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Introduction: Post-activation performance enhancement (PAPE) cannot be
clearly distinguished from and may be explained in large by warm-up effects.
To disentangle PAPE from a systemic warm-up effect, we conducted three
randomized crossover trials (RCT).

Methods: Each RCT consisted of a familiarization/one-repetition-maximum
(1RM) assessment session followed by two interventional sessions (random
order). In Study I, 18 participants (age: 26 ± 4 years; height: 1.84 ± 0.06 m;
mass: 83.7 ± 8.7 kg; Squat-1RM: 146 ± 19 kg) performed either a 3-s isometric
squat at 130%1RM or a 6-s isometric squat at 65%1RM. In Study II, 28
participants (11 female; age: 23 ± 3 years; height: 1.77 ± 0.08 m; mass:
76.5 ± 10.4 kg; Squat-1RM: 109 ± 38 kg) completed either Squat (3 × 3
repetitions, 85%1RM) or local electromyostimulation of the quadriceps
muscle (85% of individual pain threshold). In Study III, 20 participants
(6 female, age: 25.0 ± 3.5 years, mass: 78.5 ± 15.8 kg, height: 1.75 ±
0.08 m; SQ-1RM: 114 ± 33 kg, chest-press-1RM: 74 ± 29 kg) performed
either squats or chest press (4 repetitions, 80%1RM). Counter-Movement-
Jump height (CMJ) was assessed after a general (PRE) and/or muscle-specific
warm-up (POST_WU) and for up to 11 min after the PAPE protocols. To
identify possible differences in CMJ between the experimental conditions,
mixed-design ANOVA models were used for each study individually, with
condition and time modelled as fixed effects, while participants were included
as a random effect blocking factor. The level of statistical significance was set
at α = 5%.

Results: In studies I and II, significant effects for time (p < 0.05, ωp
2 = 0.06

and p < 0.001, ωp
2 = 0.43) were found with the highest CMJ compared to

all other time points at PRE (≤8.2 ± 4.6%, standardized mean difference:
≤0.39), regardless of condition. In study III, no significant effects
were observed.
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Discussion: Thus, PAPE protocols do not further improve jumping performance
compared to a general and muscle-specific traditional warm-up. Prior to tasks
requiring explosive strength, general and sport-specific warm-up strategies should
be used.

KEYWORDS

PAP, counter-movement-jump, potentiation, resistance training, maximal voluntary
contraction, muscle, power

1 Introduction

Since the mid-to-late 1800s, terms like “staircase,” “post-
tetanic potentiation,” and “post-activation potentiation” (PAP)
have been used to describe the phenomenon of increased
muscle contractile force following prior conditioning
contractions, typically involving stimulation of the muscle or its
motor nerve (Blazevich and Babault, 2019). In this context, PAP
traditionally refers to the well-described phenomenon in which a
conditioning contraction (such as a near-maximal voluntary
contraction (MVC) or an electrically induced tetanic
contraction lasting less than 10 s) leads to enhanced twitch
tension and rate of tension development, with a half-life of
approximately 28 s (Vandervoort et al., 1983). Additionally, this
conditioning contraction results in reduced post-stimulus
relaxation time compared to the baseline twitch evoked in a
resting muscle prior to the contraction (Sale, 2002; Blazevich
and Babault, 2019).

Subsequently, the term PAP was however broadened to
encompass a temporal increase in performance metrics such as
vertical jump height, sprinting, or ballistic movements reaching
their peak at 3–7 min (Wilson et al., 2013), 5–7 min (Seitz and
Haff, 2016), >8 min (Gouvêa et al., 2013; Seitz and Haff, 2016),
7–8 min (Garbisu-Hualde and Santos-Concejero, 2021), or
7–10 min (Lesinski et al., 2013; Wilson et al., 2013) after a
moderate-to-high-load strengthening exercise (Prieske et al.,
2020). Some studies even reported potentiation effects, as
measured through vertical jump performance, following a full
training session that included both strength training and
technical elements in professional volleyballers (Berriel et al.,
2022), or in runners after completing a 30 km self-paced time
trial (Rosso et al., 2016). Consequently, to differentiate between
enhancements via electrically evoked contractions (as in PAP) and
the enhancement of voluntary movements, it has been
recommended to use the term post-activation performance
enhancement (PAPE) for the latter (Cuenca-Fernández et al.,
2017; Blazevich and Babault, 2019; Prieske et al., 2020).

The primary mechanism underlying PAP, namely, the
phosphorylation of myosin regulatory light chains, leading to
enhanced sensitivity of actin-myosin interaction to calcium ions
released from the sarcoplasmic reticulum (Sweeney et al., 1993;
Rassier and Macintosh, 2000), is well-described. The mechanisms
underlying PAPE, however, unreliable in its occurrence and
questionable in its magnitude (Dobbs et al., 2019; Prieske et al.,
2020), remain somewhat unclear. Possible physiological
mechanisms accounting for PAPE may involve several factors:
(I) an increase in muscle temperature, which positively influences
the temperature-sensitive myosin ATPase reaction; (II) elevated

blood flow, leading to a shift of water into the intracellular space,
potentially decreasing Ca2+ sensitivity; and (III) increases in
spinal-level excitability, associated with changes in arousal level
and enhancements in tendon tap and H-reflex amplitudes
(Blazevich and Babault, 2019). However, these mechanisms are
almost entirely consistent with the effects that are also thought to
be responsible for the effects of a warm-up routine before exercise
(e.g., increased muscle temperature, elevated blood flow to the
muscles and increased nerve conduction rate) (Bishop, 2003a).
While the definitive ideal intensity of a warm-up is not clearly
defined, the consensus seems to be a mild sweat without fatigue
(Safran et al., 1989). In this context, traditionally, a warm-up is
thought to consist of general and sport-specific (e.g., specific
stretches and sport-related movements) parts comprising light
aerobic activities (e.g., jogging) and resistive exercises (Kulund
and Töttössy, 1983; Safran et al., 1989). For example, a significantly
higher jumping performance was reported, when including five
loaded jumps (10% of bodyweight as additional load) or a series of
submaximal (5 × 2 repetitions at 20% of the one-repetition-
maximum (1RM) to 90%1RM) half-squats (Gourgoulis et al.,
2003) into the warm-up routine. A sufficient warm-up protocol
will thus subsequently increase performance metrics such as
vertical jump height (Burkett et al., 2005), sprinting
performance (Grodjinovsky and Magel, 1970), or power-related
tasks (Sargeant and Dolan, 1987) – generally 3–5 min after the
warm-up protocol (Bishop, 2003b), thus showing a close temporal
relationship with the peak in performance after administering a
PAPE protocol.

