
process removes the appearance information, a separate
appearance branch is utilized based on (Chen and McDuff,
2018). Unlike the motion branch, which uses the normalized
frame differences as the input, the downsampled frame is
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considered as the input of the appearance branch. The two branches
have the same structure except for the lack of last three layers in the
appearance branch. The attention masks could be estimated with a
1 × 1 × 1 convolution filter right before the pooling layers. The soft
attention mask is defined in Equation 7:

SoftAtt Xj
M( ) � S ωjXj

A + bj( ) ·Hj ·Wj

2 S ωjXj
A + bj( )����� ����� ⊙ Xj

M (7)

whereXj
A andXj

M are the feature maps of the convolution layer j of
the appearance and motion branches, respectively, and Hj and Wj

are the height and width of the feature maps of the convolution layer
j, respectively. The sigmoid function is denoted by S(·), ωj and bj

are the weights and bias of the convolution kernel, respectively, ‖ · ‖
is the l1 norm, and ⊙ denotes the element-wise product. The soft
attention mask is obtained by the sigmoid function followed by
L1 normalization, which generates a soft attention mask that can
avoid extreme values. The attention mask is the bridge between the
motion and appearance branches to assign higher weights to the skin
regions with stronger physiological signals through joint learning.

3.2.4 Multi-task and loss function
There are generally two types of loss functions widely used in

deep learning-based rPPG. One is the loss function that aims to
minimize the point-by-point error, such as theMAE and RMSE. The
other one minimizes the waveform similarity error, such as the
negative Pearson correlation coefficient. The former focuses on the
intensity level constraint, which is relatively simple and easy to
converge, but may cause overfitting. For instance, the MSE would
decrease slowly to approach the local minimum during gradient
descent. However, as the RMSE is a squared error, it would be
sensitive to abnormal values. The MAE can reduce the sensitivity to
outliers, but its gradient remains relatively constant that may miss
the local minimum. In contrast, the latter constraint is in the
frequency domain, forcing the model to learn periodic features in
the target frequency band. As the artifacts in rPPG may be large in a
realistic environment, these losses would be difficult to converge.
Therefore, we compare different loss functions (MAE, RMSE,
negative Pearson, ε-insensitive, and their combinations, detailed
in Section 5.4), and find that the Huber loss achieves the best rPPG
recovery performance. The Huber loss equation is as follows:

Lhuber � 1
N

∑N
i�1

I|yi−ŷi |≤ δ
yi − ŷi( )2

2
+ I|yi−ŷi |> δ δ | yi − ŷi | −

1
2
δ2( ) (8)

where yi is the ground truth pulse waveform or respiration
waveform and ŷi is the respective predictions by the proposed
method. When the error between the predicted rPPG signal and
the ground-truth is less than or equal to the threshold δ (default
value 1 is used), the loss function degenerates from Huber to RMSE;
otherwise, it degenerates from Huber to MAE. Thus, the Huber loss
can combine the advantages of RMSE and MAE while being less
sensitive to outliers in the training data.

Due to respiratory sinus arrhythmia, which is a rhythmic
fluctuation of the cardiac cycle in the respiratory frequency, the
PPG signals also include information about respiration (Berntson
et al., 1993). Thus, the physiological signal P(t) is an intricate
synthesis of the pulse and respiration waves. These two are related in

terms of the underlyingmechanism. Therefore, a multi-task network
is constructed to measure pulse and respiratory signals
simultaneously, reducing the computational cost by about half.
The intermediate representation can be shared, and only different
fully connected layers are used to regress pulse and respiration
separately, as shown in Figure 1. The multi-task loss is defined as

LTotal � α · Lhr
Huber + β · Lrsp

Huber (9)
where α � β � 1 is adapted in our experiment based on
empirical studies.

4 Results

4.1 Database and evaluation settings

The proposed method is evaluated on three publicly available
databases: UBFC (Bobbia et al., 2019), PURE (Stricker et al., 2014),
and COHFACE (Heusch et al., 2017), which are commonly used in
recent research.

