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Objective: Although seizures are the cardinal feature, epilepsy is associated with
other forms of brain dysfunction including impaired cognition, abnormal sleep,
and increased risk of developing dementia. We hypothesized that, given the
widespread neurologic dysfunction caused by epilepsy, accelerated brain aging
would be seen. We measured the sleep-based brain age index (BAI) in a diverse
group of patients with epilepsy. The BAI is a machine learning-based biomarker
that measures how much the brain activity of a person during overnight sleep
deviates from chronological age-based norms.

Methods: This case–control study drew information of age-matched controls
without epilepsy fromhome sleepmonitoring volunteers and fromnon-epilepsy
patients with Sleep Lab testing. Patients with epilepsy underwent in-patient
monitoring and were classified by epilepsy type and seizure burden. The primary
outcomes measured were BAI, processed from electroencephalograms, and
epilepsy severity metrics (years with epilepsy, seizure frequency standardized
by year, and seizure burden [number of seizures in life]). Subanalyses were
conducted on a subset with NIH Toolbox cognitive testing for total, fluid, and
crystallized composite cognition.

Results: 138 patients with epilepsy (32 exclusively focal and 106 generalizable
[focal seizureswith secondary generalization]) underwent in-patientmonitoring,
and age-matched, non-epilepsy controls were analyzed. The mean BAI was
higher in epilepsy patients vs controls and differed by epilepsy type: −0.05 years
(controls) versus 5.02 years (all epilepsy, p < 0.001), 5.53 years (generalizable,
p < 0.001), and 3.34 years (focal, p = 0.03). Sleep architecture was disrupted
in epilepsy, especially in generalizable epilepsy. A higher BAI was positively
associated with increased lifetime seizure burden in focal and generalizable
epilepsies and associated with lower crystallized cognition. Lifetime seizure
burdenwas inversely correlatedwith fluid, crystallized, and composite cognition.
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Significance: Epilepsy is associated with accelerated brain aging. Higher brain
age indices are associated with poorer cognition and more severe epilepsy,
specifically generalizability and higher seizure burden. These findings strengthen
the use of the sleep-derived, electroencephalography-based BAI as a biomarker
for cognitive dysfunction in epilepsy.
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Key points

1. The brain age index (BAI) is a machine learning-based
sleep EEG biomarker associated with cognitive dysfunction
and dementia.

2. This study demonstrates that epilepsy is associated with
accelerated brain aging, based on higher brain age indices.

3. High brain age indices, indicating accelerated brain aging, are
associated with poorer cognition in patients with epilepsy.

4. High brain age indices are associated with more severe
epilepsy, both in terms of generalizability and increased
seizure burden.

5. Future implementations of the BAI could promote early
interventions to slow cognitive dysfunction in patients
with epilepsy.

Introduction

Epilepsy affects more than 45 million people worldwide
(Beghi et al., 2019; Murray et al., 2012). Although seizures are
the cardinal feature, brain dysfunction in epilepsy takes several
additional forms. People with epilepsy experience increased
prevalence of psychiatric disorders, like depression and anxiety,
and cognitive impairment, including problems with concentration,
processing speed, and memory (Beghi, 2016; Keezer et al., 2016;
Kanner, 2016; Rauh et al., 2022; Kanner, 2003). Brain dysfunction
is accompanied by abnormalities in the interictal brain activity,
including epileptiform discharges (spikes and sharp waves),
and abnormalities during sleep such as reduced rapid eye
movement (REM) and deep (stage N3) sleep and increased sleep
fragmentation (Louis, 2011; Gibbon et al., 2019; Rossi et al., 2020;
Halasz and Szucs, 2017; Malow et al., 1999; Fountain et al., 1998;
Nascimento and Nath, 2020; Seneviratne et al., 2016). People
with epilepsy also have increased lifetime risk of developing
dementia (Degiorgio et al., 2020; Johnson et al., 2020). Recent
work from our laboratory has demonstrated that early detection
of decline in cognitive function is possible using macro- and
micro-structural sleep features to distinguish between subjects with
mild cognitive impairment and subjects with normal cognitive
ability (Ye et al., 2023). Early detection of cognitive dysfunction
in epilepsy could potentially promote additional testing and
interventions to try to slow the decline early and improve the
quality of life, especially through cognitive prehabilitation and
possibly with medications in the future, as seen recently in
mild cognitive impairment with lecanemab (Farina et al., 2015;
Baxendale, 2020; Cummings et al., 2023).

The concept that a person’s “brain age” can be greater than
a person’s chronological age has been proposed to account for
brain dysfunction in a variety of chronic medical conditions
(Cole et al., 2019). The sleep EEG-based BAI is a machine learning
model that quantifies how much an individual’s calculated brain
age (BA) deviates from chronological age (Sun et al., 2019).
Our prior work has demonstrated that excess BAI is associated
with psychiatric and neurological diseases, diabetes, hypertension,
early and late-stage dementia (Ye et al., 2020), HIV infection
(Leone et al., 2021), and reduced life expectancy (Sun et al., 2019;
Paixao et al., 2020; Petit et al., 2004).