Even though the conditioning activity to induce a PAPE effect
is thought to require a carefully balanced combination of intensity
(Gołaś et al., 2016), volume and recovery time (Kilduff et al., 2008),
meta-analyses are unequivocal and inconclusive in their findings
for optimal protocols. Partially cofounded by athletes’ level of
performance, trivial to moderate (Gouvêa et al., 2013; Wilson et al.,
2013; Seitz and Haff, 2016; Dobbs et al., 2019; Krzysztofik et al.,
2020) PAPE effects have been reported 3–10 min (Gouvêa et al.,
2013; Lesinski et al., 2013; Wilson et al., 2013; Seitz and Haff, 2016;
Garbisu-Hualde and Santos-Concejero, 2021) after moderate to
high intensity preconditioning activities (60%1RM to >90%1RM)
performed in a single set (Krzysztofik et al., 2020), multiple sets
(Lesinski et al., 2013; Wilson et al., 2013; Seitz and Haff, 2016), or
regardless of the number of sets (Dobbs et al., 2019; Garbisu-
Hualde and Santos-Concejero, 2021). Thus, as there is no clear
distinction between PAPE protocols and (normal) warm-up
protocols, it is reasonable to assume, that the effect of PAPE
protocols may be interfered with or attributed to local or even
systemic warm-up effects (Macintosh et al., 2012; Blazevich and
Babault, 2019; Prieske et al., 2020). This notion is supported by
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studies reporting a PAPE effect in the upper body after performing
a conditioning activity in the lower body (Caldeira et al., 2023) or
vice versa (Bartolomei et al., 2023). Moreover, studies reporting
large PAPE effects often implemented only a very limited warm-up
[e.g., 5 min of light cycling and/or dynamic stretching (Lowery
et al., 2012; Esformes and Bampouras, 2013)] before obtaining
baseline values of their outcome measure. However, it has been
emphasized that ≤5 min of low-intensity exercise as warm-up does
not yield significant short-term performance enhancements
(Bishop, 2003b). Therefore, it remains open, whether an
additional PAPE effect will be visible when performing a
sufficient warm-up routine consisting of both general and
specific exercises at moderate intensities prior to the
conditioning activity.

Against this background, we conducted three acute
randomized crossover trials comprising different PAPE
protocols after a warm-up routine consisting of general and
specific exercises. Each trial incorporated a different PAPE
conditioning activity, while being orientated on the
aforementioned recommendations in terms of intensity, volume
and recovery intervals. The first study focused on isometric
contractions as a conditioning activity. When performing
maximal voluntary isometric contractions, studies have reported
lower PAPE effects (Tillin and Bishop, 2009; Dobbs et al., 2019).
However, it still remains unclear whether these lower effects result
from fatiguing effects due to an inadequate balance of load and
recovery time (Kilduff et al., 2008) or a lack of movement similarity
(Dello Iacono et al., 2018). Thus, in our first study, we aimed at
investigating whether performing isometric contractions at
submaximal intensities and with shorter time-under-tension
may be sufficient to induce further performance improvements
(i.e., PAPE effects) after an adequate warm-up routine. Secondly,
exploring alternative activation protocols, neither local electrical
stimulation of the quadriceps muscle (Sari et al., 2022), nor whole-
body electromyostimulation (EMS) (Dote-Montero et al., 2021)
showed significant performance increases. Notably, however, both
studies used electrical stimulation at a frequency of 100 Hz.
Considering that a higher percentage of type-II muscle fibers is
associated with increased PAPE effects (Hodgson et al., 2005;
Blazevich and Babault, 2019; Garbisu-Hualde and Santos-
Concejero, 2021), and that type-II fibers can be recruited via
EMS at (very) low stimulation frequencies and intensities
(Maffiuletti et al., 2006), it appears reasonable to expect that
applying electrical stimulation at lower frequencies could
induce PAPE effects without the need for additional high
loads. Therefore, in our second randomized crossover trial, we
tested the hypothesis that the application of local electrical
stimulation of the quadriceps muscle results in a lower PAPE
effect than a traditional PAPE protocol consisting of squats as a
conditioning activity after an adequate warm-up routine. Finally,
in the third trial we aimed at elucidating whether a PAPE protocol
for the upper body may result in a lower PAPE effect than a
traditional PAPE protocol consisting of squats. All three
randomized controlled trials focused on Counter-Movement-
Jump performance as the primary (and sole) outcome measure.
These results may influence the use of PAPE protocols as part of a
warm-up routine to acutely improve strength-related
performance in trained participants.

2 Material and methods

2.1 Study I: sub-vs. supramaximal isometric
Squat–participants and study design

Based on the effect size reported in previous research utilizing
isometric leg press as an activation condition (Tsolakis et al., 2011), a
power analysis using G*Power (Version 3.1.9.6, α = 0.05, study
power (1-β-error) = 0.80, r = 0.5, effect size ηp2 = 0.11 (f = 0.352))
revealed a required sample size of n = 16. Based on our previous
experience of acute intervention trials (Held et al., 2021; Rappelt
et al., 2021), we assumed only low dropouts. Thus, a convenience
sample of n = 18 healthy young male participants (age: 26 ± 4 years;
height: 1.84 ± 0.06 m; mass: 83.7 ± 8.7 kg; Squat one-repetition-
maximum (1RM): 146 ± 19 kg) was enrolled in this acute
randomized controlled crossover trial. Inclusion criteria were (I)
aged ≥18 years, (II) at least 2 years of experience in strength training,
(III) Squat-1RM of at least 125% of body mass (IV) no acute or
chronic medical condition that potentially impede the completion of
all experimental sessions. Based on the classification framework
suggested byMcKay and colleagues, participants may be classified as
“Trained” (Tier 2) (McKay et al., 2022). The study protocol was
approved by the local ethical committee (193/2022), and all
participants provided informed written consent before the start
of the study.