The UBFC-rPPG database (Bobbia et al., 2019) comprises
42 videos from 42 subjects recorded with a web camera at a rate
of 30 frames per second, a resolution of 640 × 480, and stored in an
uncompressed format. A pulse oximeter was used to obtain the
ground-truth PPG data. All scenes were indoors in different lighting
conditions. During collection, subjects were asked to do mental
arithmetic as a manipulation of heart rate. The PURE database
(Stricker et al., 2014) contains 10 subjects, each of whom
participated under six different recording conditions, e.g., sitting
still, speaking, slow/fast head movements, etc. This database was
recorded at 30 frames per second using an industrial camera and
stored in an uncompressed format with a resolution of 640 × 480.
The PPG data were also collected by a pulse oximeter.

The COHFACE database (Heusch et al., 2017) comprises
160 videos from 40 subjects, where four videos involving each
subject were taken with two different lighting conditions. The
videos were recorded with a webcam at a rate of 20 frames per
second, a resolution of 640 × 480, and compressed in MPEG-4
format. The bit rate was 250 kb/s, which made it considerably
challenging due to the compression. The recorded physiological
signals included blood volume pulse and respiratory signals. Note
that other databases also exist for rPPG research, such as VIPL-HR
(Niu et al., 2018), OBF (Li et al., 2018) and AFRL (Estepp et al.,
2014). The OBF and AFRL databases are currently not publicly
available. We obtained the VIPL-HR database and the ground-truth
PPG signals for training our method. However, after further
investigation, we found that the PPG signals in VIPL-HR were
not evenly sampled. The ratio of sampling points of contact PPG to
the frame number of videos varied from 2 to 4, making it not suitable
for training our method.

The average heart rate (HR) estimation task is evaluated on all
three databases while the respiration rate (RR) estimation task is
evaluated on the COHFACE database. Particularly, we follow the
evaluation settings in (Niu et al., 2020; Tsou et al., 2020; Heusch
et al., 2017). For the UBFC database, data from 28 subjects are used
as the training set and those from the remaining 14 subjects are used
as the test set. For PURE and COHFACE databases, data from 60%
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of subjects are used for training, and those from the remaining 40%
are used for testing.

4.2 Implementation details

To avoid overfitting, the second and fourth convolutional layers
are followed by two average pooling layers and two dropout layers,
respectively1. The input of the appearance branch is preprocessed by
downsampling each video frame to a size of 36 × 36, since 36 is
supposed to be the optimal value for retaining spatial resolution
while reducing camera noise (Chen and McDuff, 2018). We pick
α � β � 1 for the multi-task loss function in order to force the pulse
and respiration estimations to be regraded equally. A second-order
Butterworth filter is used to further filter the network’s output. The
cut-off frequencies for HR are 0.75 and 2.5 Hz, and for RR they are
0.08 and 0.5 Hz. The position of the highest peak in the power
spectrum obtained from the filtered signal is used to determine the
estimated HR or RR.

We implement our method in TensorFlow 2.0. Adadelta
optimizer is used to train the model with an NVIDIA GeForce
RTX 2080Ti GPU. The learning rate is set as 1.0, and all other
parameters are the same as the default parameters of the Adadelta
optimizer. The number of training epochs is chosen differently for
different databases with early stopping based on visual inspection of
ten-fold cross-validation. Apart from the proposedmethod with 3D-
CDC, we also implement a standalone 3D CNN model to verify the
effectiveness of the central difference mechanism. All other modules
are the same except for the convolution operation. During HR-only
evaluations, the network was trained based on a HR-based loss
where α � 1 and β � 0 in Equation 9.