Here, we test the hypothesis that cognitive impairment
in epilepsy is associated with accelerated sleep-based brain
aging (increased BAI). We also investigate whether increased
BAI in epilepsy correlates with epilepsy type, frequency of
seizures, and lifetime seizure burden (National Institutes
of Health; Weintraub et al., 2014).

Methods

Study design and ethics approval

This cross-sectional retrospective study was conducted on
data from patients at Massachusetts General Hospital (MGH).
Prospective assessment of cognitive performance using the NIH
Toolbox was performed initially until enrollment had to be stopped
because of the COVID-19 pandemic; for these cases, verbal consent
was obtained under a protocol approved by the Institutional Review
Board (IRB) and listed asMGB IRB 2013P001024 and 2017P002444.
We further included a retrospective cohort of patients; the IRB
waived the requirement for informed consent for this component
of the study.

Patients with epilepsy

Inclusion criteria for epilepsy patients were as follows: adults
(≥18 years old) with diagnosed epilepsy who underwent continuous
EEG monitoring in the epilepsy monitoring unit (EMU) and had
a detailed evaluation for epilepsy, including an MRI brain scan and
neuropsychological testingwithin 6months of their stay in the EMU.
Exclusion criteria are detailed in Supplementary Figure S1. EEG
recordings were obtained from the Massachusetts General Brigham
EEG database. Clinical data (i.e., demographics, medication,
seizure semiology, and medical history) were extracted from EMU
admission and clinical neurology notes. Prospective enrollment for
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patients admitted to the EMU, who were then administered the
NIH toolbox, took place between 14 February 2019 and 17 March
2020. Retrospective enrollment included the period from 1 January
2016 to 21 July 2022 and did not involve administration of the
NIH toolbox.

Matched controls

The matched controls were from two groups. The first group
of non-epilepsy subjects originated from the Dreem cohort,
including a set of sleep-EEG recordings from volunteers who
wore a portable home EEG device for 7 days on average (n =
1,077). The other group of non-epilepsy subjects were extracted
from the Sleep Lab cohort with the NIH Toolbox Cognitive
Battery test results available (n = 112). Non-epilepsy subjects
from both groups had to pass a set of exclusion criteria to be
considered for matching (Supplementary Figure S1). Individuals
were matched based on age and sex (Sen et al., 2020; Cole et al.,
2017; Eggert et al., 2021; Hu et al., 2021). We used weighted full
matching to match the group of patients with epilepsy with
two groups of non-epilepsy subjects who also underwent long-
term EEG monitoring; this method minimizes propensity score
differences between cases and controls while maintaining the
highest number of control individuals (Stuart, 2010). Note that when
we analyze cognition, only the Sleep Lab cohort subjects are used as
matched controls.

EEG preprocessing and artifact removal

EEG electrodes were placed on the scalp as part of clinical
care following the international 10–20 system. EEG recordings
were started on admission to the EMU and continued throughout
hospitalization. For analysis, EEG signals were down-sampled from
512 Hz to 200 Hz and notch-filtered at 60 Hz to remove line
noise. We used a previously published neural network to perform
automated sleep scoring; this method segments the EEG into non-
overlapping 30-s epochs and classifies each epoch as one of five
sleep stages: awake (A), rapid eye movement (REM) sleep, non-
rapid eye movement (NREM) stage 1 (N1), NREM stage 2 (N2),
or NREM stage 3 (N3) (Jaoude et al., 2020). Artifact removal was
accomplished with two complementary methods: (1) epochs with
maximum absolute amplitude >500 μV or standard deviation <1 μV
were removed. (2) We trained a linear discriminant analysis (LDA)
classifier to classify each epoch into artifact vs. clean (no artifact)
based on the total power and the second-order difference (for abrupt
non-physiological changes) of the spectrum. (3) Epochs scored as
awake with eyes open, characterized by blinking patterns and a
reactive posterior dominant rhythm, were removed. (4) SpikeNET,
a previously published machine learning algorithm, was used
to exclude epochs with interictal epileptiform discharges (IEDs)
(Jing et al., 2020). (5) SPARCnet, a recently developed deep neural
network, was used to exclude epochs with seizures and seizure-
like events (Jing et al., 2023). These were further reviewed manually
by an epileptologist (PNH, one of the authors, below). Generalized
rhythmic delta activity (GRDA) was not counted as a seizure-like
pattern due to its similarity to N3 sleep.