The study design comprised three lab visits over a 2-week period
as follows: (I) anthropometric evaluations, determination of Squat-
1RM, and Counter-Movement-Jump (CMJ) familiarization (II and
III, randomized order determined by coin tossing) PAPE protocol
with isometric squatting at 130% of 1RM (ISO-PAPE-130) or
isometric squatting at 65% of 1RM (ISO-PAPE-65); CMJ
evaluation after a general warm-up (PRE; 5 min of cycling), as
well as 2 (POST_2), and 6 min (POST_6) after the respective PAPE
protocols (see testing procedure for details). All laboratory visits
were spaced at least 48 h, but at maximum 1 week apart, consistently
scheduled at the same time of day to minimize circadian influences.

2.2 Study I. Sub-vs. supramaximal isometric
Squat–Testing procedures

To establish the 1RM for the half-squat, participants underwent
a structured protocol during the initial familiarization session: In
short, following 5 min of cycling (resistance set at 150% of body
mass inW at 80 rpm), participants performed submaximal warm-up
sets comprising three repetitions at 30%, 40%, 50%, 60% and 70% of
their estimated 1RM, respectively with 3 min of rest between sets.
Subsequently, participants executed two repetitions at 80% and a
single repetition at 90% of their estimated 1RM. Thereafter, to
determine their actual 1RM, participants were instructed to
perform the concentric phase of the squat at maximal velocity.
For this, an additional load equivalent to 95% and 100% of their
estimated 1RM was used. The mean propulsive velocity (MPV) of
the bar was recorded using a linear position transducer (Vitruve
encoder, Vitruve, Madrid, Spain) vertically attached to the barbell
using a Velcro strap. This device has been validated and showed
excellent reliability for recording the MPV (Standard error of the
measurement (SEM) < 0.01 m·s−1; coefficient of variation
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(CV) < 1.8%; intra-lass correlation coefficient (ICC) > 0.999)
(Martínez-Cava et al., 2020). Data were recorded at a sampling
rate of 1,000 Hz, and MPV was subsequently computed by
differentiating the transducer displacement data with respect to
time. The sensor was connected viaWi-Fi to a smartphone (iPhone
10, Apple, Silicon Valley, CA, United States) to enable
simultaneous display of MPV using the Vitruve App. As the
expected MPV at the 1RM for the half-squat is 0.30 m·s-1
(Loturco et al., 2016), the additional load was gradually
increased by 2.5%–5.0% above the estimated 1RM until MPV
dropped below 0.30 m·s-1. To mitigate fatigue, participants
achieved their 1RM (defined as the lowest load at which
MPV <0.30 m·s-1) during the third or fourth attempt at the
latest, with 4 min of rest granted between attempts.

In both ISO-PAPE-65 and ISO-PAPE-130, participants began
with a general warm-up of 5 min of cycling (resistance in Watt set
at 150% of body mass at a cadence of 80 rpm) followed by half-
squats. They performed five repetitions at 30%1RM, four
repetitions at 50%1RM, three repetitions at 70%1RM and one
repetition at 90%1RM (inner knee-angle between 180° and 110°).
For the subsequent PAPE conditioning protocol, participants were
instructed to position themselves in a steady stand with knees
slightly flexed to allow for a pre-activation of the lower extremities
and to maintain this posture. The study administrators, consisting
of two individuals, loaded participants with a barbell at either 65%
(ISO-PAPE-65) or 130% (ISO-PAPE-130) of their 1RM.
Participants then performed either a 3-s isometric squat (ISO-
PAPE-130) or a 6-s isometric squat (ISO-PAPE-65). Thus, both
protocols were matched in terms of absolute workload
(repetitions × load × time under tension).

After the general warm-up (PRE), as well as at 2 min (POST_2)
and 6 min (POST_6) following the respective PAPE protocol, CMJ
performance was evaluated using a force plate recording ground
reaction force at 1,000 Hz (FP4060-15 - TM-4000, Bertec
Corporation, Columbus, United States). Participants were
instructed to keep their arms placed on their hips (akimbo).
Participants performed three trials of CMJ with approximately
15 s of rest between attempts. Jump height was determined using
the flight time method and calculated as jumping height [in m] =
9.81 × flight time [in s]2/8 (= flight time [in s]2 × 1.22625) (Bosco
et al., 1983). For this, take-off and landing were identified using a
10 N threshold. Previous studies have reported high reliability for
jumping height assessment via force plate (ICC = 0.92–0.98, CV =
1.3–4.1) (Hori et al., 2009). The respective two best trials of for each
time point were averaged and used for all further analyses.

2.3 Study II. Electrical stimulation vs.
Squat–participants and study design

Assuming low effects based on previously published research
using Squats in a PAPE activation protocol with a similar design
(Fukutani et al., 2014; Bauer et al., 2019), a power analysis using
G*Power (α = 0.05, study power (1-β-error) = 0.80, r = 0.7, effect size
ηp2 = 0.03 (f = 0.176)) revealed a required sample size of n = 26.
Again, assuming low dropouts, a convenience sample of n =
28 young healthy participants (11 female; age: 23 ± 3 years;
height: 1.77 ± 0.08 m; mass: 76.5 ± 10.4 kg; Squat-1RM:

109 ± 38 kg) were enrolled in this acute randomized controlled
crossover trial. Again, participants can be classified as “Trained”
(Tier 2). Inclusion criteria were (I) aged ≥18 years, (II) at least
2 years of experience in strength training, (III) actively pursuing a
sport involving regular jumping movements (e.g., soccer, handball,
volleyball) and (IV) having no acute or chronic medical condition
that potentially impede the completion of all experimental sessions.
The study protocol received approval from the local ethical
committee (042/2024), and all participants provided informed
written consent before the study commencement.