Another thing to note is that we do not reproduce all previous
methods, but refer to the results from the corresponding papers. For
comparison, classical non-deep learning methods, such as POS
(Wang et al., 2017) and CHROM (De Haan and Jeanne, 2013)
are used as a baseline. Not all previous methods are evaluated on the
aforementioned three databases; however, the state-of-the-art
methods in each database are compared, such as Dual-GAN (Lu
et al., 2021) in UBFC, DeepPhys (Chen andMcDuff, 2018) in PURE,
and DeeprPPG (Liu and Yuen, 2020) in COHFACE.

4.3 Intra-database evaluation

4.3.1 HR estimation on UBFC-rPPG
Table 1 shows the intra-database evaluation results on the

UBFC-rPPG database. The results show that the proposed
method based on 3D temporal central difference convolutional
attention network outperforms both the traditional and recent
deep learning-based methods with MAE, RMSE, and correlation
coefficient of 0.34, 1.12, and 0.997 respectively. It is important to
note that the evaluation metrics MAE and RMSE represent theMAE
or RMSE of estimated heart rate and respiration rate, rather than the
point-by-point error in loss functions. Two examples of the rPPG
signal predicted by the proposed rPPG recovery network on this
database and the corresponding ground-truth PPG signal collected
by the sensor are shown in Figure 2. In most cases, the recovered
curve fits with the ground-truth signals, but there are unfavorable
cases such as the one shown in Figure 2B. The failure may be due to
the noisy ground-truth signal, which can be caused by artefacts
during sensor collection. Even under this noisy condition, our
method is still able to reconstruct a sinusoidal-like curve.

4.3.2 HR estimation on PURE
Table 2 shows the intra-database evaluation results on the PURE

database. The results show that the proposed method outperforms
existing methods with MAE, RMSE, and correlation coefficient of
0.78, 1.07, and 0.999, respectively. Two examples of the rPPG signal
predicted on the PURE database and the corresponding ground-
truth signal are also shown in Figure 3. Even for the “bad” cases in
Figure 3B, the recovered curve generally fits well with the ground-
truth, exhibiting a small phase difference.

4.3.3 HR and RR estimation on COHFACE
Table 3 shows the intra-database evaluation results on the

COHFACE database. The results show that the proposed method
significantly outperforms prior methods with MAE, RMSE, and
correlation coefficient of 1.71, 3.57, and 0.965, respectively. The
video compression of COHFACE does not perform as well as the
other two databases. Two examples of the rPPG signal predicted by
the proposed rPPG recovery network on the COHFACE database
and the corresponding ground-truth signal are also shown in
Figure 4. Again, the recovered curve does not properly fit the
noisy ground-truth signal shown in Figure 4B. As the scatter plot
shows in Figure 5, all points are clustered around the diagonal line,
and only a few samples show deviation, where the underestimation
of HR is higher compared to its overestimation. Scatter plots for
UBFC-rPPG and PURE are not drawn because they are almost
overlaid with the diagonal line due to the good estimation.

TABLE 1 Intra-database evaluation on UBFC-rPPG.

UBFC Year MAE RMSE r

CHROM (De Haan and Jeanne, 2013) 2013 3.44 4.61 0.97

POS (Wang et al., 2017) 2017 2.44 6.61 0.94

MODEL (Li et al., 2019) 2019 3.99 5.55 0.75

MAICA (Macwan et al., 2019) 2019 3.34 — 0.72

CK (Song et al., 2020) 2020 2.30 3.80 0.98

ETA-rPPGNet (Hu et al., 2021) 2021 1.46 3.97 0.93

Dual-GAN (Lu et al., 2021) 2021 0.44 0.67 0.99

AND-rPPG (Lokendra and Puneet, 2022) 2022 2.67 4.07 0.96

PhysFormer (Yu et al., 2022) 2022 0.50 0.71 0.99

RhythmMamba (Zou et al., 2024b) 2024 0.50 0.75 0.99

OURS 0.34 1.12 0.997

Best results in Bold and second-best results in Italics.

