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Editorial on the Research Topic
Decoding muscle adaptation through skeletal muscle negative data:
understanding the signaling factors involved

Skeletal muscle adapts to exercise by improving metabolism and structure, leading to
elevated performance. The identification of multiple signaling pathways that contribute to
muscle adaptation including, but not limited to, JAK2/STAT3 (Yao et al., 2024), TGFβ-Smad2/
3-ATF4 (Vanhoutte et al., 2024), Hippo/YAP (Pan et al., 2024), Ca (2+)-NFATC1 (Zhou et al.,
2024a), PROKR1-CREB-NR4A2 (Mok et al., 2024), mitochondria cross talk (Reisman et al.,
2024), mitochondria biogenesis and function (Mesquita et al., 2021;Marzetti et al., 2024), redox
levels (Zhou et al., 2024b), and autophagy (Parousis et al., 2018), and also individual mediators
like GADD42a (Marcotte et al., 2023), Trim63 (da Mata et al., 2024), mTORC1 (DHulst et al.,
2022; McIntosh et al., 2023), YAP (Brooks et al., 2018) and AMPK (Kido et al., 2023; Roberts
et al., 2024) have provided important insight into our understanding of muscle plasticity.
However, signaling proteins or pathways that do not change with exercise are rarely reported
and often interpreted as unimportant and therefore are not published. Nevertheless, this
information could provide critical insight into molecular targets for adaptation to occur.
Furthermore, exercise-induced physiological changes require concerted interactions from
multiple signaling cascades in different organ systems simultaneously. Thus, negative
results (e.g., proteins or molecules that do not change) can highlight which pathways and
molecules may not be involved. Reporting molecular signals that do not change significantly in
response to exercise could reduce lost time and resources conducting experiments to test
proteins that do not change. Thus, results from both positive and negative signaling are
important for identifying novel biomarkers and understanding the adaptive exercise responses,
including performance, hypertrophy, aerobic/anaerobic capacity, andmuscle quality. Thus, the
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aim of this Research Topic was to provide a platform to publish
negative results that were discovered through well-designed research
trials on exercise training adaptations and related signaling
mechanisms. Manuscripts considered for this Research Topic
met all the requirements for submission, including providing details
on the methods, a careful description of the controls for the
experiments, a critical evaluation of the results and interpretation of
the data, including a rationale/hypothesis for the importance of the
negative results to the field, and suggestions for future directions to
address the issue.

The five articles in this Research Topic covered different aspects of
exercise, from aerobic exercise to resistance exercise. Halle et al. used a
mouse model of long-duration treadmill running to investigate the
effects FOLFOX chemotherapy, a commonly used approach to treat
colorectal cancer, on the adaptations to short or long-duration treadmill
exercise training. The results showed that while FOLFOX attenuated
early exercise responses of osteocalcin, LIF, and IL-6, it did not change
plantaris muscle COXIV activity and plasma levels of adiponectin.
These findings highlight the need for more evidence-based exercise
prescription guidelines for cancer survivors following chemotherapy
and understanding how signaling mechanisms to exercise differ from
normal individuals not undergoing chemotherapy. In a progressive
resistance treadmill protocol, Yee et al. examined the effects of 12-week
of treadmill training on muscle cellular content and transcriptional
changes, along with whole body and muscle function, following
recovery from disuse atrophy. The authors showed increases in
exercise capacity, physical function, endothelial function, and a
decrease in fat mass. However, there was no change in mRNAs for
tibialis anterior muscle atrophy, pro-inflammatory, anti-inflammatory,
andmetabolism, or the content ofmacrophages, satellite cells, capillaries
and collagen, with only a trend for increased tibialis anterior muscle
mass during recovery from disuse atrophy. Collectively, the authors data
suggests that progressive treadmill training in agedmalemice hadminor
effects on muscle remodeling and growth following disuse atrophy. As
these findings show different adaptative responses than reported in
young animals, the data indicate the need for additional future research
to identify the underlying signaling mechanisms that are required for
aged muscle to recover following disuse atrophy. The third article in the
Research Topic, from Burke et al., used a barium chloride-induced
muscle damage model in adult mice. They reported minimal effects of
Apolipoprotein E (ApoE), which included ApoE2, ApoE3, and ApoE4,
on muscle regeneration following an extreme muscle damage model.
The authors acknowledged the limitation that their injury model is a
non-physiological model of muscle regeneration and that more studies
are needed to determine if similar results hold true following adaptation
to exercise training.

Next, Mattingly et al. used both a synergistic ablation model to
induce hypertrophy of the plantaris muscle adult mice and a 6-week
resistance training program in college-aged males to examine muscle
protein lactylation responses. The authors found that there were no
changes in lactylation-dependent mRNA in human biopsy muscle
samples obtained following resistance training, and similarly there
were no differences in lactylation content in ablation-induced
overload muscle versus control. These findings challenge the long-
held dogma that lactate has an impactful role in muscle growth as part
of the adaptive response to resistance training. The final article in the
Research Topic was a systematic review performed by Ye et al. aimed to
investigate 8-OHdG as an indicator of DNA damage after an acute bout

of exercise in trained and untrained adults. The results demonstrated
that while there was a medium effect size of resistance exercise causing
increased levels of circulating 8-OHdG for both trained and untrained
adults, this effect only held true for untrained individuals following
aerobic exercise. However, like resistance exercise, high-intensity
aerobic exercise significantly increased circulating 8-OHdG. These
results showed that 8-OHdG is dependent on exercise modality and
training status, and that the role of 8-OHdG in the skeletal muscle
inflammatory response following an acute bout of exercise needs further
investigation.

In conclusion, the articles comprising this Research Topic have
identified important molecules that are not a part of the underlying
musculoskeletal signaling cascades that contribute to the adaptive
response to exercise under different homeostatic conditions. The
intent is that other researchers can use the information gathered
from these experiments to refine their research and increase their
chances of making new discoveries in the pursuit of characterizing
the signalingmechanisms that contribute to the adaptive response to
exercise more completely.
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