The study comprised three laboratory visits over a 2-week
period: (I) Anthropometric assessments; determination of Squat-
1RM; identification and marking of motor muscle points on the
vastus lateralis and vastus medialis for electrode placement;
determination of EMS intensity at the individual pain threshold
(iPT); familiarization with EMS through five cycles of increasing
stimulation intensity starting from 1 mA; and familiarization with
CMJ. (II and III in randomized order as determined by coin toss)
PAPE protocol administered via superimposed EMS (EMS-PAPE)
or via squatting exercise (SQ-PAPE) with CMJ evaluations
conducted after a general (PRE), immediately following a
protocol-specific warm-up (POST_WU), as well as 3 min
(POST_3), 7 min (POST_7) and 11 min (POST_11) after the
respective PAPE interventions (see testing procedure). All
laboratory visits were spaced at least 48 h, but at maximum
1 week apart, consistently scheduled at the same time of day to
minimize circadian influences.

2.4 Study II. Electrical stimulation vs.
Squat–testing procedures

For EMS-PAPE, using a commercially available EMS device
(Compex SP 8.0; Medicompex SA, Ecublens, Switzerland), electrical
stimulation was delivered bilaterally to the m. vastus lateralis and the
m. vastus medialis via electrical cords. A single rectangular negative
electrode (length × height: 10 cm × 5 cm) was placed to the right of
and just under the femoral triangle, while two square positive
electrodes (5 cm × 5 cm) were positioned near the proximal
insertion of the respective muscles of both legs. To standardize
electrode placement between participants, the respective muscle
motor points [i.e., the location on the surface of the skin above a
muscle at which a transcutaneous applied electrical impulse with the
least injected current evokes a muscle twitch (Gobbo et al., 2014)]
were detected during the familiarization session using a motor point
pen (Compex Motor Point Pen; Medicompex SA, Ecublens,
Switzerland). For this, a dispersive electrode was placed over the
antagonist, and gel was applied to the skin to reduce resistance and
facilitate the flow of electric current. Starting at a low stimulation
frequency of 5 Hz and a stimulation intensity of 1 mA, the negative
pen electrode was gradually moved over the belly of the respective
muscle to evoke muscle twitching. If no muscle twitch was visually
detectable, the stimulation intensity was incrementally increased
(Gobbo et al., 2014). The motor point’s location was then marked on
the skin’s surface with waterproof ink visible for the duration of the
study to allow for exact replication of the electrode positioning
between session. During the familiarization session, the electrical
stimulation intensity, at which the perceived pain could just be
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tolerated (individual maximal tolerable pain threshold; iPT) was
determined. For this purpose, starting at 1 mA (stimulation
frequency: 70 Hz) the intensity was continuously increased by
0.25 mA until participants could no longer tolerate the induced
pain. The maximal stimulation intensity that could be endured (in
mA) was subsequently defined as 100%iPT. Due to individual
differences in tissue structure resistance, it is not possible to
precisely determine the intensity ultimately reaching the muscles
(Lake, 1992).

During the EMS-PAPE condition, following the general warm-
up (5 min of cycling with resistance set at 150% of bodymass inW at
80 rpm), participants engaged in a specific warm-up consisting of
two sets of 3 × 10 s of isometric squatting with complementary
electrical stimulation. In both sets, participants were instructed to
take a squatting position with their thighs parallel to the floor and
maintain this position for 10 s. During this time, electrical
stimulation at a frequency of 70 Hz and an intensity (in mA) of
45% and 65%iPT for the first and second set, respectively, was
administered. Subsequently, after holding the position for 10 s,
participants returned to an upright position for a brief rest
period (5 s with 9 Hz of superimposed electric stimulation). For
the subsequent PAPE conditioning activity, participants performed
three sets of 3 × 10 s of isometric squatting with complementary
electrical stimulation (70 Hz at 85%iPT), interspersed with 5 s of
upright standing (9 Hz). The resting period between all sets was set
at 2 min.

For SQ-PAPE, following the general warm-up (5 min of cycling
with resistance set at 150% of body mass in W at 80 rpm),
participants underwent a specific warm-up involving squatting
(2 sets of 3 repetitions, with a 1.5-s eccentric and concentric
movement). Participants were instructed to reach a squatting
position with their thighs parallel to the floor and then return to
an upright position. Additional loads of 45% and 65% of their 1RM
were applied for the first and second warm-up sets, respectively.
During the PAPE conditioning phase of SQ-PAPE, participants
completed 3 × 3 repetitions at 85%1RM, with 1.5 s of eccentric and
concentric movement, respectively. The resting period between all
sets was set at 2 min. To estimate the 1RM, participants followed a
structured protocol (Baechle et al., 2000) during the familiarization
session. In short, this protocol involved three warm-up sets with self-
selected submaximal loads, followed by repetitions with a
submaximal load aiming for failure within a range of
1–10 repetitions maximum (1-10RM). Based on the maximum
number of repetitions and the respective load, the 1RM could
then be estimated using the equation provided by Baechle and
colleagues (Baechle et al., 2000) (load [in kg] × 0.033 × repetitions).

After the general (PRE) and specific warm-up (POST_WU), as
well as 3 min (POST_3), 7 min (POST_7), and 11 min (POST_11)
following the respective PAPE protocol, CMJ performance was
evaluated using the same procedure as described earlier.

2.5 Study III: upper vs. lower
body–participants and study design

Based on the findings of study II, a power analysis using
G*Power [Version 3.1.9.6, α = 0.05, study power (1-β-error) =
0.80, r = 0.944, effect size ηp2 = 0.009 (f = 0.095)] indicated a

required sample size of n = 16. Again, assuming only low dropouts, a
convenience sample of n = 20 participants (6 female, age: 25.0 ±
3.5 years, mass: 78.5 ± 15.8 kg, height: 1.75 ± 0.08 m; SQ-1RM: 114 ±
33 kg, chest-press-1RM: 74 ± 29 kg) was recruited for this acute
randomized controlled crossover trial. Again, participants can be
classified as “Trained” (Tier 2). Inclusion criteria were (I) being
aged ≥18 years, (II) possessing at least 2 years of experience in
strength training, and (III) having no acute or chronic medical
conditions that could impede the completion of all experimental
sessions. This study protocol was approved by the local ethical
committee (208/2023), and all participants signed an informed
written consent prior to the start of the study.