1 Code available at: https://github.com/zoubochao/3DCDC-Phys
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As stated in Section 4.1, the COHFACE database contains not
only pulse signals but also the respiratory signals. The multi-task
setting (Section 3.2) is evaluated on this database. There are
relatively few studies on RR estimation. Two previous methods
and one multi-task 3D convolution method are compared. As
Table 4 shows, the proposed multi-task method achieves good
performance with MAE, RMSE, and correlation coefficient of
1.07, 2.41, and 0.80, respectively. The Bland-Altman plot is also
used to assess the differences in measurements between the
estimated results and the references. As Figure 6 shows, the
x-axis is the mean value of the ground-truth HR (RR) and
estimated HR (RR), and the y-axis is the deviation between the
ground-truth HR (RR) and estimated HR (RR). Most of the values

are distributed between mean ± 1.96SD, indicating that the results of
HRs (RRs) measured by the model are close to those measured by
the contact sensor.

4.4 Cross-databases evaluation

The above evaluations are carried out in an intra-database
manner. It is relatively trivial for deep neural networks to train
and converge within one database, but they usually show a poor
generalization ability across different databases. We further conduct
a cross-database evaluation to verify the effectiveness and
generalization ability of the proposed method for scenes without
any prior knowledge. There are usually large differences between
different databases, such as ambient lighting, subject movements,
acquisition apparatus differences, etc.

Consider PURE and COHFACE databases as examples: 1) The
illumination conditions of the two databases are different during
data acquisition. The subjects in PURE sit in front of the window,
and the light changes with the movement of the cloud, while the data
collection in COHFACE is carried out under two different lighting
conditions: indoor light and natural light; 2) There are differences in
the status of subjects at the time of data collection for different
databases. The PURE database contains six different states, while the
subjects in the COHFACE remain stationary without any head
movement; 3) Different databases may use different cameras. The
PURE database utilizes the industrial camera SVS vistek GmbH for
data acquisition. It collects the data at the rate of 30 frames per
second and stores them in the uncompressed format. The video in
the COHFACE database is acquired using the Logitech
c525 network camera to record at the rate of 20 frames per
second. The H.264 compression format is utilized to compress at
the rate of 250 bits per second. From the above analysis, it can be

FIGURE 2
Two cases of the recovered signal curve on UBFC-rPPG: (A) Subject 39 and (B) Subject 48. The red line represents the recovered signal, while the
blue line represents the ground-truth.

TABLE 2 Intra-database evaluation on PURE.

PURE Year MAE RMSE r

CHROM (De Haan and Jeanne, 2013) 2013 2.07 2.50 0.99

LiCVPR (Li et al., 2014) 2014 28.2 30.96 −0.38

2SR (Wang et al., 2016) 2015 2.44 3.06 0.98

POS (Wang et al., 2017) 2017 3.14 10.57 0.95

HR-CNN (Špetlík et al., 2018) 2018 1.84 2.37 0.98

DeepPhys (Chen and McDuff, 2018) 2018 0.83 1.54 0.99

PhysNet (Yu et al., 2020a) 2020 1.90 3.44 0.98

Dual-GAN (Lu et al., 2021) 2021 0.82 1.31 0.99

MSDN (Zhang et al., 2023) 2023 1.46 1.96 0.99

OURS 0.78 1.07 0.999

Best results in Bold and second-best results in Italics.
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gathered that the two databases are considerably different in terms of
lighting conditions, subject movement, and camera settings. It
would be challenging to generalize across the two databases,
which necessitates the evaluation of the generalization ability of
the proposed method.

We first conduct the cross-database evaluation with training on
PURE while testing on COHFACE. Table 5 shows the
corresponding results. Compared with intra-database evaluation
results in Table 3, the performance shown in Table 5 deteriorates
as expected. Though the performance is worse than other deep
neural network methods trained on COHFACE, the proposed
method still performs better than the traditional methods such as

POS, CHROM, LiCVPR, 2SR, etc. We further evaluate training on
COHFACE and testing on PURE, and the corresponding results are
shown in Table 6. The experimental results are MAE = 1.73, RMSE =
2.87, and r = 0.942. These results are comparable to the intra-
database testing results shown in Table 2. Overall, the cross-database
evaluation further demonstrates that the proposed rPPG
measurement network has good generalization ability for
unknown scenes.