Like studies I and II, this third study also involved three
laboratory visits over a 2-week period, structured as follows: (I)
Anthropometric assessments; determination of Squat-1RM and
Chest-Press-1RM; CMJ familiarization. (II and III in
randomized order, decided per coin toss) PAPE protocol on
either the Chest-Press machine (CP-PAPE) or through
squatting exercise (SQ-PAPE), with CMJ evaluations
conducted after a general (PRE) and protocol-specific
(POST_WU) warm up, as well as 3 min (POST_3), 7 min
(POST_7), and 11 min (POST_11) following the respective
PAPE protocols (see testing procedure for a detailed
description). All laboratory visits were spaced at least 48 h,
but at maximum 1 week apart, consistently scheduled at the
same time of day to minimize circadian influences.

2.6 Study III: upper vs. lower body–testing
procedures

CP-PAPE was performed at a seated chest press machine
(Edition-Line, gym80, Gelsenkirchen, Germany). Participants sat
upright with a hip angle of 90°, ensuring back support, and kept their
feet firmly planted on the ground. In this position, seat height was
adjusted to align the machine’s handlebars with the participants’
sternum. Starting with extended elbows and hands positioned at
chest level (wrist in a neutral position), participants were instructed
to push forward until their arms reached full extension. During the
SQ-PAPE protocol, participants performed half-squats with
additional load using an Olympic long bar. They were instructed
to lower themselves until their thighs were parallel to the floor and
then return to an upright position (i.e., similar to the movement
performed in study II). Movement speed was standardized using a
metronome set at a consistent pace of 1.5 s for both the lowering and
lifting phases.

In both conditions, participants started with a general warm-up
comprising 5 min of cycling with a resistance set at 150% of body
mass in W at 80 rpm. For the protocol-specific warm-up,
participants executed 10 repetitions (SQ-PAPE: bar only; CP-
PAPE: 10 kg), followed by six repetitions at 40%1RM, four
repetitions at 60%1RM and two repetitions at 70%1RM, either
on the chest press (during CP-PAPE) or with squats (SQ-PAPE).
For the subsequent PAPE conditioning, participants performed four
repetitions at 80% 1RM. To determine the 1RM for the squats and
the chest press, participants followed a structured protocol (Baechle
et al., 2000) during the familiarization session. In brief, after a
submaximal warm-up set consisting of 10 repetitions (SQ-PAPE:
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bar only; CP-PAPE: 10 kg) as well as 8, 4, 2, and 1 repetition at 50%,
60%, 80%, and 90% of the estimated 1RM, respectively, the load was
gradually increased (0.5–5.0 kg). This procedure continued until the
1RM, or failure was reached. To prevent fatigue, it was ensured that
participants reached their 1RM during the third or fourth attempt at
the latest.

After the general (PRE) and specific warm-up (POST_WU), as
well as 3 min (POST_3), 7 min (POST_7), and 11 min (POST_11)
following the respective PAPE protocol, CMJ performance was
evaluated using the same procedure as described earlier.

2.7 Statistics

If not stated otherwise, all data are presented as mean ± standard
deviation (SD). Normal distribution was verified via the
Shapiro–Wilk test (p ≥ 0.1) and investigation of residuals using
Q–Q plots. Variance homogeneity was verified employing Levene-
tests (p ≥ 0.1). Furthermore, no outliers (≥Q3 + 1.5 × interquartile
range [IQR = Q3 - Q1] or ≤ Q1 - 1.5 × IQR) were found in the raw
data. To assess the consistency of all three jumps per time point
within each subject, Intraclass Correlation Coefficients (ICC) were
calculated [two-way mixed-effects model for consistency; ICC(3,1)].
ICCs were rated as excellent (0.9–1), good (0.74–0.9), moderate
(0.4–0.73) and poor (0–0.39). Moreover, to allow for a better
interpretation of differences in jumping height between time
points, the mean difference between the two highest jumps at
PRE and the respective limits of agreement (LoA: 1.96 × SD of
the difference between jumps) were analysed. To identify possible
differences in jumping height between the two experimental
conditions and the three (study I) or five time points (study II
and III), a 2 (condition: ISO-PAPE-130 vs. ISO-PAPE-65) × 3 (time:
PRE, POST_2 and POST_6), respective, 2 (condition: SQ-PAPE vs.
EMS-PAPE (study II) or CP-PAPE (study III)) × 5 (time: PRE,
POST_WU, POST_3, POST_7, and POST_11) experimental
design was used. Condition and time were modelled as fixed
effects, while participants were included as a random effect
blocking factor. Fixed effects were analysed using F-tests (type
III) with Satterthwaite approximations for the degrees of
freedom. ANOVA effect sizes are given as partial omega squared
(ωp

2), with ≥0.01, ≥0.06, ≥0.14 indicating small, moderate, and large
effects, respectively (Cohen, 1988). Subsequently, in case of a
statistically significant interaction effect or main effect of time,
Tukey post hoc tests to adjust for multiple testing were
computed. For pairwise effect size comparison, standardized
mean differences (SMD) were calculated as differences between
means divided by the pooled standard deviations (trivial: | SMD | <
0.2, small: 0.2 ≤ | SMD | < 0.5, moderate: 0.5 ≤ | SMD | < 0.8, large: |
SMD | ≥ 0.8) (Cohen, 1988). All statistical analyses were performed
using R (version 4.2.0) in its integrated development environment
RStudio (version 2023.06.1 + 524). The ICC analysis was conducted
using the ICC()-function from the psych package (Revelle, 2024).
Mean differences and LoA were calculated via the bland.
altman.stats()-function of the package BlandAltmanLeh (Lehnert,
2015). The package rstatix (Kassambara, 2023) was used for analysis
of outliers and performing Shapiro–Wilk tests. For Levene-tests the
car package (Fox et al., 2023) was used. Mixed modelling was
performed using the lmerTest package (Kuznetsova et al., 2017)

and the anova()-wrapper of stats (part of base R) was used to provide
ANOVA tables. Effect size estimation was performed using the
effectsize package (Ben-Shachar et al., 2020). Post-hoc testing
(Tukey) was performed via the emmeans package (Lenth et al.,
2022). For all statistical analyses, a p-value below 0.05 was considered
as statistically significant. All relevant data supporting the conclusion
of this article is available under the following link: https://osf.io/
hj9ux/. The MD5 hash of the Excel-Spreadsheet containing all data
(“CMJ_data.xlsx”) is ce02387b9df65900bddf4051a3b6ea27.

3 Results

3.1 Agreement and mean difference

The calculated ICC(3,1) point estimate for all three trials can be
considered as excellent (Study I: 0.954, 95% confidence interval (CI)
[0.922; 0.975]; Study 2: 0.968, 95%CI [0.951; 0.980]; Study III: 0.938,
95%CI [0.899; 0.965]). Mean difference between the respective two
highest jumps at PRE were −0.009 m [LoA: 0.025–0.007 m] for study
I, −0.011 m [-0.034–0.012 m] for study II, and −0.012 m
[-0.037–0.013 m] for study III.

3.2 Study I: sub-vs. supramaximal
isometric Squat

CMJ neither exhibited a statistically significant interaction effect
(F (2, 85) = 1.74, p = 0.182, ωp

2 = 0.02 [small effect size]) nor a
statistically significant main effect for condition (F (1, 85) = 2.73, p =
0.102, ωp

2 = 0.02 [small effect size]). However, a statistically
significant effect for time was observed (F (2, 85) = 3.67, p <
0.05, ωp

2 = 0.06 [moderate effect size]). Subsequent post hoc
analysis revealed statistically significant differences between PRE
and POST_2 (t (85) = −0.43, p = 0.035, 95%CI [-0.015, −0.0004],
SMD = 0.06 [trivial effect size])). Consequently, CMJ jumping
height slightly decreased from PRE to POST_2, regardless of the
condition (ISO-PAPE-130: 0.392 ± 0.064 m to 0.388 ± 0.059 m,
SMD = 0.03 [trivial effect size] and ISO-PAPE-65: 0.394 ± 0.067 m
to 0.383 ± 0.057 m, SMD = 0.09 [trivial effect size]) (Figure 1).

3.3 Study II: electrical stimulation vs. Squat

CMJ neither revealed a statistically significant interaction effect
(F (4, 243) = 0.49, p = 0.746, ωp

2 < 0.001 [trivial effect size]) nor a
statistically significant main effect for condition (F (1, 243) = 1.55,
p = 0.214, ωp

2 = 0.002 [trivial effect size]). However, a statistically
significant main effect for time was observed (F (4, 243) = 47.8, p <
0.001, ωp

2 = 0.43 [large effect size]). Subsequent post hoc analysis
revealed significant differences between PRE and POST_WU (t
(243) = 3.32, p = 0.009, 95%CI [0.001, 0.014], SMD =
0.05 [trivial effect size])), POST_3 (t (243) = 9.44, p < 0.001,
95%CI [0.015, 0.028], SMD = 0.16 [trivial effect size]), POST_7
(t (243) = 10.88, p < 0.001, 95%CI [0.019, 0.031], SMD = 0.18 [trivial
effect size]), and POST_11 (t (243) = 10.51, p < 0.001, 95%CI [0.018,
0.030], SMD = 0.18 [trivial effect size]). Furthermore, statistically
significant differences were found between POST_WU and POST_3
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(t (243) = 6.12, p < 0.001, 95%CI [0.008, 0.020], SMD = 0.10 [trivial
effect size]), POST_7 (t (243) = 7.56, p < 0.001, 95%CI [0.011, 0.024],
SMD = 0.12 [trivial effect size]), and POST_11 (t (243) = 7.19, p <
0.001, 95%CI [0.010, 0.023], SMD = 0.12 [trivial effect size])
(Figure 2). Consequently, the CMJ jumping height slightly
decreased from the general to the specific warm-up and
subsequently remained at this significantly lower level, regardless
of the condition.

3.4 Study III: upper vs. lower body

CMJ did not show a statistically significant interaction effect
(F (4, 171) = 1.59, p = 0.178, ωp

2 = 0.01 [trivial effect size]),
a statistically significant main effect for condition (F (1, 171) =
0.02, p = 0.893, ωp

2 < 0.001 [trivial effect size]), or a statistically
significant main effect for time (F (1, 171) = 1.80, p = 0.131, ωp

2 =
0.02 [small effect size]). Regardless of the condition, pairwise

FIGURE 1
Boxplot (Q1 to Q3, including Median), and Whiskers (showing minimum and maximum values) for Counter-Movement-Jumping height after the
general warm-up (PRE) as well as 2 (POST_2) and 6 min (POST_6) after the respective PAPE protocols with an additional load of 65% of one repetition
maximum (ISO-PAPE-65; white box) and 130% of one repetitionmaximum (ISO-PAPE-130; grey box). Individual values are also depicted (black circles for
ISO-PAPE-65 and white circles for ISO-PAPE-130).

FIGURE 2
Boxplot (Q1 to Q3, including Median), and Whiskers (showing minimum and maximum values) for Counter-Movement-Jumping height after the
general (PRE) and the specific warm-up (POST_WU) as well as 3 (POST_3), 7 (POST_7), and 11 min (POST_11) after the respective PAPE protocols
performed with electrical stimulation (EMS-PAPE; white box) and squats (SQ-PAPE; grey box). Individual values are also depicted (black circles for EMS-
PAPE and white circles for SQ-PAPE).
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comparison yielded the highest jumps at POST_WU compared to
PRE (CP-PAPE: 0.347 ± 0.074 m vs. 0.343 ± 0.071 m, SMD =
0.06 [trivial effect size]; SQ-PAPE: 0.357 ± 0.073 m vs. 0.344 ±
0.063 m, SMD = 0.19 [trivial effect size]), POST_3 (CP-PAPE:
0.347 ± 0.074 m vs. 0.343 ± 0.075 m, SMD = 0.06 [trivial effect size];
SQ-PAPE: 0.357 ± 0.073 m vs. 0.347 ± 0.070 m, SMD = 0.13 [trivial
effect size]), POST_7 (CP-PAPE: 0.347 ± 0.074 m vs. 0.347 ±
0.075 m, SMD <0.01 [trivial effect size]; SQ-PAPE: 0.357 ±
0.073 m vs. 0.340 ± 0.069 m, SMD = 0.23 [trivial effect size]),
and POST_11 (CP-PAPE: 0.347 ± 0.074 m vs. 0.347 ± 0.073 m,
SMD <0.01 [trivial effect size]; SQ-PAPE: 0.357 ± 0.073 m vs.
0.341 ± 0.071 m, SMD = 0.21 [trivial effect size]) (Figure 3).