4.5 Impact of video compression

Previous studies have shown that video compression
significantly impacts rPPG recovery: the signal-to-noise ratio
drops dramatically as the video bitrate increases (Nowara
et al., 2021). In the three public databases used in this paper,
the videos in UBFC-rPPG and PURE are stored in an
uncompressed format, while the videos in COHFACE are
stored in the H.264 compressed format with a bit rate of
250 kb/s. Video data stored in uncompressed format require
larger storage space that makes it difficult to analyze, operate and
share the videos. For example, the storage space required for a
one-minute video in UBFC-rPPG is about 1.7 GB, which is about
936 times the storage space required for the same length video in
COHFACE. Video compression algorithms help in saving storage
space, with the aim of reducing the bit rate of video while
maintaining the perceptual visual appearance. Compression
algorithms eliminate subtle changes in intensity between
frames that have a minor impact on visual appearance.
However, the rPPG measurement relies on these subtle
intensity and color changes to measure the physiological
signals, which makes it difficult to recover physiological

FIGURE 3
Two cases of recovered PPG signal curve on PURE: (A) Sample 07–03 and (B) Sample 07–01. The red line represents the recovered signal, while the
blue line represents the ground-truth.

TABLE 3 Intra-database evaluation on COHFACE.

COHFACE Year MAE RMSE r

CHROM (De Haan and Jeanne, 2013) 2013 7.8 12.45 0.26

LiCVPR (Li et al., 2014) 2014 19.98 25.59 −0.44

2SR (Wang et al., 2016) 2015 20.89 25.84 −0.32

POS (Wang et al., 2017) 2017 13.43 17.05 0.07

HR-CNN (Špetlík et al., 2018) 2018 8.10 10.78 0.29

DeeprPPG (Liu and Yuen, 2020) 2020 3.07 7.06 0.86

ETA-rPPGNet (Hu et al., 2021) 2021 4.67 6.65 0.77

AND-rPPG (Lokendra and Puneet, 2022) 2022 3.82 5.10 0.79

MSDN (Zhang et al., 2023) 2023 3.87 4.69 0.81

OURS 1.71 3.57 0.965

Best results in Bold and second-best results in Italics.
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information from compressed videos. Therefore, the research on
the effect of video compression on rPPGmeasurements is of great
significance for practical applications.

In this section, we evaluate the extent to which the proposed
rPPG network can resist the impact of video compression. In
particular, the original videos from PURE database are
compressed in the format of H.264 with a bit rate of 250 kb/s,
and the experiment results before and after compression are
compared. Following (Yu et al., 2019), FFmpeg is used as the

compression tool. Under this compression rate, the required
storage space for a one-minute-length video in PURE is reduced
from 890 MB to 2 MB. Table 7 shows the evaluation results. The
results of all rPPG recovery methods on PURE database are
significantly inferior compared to those on the
uncompressed version.

4.6 Evaluation of loss function

We compare the performance of the proposed method based on
spatio-temporal efficient modeling while using different loss
functions, including MAE, RMSE and negative Pearson
correlation coefficient that are commonly deployed in rPPG
measurements. In addition, to combine the advantages of RMSE
and MAE as loss functions and avoid the disadvantages of using
them separately, we also evaluate the Huber loss, ε-insensitive Huber
loss, and a combination of Huber loss and Pearson correlation

FIGURE 4
Two cases of recovered signal curve on COHFACE: (A) Sample 32–02 and (B) Sample 35–02. The red line represents the recovered signal, while the
blue line represents the ground-truth.

FIGURE 5
Scatter plot of estimated HR vs. ground-truth HR on COHFACE.

TABLE 4 Multi-task network for heart rate and respiratory rate estimation
on COHFACE.

Heart rate Respiratory rate

Method MAE RMSE r MAE RMSE r

Liu et al. (2020) 4.27 — — 5.73 — —

Ren et al. (2021) 1.81 — — 5.39 — —

MT3D 1.61 3.08 0.975 2.57 4.53 0.34

OURS 1.53 2.92 0.978 1.07 2.41 0.80
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coefficient. Specially, the ε-insensitive loss function is commonly
used in support vector regression and can be formulated by
Equation 10:

Lε y, f x( )( ) � max 0, y − f x( )∣∣∣∣ ∣∣∣∣ − ε( ) (10)

which does not penalize the samples whose error is less than or equal
to ε. Its aim is to ignore small noisy training samples in insensitive
areas (Wang et al., 2022). After combining with the Huber loss
function in Equation 8, the ε-insensitive Huber loss can be expressed
as Equation 11:

L y, f x( )( ) �
0 0≤ y − f x( )∣∣∣∣ ∣∣∣∣≤ ε
1
2

y − f x( )∣∣∣∣ ∣∣∣∣ − ε( )2 ε< y − f x( )∣∣∣∣ ∣∣∣∣≤ δ + ε

δ y − f x( )∣∣∣∣ ∣∣∣∣ − ε( ) − 1
2
δ2 δ + ε< y − f x( )∣∣∣∣ ∣∣∣∣

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(11)

We evaluate the ε-insensitive Huber loss function with a default
value of ε = 0.1. Increasing this value further may degrade accuracy
(Lambert et al., 2022). As Table 8 shows, the Huber loss consistently
achieves the best results for three metrics on two databases. The ε-
insensitive Huber loss performs marginally worse compared to the
Huber loss may because the former loss function makes the model
focus on samples with large prediction errors, which may sacrifice
the accuracy (Balasundaram and Prasad, 2020).

4.7 Ablation study

In the ablation study, we remove one module (e.g., 3D-CDC, the
soft attention, and multi-task setting) each time to see the effect of
that module on the performance.

FIGURE 6
Bland-Altman plots evaluating the agreement between the ground-truth HRs and RRs and obtained by the contact sensor and HRs and RRs
estimated by the proposed methods for the COHFACE database.

TABLE 5 Cross-database evaluation: trained on PURE, tested on COHFACE.

PURE→COHFACE MAE RMSE r

OURS-CrossDatabase 6.65 12.38 0.476

TABLE 6 Cross-database evaluation: trained on COHFACE, tested on PURE.

COHFACE→PURE MAE RMSE r

OURS-CrossDatabase 1.73 2.87 0.942

TABLE 7 Evaluation of video compression on rPPG measurement (results on PURE).

Compression Pre After Percentage of decrease

Methods MAE RMSE r MAE RMSE r MAE RMSE r

CHROM (De Haan and Jeanne, 2013) 2.07 2.50 0.99 6.29 11.36 0.55 −2.04 −3.54 −0.44

2SR (Wang et al., 2016) 2.44 3.06 0.98 5.78 12.81 0.98 −1.37 −3.19 −0.00

HR-CNN (Špetlík et al., 2018) 1.84 2.37 0.98 8.72 11.00 −0.7 −3.74 −3.64 −1.71

PhysNet (Yu et al., 2020a) 1.90 3.44 0.98 5.39 11.05 0.76 −1.84 −2.21 −0.22

3DCDC-T 0.78 1.07 0.99 1.72 3.99 0.89 −1.21 −2.73 0.10
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4.7.1 Impact of 3D-CDC module
In this ablation, we consider the configurations with or without

the CDCmodule. It can be observed from the last row in Table 9 that
the CDC module helps the proposed method perform better,
exhibiting an increase in MAE, RMSE, and r on all three databases.