4 Discussion

This series of three separately conducted randomized controlled
crossover trials examined how different conditioning protocols
affected post-activation performance enhancement (PAPE) in
young, healthy, and moderately trained participants. The first
study compared submaximal versus supramaximal isometric
squats, the second examined electrical stimulation as a potential
stimulus to induce PAPE, while the third study compared a muscle-
specific with an unspecific conditioning activity. In all three studies,
our findings did not demonstrate any statistically significant
improvement in jump height immediately following the PAPE-
conditioning interventions. Notably, there was a significant main
effect observed for time, indicating a decrease in jump height post-
conditioning across all studies. Nevertheless, this decrement in
performance only exhibited trivial effects. Furthermore, our
analysis, based on the limits of agreement calculated from our

baseline-values, indicated that all observed effects fell within the
range of noise, suggesting that the differences observed were not
practically meaningful. Thus, although various PAPE conditioning
protocols were tested, none showed a significant or relevant
enhancement in jump height that might be attributed to PAPE
exceeding the warm-up effect.

In our first study, we observed no significant improvements in
jumping performance following isometric squatting with 65%1RM
or 130%1RM as additional load. Results of similar studies
comprising isometric contractions as a conditioning activity
exhibit unequivocal results: Miyamoto and colleagues (2011a)
reported significant increases in m. triceps surae peak
torque during the concentric phase of isokinetic plantar flexion
at 180°·s-1 immediately following 10 s of maximal voluntary
isometric concentric plantar flexion, lasting for another 3 min
after the conditioning activity (Miyamoto et al., 2011). Similarly,
Rixon and colleagues (Rixon et al., 2007) reported a statistically
significant, but trivial (SMD = 0.20) increase in CMJ performance
after 3 × 3 seconds of maximal voluntary isometric squats at the
smith machine. On the contrary, a series of studies employing
various activation protocols, such as a single maximal voluntary
isometric squat lasting 3–7 s (Robbins and Docherty, 2005; Pearson
and Hussain, 2014; Piper et al., 2020) or 3 x 3–5 s of maximal
voluntary isometric contractions during the leg press (Tsolakis et al.,
2011) or knee extensor machine (French et al., 2003), either showed
no increase or even negative effects on CMJ performance. These
studies were however all conducted using maximal voluntary
isometric contractions as a preconditioning activity. Employing a
first set of a 4-s isometric contraction with a submaximal load of 75%
1RM, led to significant improvements in CMJ performance (+2.8%,
SMD = 0.34) 4 minutes after preconditioning, but returned to

FIGURE 3
Boxplot (Q1 to Q3, including Median), and Whiskers (showing minimum and maximum values) for Counter-Movement-Jumping height after the
general (PRE) and the specific warm-up (POST_WU) as well as 3 (POST_3), 7 (POST_7), and 11 min (POST_11) after the respective PAPE protocols
performed at the chest pressmachine (CP-PAPE; white box) and squat (SQ-PAPE; grey box). Individual values are also depicted (black circles for CP-PAPE
and white circles for SQ-PAPE-130).
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baseline values after adding a second set (Vargas-Molina et al.,
2021). Similarly, in a recent study comprising 45 young men with
over 6 years of resistance training experience, the experimental
group performing 3 × 4 s of isometric squats at 70%1RM exhibited
significantly higher CMJ heights (2.7 cm–1.8 cm) 3–9 min after the
preconditioning activity compared to the control group (4 min of
treadmill running/walking at 6 km/h), whose jump performance
remained unchanged (Koźlenia and Domaradzki, 2024).
Incorporating an additional third experimental group performing
3 × 5 s of isometric squats at maximal voluntary contraction in a
study comprising a similar design (Koźlenia and Domaradzki,
2023), slight increases in jumping height 3 min (for the group
performing 3 × 4 s of isometric squats at 70%1RM, SMD = 0.28) and
9 min (for the group performing 3 × 5 seconds of squats at maximal
isometric voluntary contraction, SMD = 0.20) after the conditioning
activities were reported, respectively. Nevertheless, as all these
studies reported only trivial to small positive or negative effects
laying within the levels of agreement, we computed based on our
baseline values (roughly ±0.05 m). Thus, even though isometric
training may exhibit less acute fatigue (Lum and Howatson, 2023)
and isometric contractions may induce a post activation
potentiation (PAP) effect, lasting up to 5 minutes after brief
(≤30 s) maximal voluntary isometric contractions (Pääsuke et al.,
2007; Miyamoto et al., 2011; Requena et al., 2011; Pearson and
Hussain, 2014; Skurvydas et al., 2019; Gago et al., 2020), it does not
seem to be sufficient in inducing PAPE effects when performed as
the sole activation condition. Therefore, submaximal isometric
contractions may be more effectively utilized as part of a
comprehensive warm-up routine incorporating both dynamic
movements and isometric contractions.

Similarly, studies on PAPE effects induced via electrical
stimulation are scarce and inconclusive. For instance, Dote-
Montero and colleagues (Dote-Montero et al., 2021) investigated
whether the simultaneous application of whole-body
electromyostimulation (5 × 6 s at a stimulation frequency of
100 Hz and a stimulation intensity of 100 mA, pulse duration:
0.2–0.4 milliseconds) led to higher maximal isometric force in the
lower extremities than a PAPE protocol consisting of 8 s of maximal
isometric split squats alone. Despite both protocols resulting in a
significant increase in maximal isometric force, no significant
differences between protocols were reported. Additionally,
complementary electrical stimulation (stimulation frequency:
100 Hz, maximal tolerable stimulation intensity) of the m. vastus
lateralis and medialis during three repetitions of squats with (85%
1RM) and without additional load did not alter the 10 m or 30 m
sprinting performance in physically trained young men (Sari et al.,
2022). Although in our study, participants’ knee extensor muscles
were stimulated for a substantially longer duration (total of 90 s) at a
lower stimulation frequency of 70 Hz (maximal stimulation
intensity: 102 mA) compared to the aforementioned studies, we
did not find any PAPE effects on the subsequently performed
Counter-Movement-Jump. However, in the acute phase after a
comparable session of electrical stimulation, maximal voluntary
isometric contraction and power of the knee extensor muscles
was reduced by ~20% accompanied by significant reductions in
M-wave suggesting peripherally fatiguing effects (Zory et al., 2005).
Thus, our protocol may have induced an excessive stimulation
intensity, failing to balance fatigue and potentiation, and thus