4.7.2 Impact of soft attention
In order to verify the effectiveness of the dual branch structure,

we conduct an ablation study of the attention module. Table 10 lists
the results. The incorporation of the attention module shows
consistent improvements among the three databases, which
indicates that the attention mask learned from the appearance
branch assists motion representation.

4.7.3 Impact of multi-task setting
Table 11 shows the ablation of multi-task settings. It can be

observed that these settings not only realize the RR prediction, but
also improve the heart rate estimation results. The two physiological
signals are believed to be correlated. Themulti-task architecture may
benefit from this internal correlation that results in an improved
performance both on HR and RR.

5 Discussion

The above results show the effectiveness of the proposed
method, which achieves the best or second-best results on all
three databases (shown in Tables 1–3). In contrast with the
previous state-of-the-art methods, the proposed method is
generally distinct from the other deep learning-based methods
from two aspects: One is the spatio-temporal network. For
instances, DeepPhys (Yu et al., 2020a) and PhysNet (Chen and

McDuff, 2018) employ 3D CNN, while MTTS (Liu et al., 2020)
adapts the temporal shift modules that aim to reduce the
computational budget without any accuracy gain. The 3D-CDC
utilized in this paper can replace conventional convolutional
operations without extra parameters.

One of the possible reasons for the improvements in results is
the suitability of the enhanced spatio-temporal context modeling
ability to represent the appearance and motion information. In the
meantime, the central difference component can be considered as a
regularization term to alleviate overfitting (Yu et al., 2021). We
would assume that the emphasis on simulating the temporal
component of the physiological signals would increase the
resistance to artifacts.

The second aspect is the network architecture, such as Dual-GAN
(Lu et al., 2021), which is an elegant design of GAN-based architecture
for signal disentanglement, and performs better than our method on
some metrics, such as RMSE on UBFC-rPPG. However, Dual-GAN
contains the pre-processing step called the spatio-temporal map
generation. This requires preprocessing operation including face
detection, facial landmarks localization, face alignment, skin
segmentation, and color space transformation, which are
considerably complicated. On the other hand, our proposed method
only needs a simple subtraction operation between frames as the input
for the motion branch. During cross-database evaluation, one possible
reason for the relatively good performance of training on COHFACE is
compression. Deep learning-based methods perform well on
uncompressed data where the model has seen compressed samples
during training, but not vice versa. A similar pattern has also been
reported in a recent study (Nowara et al., 2021).

Furthermore, to help us understand the reason for the
effectiveness of the proposed method, we also evaluate the effects
of loss functions and video compression, and conduct the ablation
study. When the loss between the recovered rPPG and ground-truth
signals approaches the minimum value, the gradient decreases
slowly with Huber loss. Consequently, the model would be more
robust for rPPG signals prediction. We also observe that the multi-
task variant provides an accuracy improvement relative to the
single-task versions because the network may be able to
simultaneously model internal relevance and save computational
budget. The proposed method seems less affected by video
compression compared with other methods. This verifies that
although video compression impacts rPPG measurements, the
proposed network with efficient spatio-temporal modeling is
robust against the impact of video compression to a certain
extent. Overall, the rPPG measurement network based on
efficient spatio-temporal modeling can capture rich temporal
context by aggregating rPPG-related temporal difference
information.

TABLE 8 Evaluation of different loss functions on COHFACE and UBFC.

UBFC COHFACE

MAE RMSE r MAE RMSE r

MAE 0.99 2.42 0.988 1.86 4.02 0.955

RMSE 0.80 1.99 0.992 1.95 4.28 0.946

Huber 0.34 1.12 0.997 1.71 3.57 0.965

Negative Pearson 0.80 1.99 0.993 1.74 4.12 0.953

Huber + Pearson 0.80 1.96 0.992 1.88 4.26 0.948

ε-insensitive Huber
loss

0.53 1.65 0.995 1.90 4.89 0.934

Best results in Bold.

TABLE 9 Ablation of central difference convolution module.

UBFC PURE COHFACE

MAE RMSE r MAE RMSE r MAE RMSE r

3D 0.83 1.99 0.992 1.26 2.14 0.998 1.87 3.90 0.960

With CDC module 0.34 1.12 0.997 0.78 1.07 0.999 1.71 3.57 0.965
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Contactless measurement technologies like remote
photoplethysmography (rPPG) are gaining traction in the clinical
field due to their potential to revolutionize patient monitoring. For
instance, 1) rPPG allows for the measurement of vital signs without
physical contact, which is especially beneficial in environments where
patient comfort is paramount, such as neonatal care, burn units, or for
individuals with sensitive skin; 2) rPPG can be integrated into
telehealth platforms, allowing for real-time physiological
monitoring during virtual consultations; 3) Contactless methods
reduce the risk of cross-contamination, which is particularly
relevant in pandemic situations such as COVID-19, where
minimizing direct contact between patients and healthcare workers
became a top priority. This advantage makes rPPG an attractive
option in infectious disease wards or intensive care units. However,
despite its initial success, the application of rPPG in clinical settings
faces several challenges and limitations. For example, data privacy and
ethical considerations. Since rPPG involves the use of cameras, there
are concerns related to privacy, especially in clinical and home
settings. As well as calibration and standardization issues. There is
currently a lack of standardization in rPPG systems, which affects
cross-study comparability and clinical adoption. Calibration against
gold-standard methods like ECG is often required to validate the
accuracy of these systems. These challenges highlight the need for
further research and development to refine rPPG technologies and
establish clear guidelines for their clinical use.

6 Conclusion

This paper presented an efficient spatio-temporal modeling-
based rPPG recovery method for physiological signal measurements.
The efficient spatio-temporal modeling was achieved through the
3D central difference convolution operator with a dual branch
structure composed of motion and appearance, as well as a soft
attention mask. Combined with Huber loss and multi-task setting,
the performance was improved and the respiratory signal was also
regressed. Specifically, 3D central difference convolution was
adapted for temporal context modeling with enhanced
representation and generalization capacity. Normalized frame

difference was used as the input for motion representation, and
the soft attention mask was utilized to assign a higher weight to skin
areas containing physiological signals. Huber loss was deployed for
robust intensity-level rPPG recovery. Through the multi-task
measurement network, the pulse and respiratory signals could be
measured simultaneously, which reduced the calculation cost.
Extensive experiments on three public databases showed that the
proposed method could resist the influence of lighting variation,
movements, and skin tone to a certain extent, and outperform prior
state-of-the-art methods on all three databases. The generalization
ability of the model was also evaluated by cross-database
experiments and video compression experiments. The
effectiveness and necessity of each module in the proposed
method were confirmed by ablation studies.

6.1 Limitations and future work

The contactless technology offers enormous promise to improve
noninvasive physiological signal measurement and assessment, but
it is acknowledged that considerable challenges should be overcome
to accomplish this goal. A limitation of this work is that all videos in
the databases are facial videos. The performance on videos with
smaller facial areas or other skin regions needs further evaluation.
Another limitation is that although three databases are evaluated,
they are relatively small with limited environmental factors, e.g.,
head and facial movements, lighting, skin tone, etc. The presence of
other factors may deteriorate the performance. In future work, it is
planned to carry out research from two aspects: one is to analyze the
effectiveness of the method under larger sample sizes and more
complex factors. The other is the research on more physiological
signal parameters, such as heart rate variability for broader affective
computing applications. These applications can include acute stress
and cognitive workload assessment (Loh et al., 2022; Debie
et al., 2019).
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TABLE 11 Ablation of multi-task setting.

Heart rate Respiratory rate

Method MAE RMSE r MAE RMSE r

Single-Task 1.71 3.57 0.965 — — —

Multi-Task 1.53 2.92 0.978 1.07 2.41 0.80
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