potentially resulting in fatigue outweighing potentiation (Tillin
and Bishop, 2009). This might be further supported by findings
of very high creatine kinase concentrations after EMS training in an
unfamiliarized sample, indicating severe muscle damage (Kemmler
et al., 2015). Overall, electrical stimulation seems not to be superior to
traditional methods to induce a PAPE effect. Nevertheless, given the
low number of studies investigating possible PAPE effects after an
EMS condition protocol, and the complete absence of such studies
using the CMJ as an outcome measure, further research exploring
different stimulation patterns (e.g., very low stimulation frequencies)
is warranted. Moreover, it might be reasonable to disentangle possible
cofounding effects of being familiar with the EMS stimulus and
training status of the participants.

In our third study, we found no effect of an upper-body
conditioning activity (chest press) on subsequently performed
Counter-Movement-Jumps. These findings are in contrast with
the results of a recently published study of Bartolomei and
colleagues (2023), who reported an improvement in Counter-
Movement-Jump power 8 min after five repetitions at the bench
press with and additional load of 90%1RM, suggesting possible
transfer-effects on lower-body performance (Bartolomei et al.,
2023). Similarly, another recent study (Caldeira et al., 2023)
reported indications of a non-localized PAPE effect, as significant
improvements in bench throw heights were observed 4–12 min after
3 × 4 repetitions of clean and jerk (30%1RM to 80%1RM) in male
weightlifters. However, again, despite being statistically significant,
the size of these effects may be considered trivial (SMD = 0.18) and
small (SMD = 0.21–0.30), respectively. Evidence from studies
examining a possible transfer effect after unilateral lower
extremity exercise to the untrained contralateral leg is also
conflicting, with reports of no effects (Power et al., 2021),
positive effects (Marín et al., 2014), or even detrimental effects
(Andrews et al., 2016) on subsequent performance measures.
Nevertheless, overall these changes are within our level of
agreements and the realm of what might be expected following
unspecific warm-up routines consisting of walking/running, dynamic
exercises, and/or stretching (Vetter, 2007; Fradkin et al., 2010). Thus, it
is also fair to assume that (muscle-)unspecific PAPE protocols do not
exhibit larger improvements compared to general warm-up routines.

Overall, all of our condition activities, even including the
traditional PAPE protocols consisting of half-squats, did not yield
the expected PAPE effects, thus questioning the additional benefit of
PAPE protocols beyond the effect of a comprehensive warm-up
routine. A plausible explanation for this discrepancy with previous
studies may be attributed to the intensity of our warm-up regimen.
While previous studies often implemented a short and low-load
aerobic warm-up (e.g., 5 min of cycling at 50% of the participants’
bodyweight (Lowery et al., 2012; Esformes and Bampouras, 2013)),
we used a warm-up consisting of cycling at a notably higher, but still
moderate resistance (i.e., 150% of the participants’ bodyweight in
W) or a combination of cycling and movement specific strength
exercises to better reflect what is implemented by athletes in real-life
scenarios and traditionally defined as warm-up routine
(i.e., consisting of general and sport-specific (e.g., specific
stretches and sport-related movements) parts comprising light
aerobic activities (e.g., jogging) and resistive exercises (Kulund
and Töttössy, 1983; Safran et al., 1989)). Nevertheless, as the
PAPE effect is interpreted as an enhancement in a given
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performance measure from baseline (obtained after the general
warm-up) to after the conditioning activity, a more thorough
warm-up routine will most likely increase the baseline values,
thus reducing the possibility of detecting further improvements
induced by the conditioning activity. Depending on the definition,
the higher load of our warm-up regimen thus induced a
performance effect itself, masking the possible PAPE effect
induces by the conditioning activity. This is supported by studies
successfully inducing PAPE effects using comparable loads in their
preconditioning activities (Suchomel et al., 2016; Kobal et al., 2019;
Caldeira et al., 2023). Therefore, to further disentangle possible
PAPE from warm-up effects, future research should (i) focus on
providing a clear definition to distinguish between PAPE and
(specific) warm-up routines and (ii) provide an adequate warm-
up prior to conducting baseline measurements, thus reducing the
risk of masking potential PAPE effects with warm-up effects.

A limitation of our studies is the fixed time points and given
loads for all athletes, which do not allow for finding the
individually highest PAPE effect (McCann and Flanagan, 2010).
This is especially relevant, as a training block of heavy strength
training may lead to PAPE effects being more pronounced and
visible in closer temporal proximity to the conditioning activity
(Miyamoto et al., 2013), thus increasing the heterogeneity in a
sample. However, to counteract these problems, we aimed at
recruiting a homogenous group of participants, possessing at
least 2 years of experience, and regularly engaging in strength
training. Moreover, we tested the Counter-Movement-Jump at
several time points, which meta-analyses described as optimal to
ensure finding the highest post-activation improvements (Gouvêa
et al., 2013; Lesinski et al., 2013; Wilson et al., 2013; Seitz and Haff,
2016; Garbisu-Hualde and Santos-Concejero, 2021). Nevertheless,
compared to part of previously published research our participants
exhibited a lower 1RM related to their bodyweight. Given that
athletes of a more advanced training status may exhibit larger
PAPE effects, it is possible that including athletes of a more
advanced training status would potentially have led to
PAPE effects.

In conclusion, despite employing different conditioning activities
ranging from traditional PAPE protocols comprising half-squats or
isometric squats to different activation protocols such as electrical
stimulation, jump performance post-conditioning did not further
increase compared to post-warm-up. Thus, a comprehensive
warm-up routine incorporating dynamic, movement-specific
exercises, and isometric contractions with moderate to high
additional loads might be most effective as a pre-exercise routine.
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