Calculation of the BAI

BAwas calculated using amachine learningmodel developed by
Sun et al., which uses the sleep-EEG data from six scalp electrodes
as the input: two frontal electrodes (F3 and F4), two central
electrodes (C3 and C4), and two occipital electrodes (O1 and
O2) (Sun et al., 2019). The signals were bandpass-filtered between
0.5 and 20 Hz, as was performed in the BAI model. A total of
510 sleep microstructure features concatenated from the five sleep
stages were used to calculate the BA, including spectral band
powers and their ratios and signal complexity measures, and were
log-transformed to approximate a Gaussian distribution and z-
transformed to have zero mean and unit standard deviation, as per
prior BA publications from our laboratory (Sun et al., 2019). To
reduce night-to-night variability of the sleep-based BA, we averaged
BA estimates across all nights of available EEG recordings during
the EMU stay for each patient (Sun et al., 2019). BAI is computed
as BA minus chronological age (CA, i.e., BAI = BA–CA). The
top 15 sleep features ranked by t test p-value in ascending order
were reported.

EEG spectrograms

EEG spectrograms were computed for each night (EEGs within
11 p.m. to 7 a.m.) for two purposes: (1) to manually ensure
any seizure activity was excluded from the analysis, as the BAI
was designed to be used only on interictal sleep data, and (2)
to visualize the representative spectrograms and hypnograms. The
spectrogram consisted of spectra for each 30-s epoch. The spectra
were computed using multitaper spectral estimation with 0.67 Hz
frequency resolution using 19 tapers. To select representative
spectrograms and hypnograms, sleep EEG features used by the
BAI model were standardized, and mean values were calculated
for the epilepsy patients and sleep lab controls. For each group,
we selected the 10 participants with spectral features closest (i.e.,
based on Euclidean distance) to the group mean. Next, we manually
selected three spectrograms and hypnograms for epilepsy patients
who were most visually representative for the low, average, and high
BAI groups (Supplementary Figure S2).

Cognitive tests

Cognitive performance was measured for a subset of epilepsy
patients (n = 39) and sleep lab controls (n = 112, below) using
the NIH Toolbox cognitive battery. There was no cognitive score
available for the Dreem controls. The NIH Toolbox is a validated
and normed assessment of behavioral and neurological functions
and offers reliable tools for assessing cognition (National Institutes
of Health; Weintraub et al., 2014). The cognitive battery consists
of five subtests that measure fluid cognition and two subtests
that measure crystallized cognitive abilities. Total fluid cognition
and total crystallized scores were calculated based on the average
standard scores of the subtests. Total composite cognition is a
weighted average of total fluid cognition and total crystallized
cognition.
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Epilepsy metrics

Three quantitative measures of epilepsy severity were
determined to capture acute and chronic phases of the disease:
seizure frequency, years of epilepsy, and lifetime seizure burden.
Pertinent patient information was collected from a combination
of initial EMU admission note, an epilepsy surgical conference
discussion note (when available), and a recent outpatient
epilepsy note in the 3 months prior to EMU admission. All
patients with epilepsy were first analyzed as a group and
then divided into two mutually exclusive subgroups based
on seizure semiology: (1) generalizable seizures (any patient
who had focal seizures with secondary generalization) or (2)
exclusively focal seizures. This designation was determined
based on the chart review of outpatient notes and of EEG and
EMU reports.

The seizure frequency per year was tabulated by the type of
seizure. However, as this metric only provided a recent snapshot
of seizure burden, chronic metrics of seizure burden were created
to help quantify long-term effects of epilepsy. Years of epilepsy
were determined by subtracting the age at the time of EMU
admission from the age at which the first seizure occurred.
Notably, this did not include the frequency of seizures, which
differed significantly between patients. Lifetime seizure burden, a
metric meant to more closely approximate the chronic effects of
epilepsy, was defined as the number of seizures a patient suffered
throughout life to date. This measure was approximated by the
documented seizure frequency (based on the chart review of notes
within 6 months of EMU admission) if available or by multiplying
the years of epilepsy by the previously calculated yearly seizure
frequency.

Statistical analyses

Baseline patient characteristics were analyzed using the chi-
square (categorical variables) or Mann–Whitney (continuous
variables) tests, comparing demographic and medical history
measures between those with focal and generalizable epilepsy.

A t test was used to investigate the difference in the sleep stage
distribution between patient groups. First, comparisons were made
between all patients with epilepsy and the sleep lab controls, and
next between epilepsy types (i.e., generalizable epilepsy and focal).
Next, the difference in mean BAI (which is already log-transformed
and z-transformed) between patients with epilepsy and the matched
controls was investigated using a t test. The pairwise comparison
of the mean BAI between the different epilepsy subgroups and
healthy controls was conducted, followed by correlating the lifetime
seizure burden to BAI with a Pearson’s correlation coefficient r.
Next, the correlation between lifetime seizure burden and cognitive
performance, as well as the correlation between BAI and cognitive
performance, was examined using Pearson’s r. Finally, the strength
of the correlation between BAI and cognitive performance was
compared between patients and controls using analysis of covariance
(ANCOVA) using cognitive performance as the outcome variable
and BAI and case/control status as covariates.

Whenever cognitive impairment was assessed, the 39-subject
epilepsy cohort that underwent prospectiveNIH toolbox testing was

used; in other caseswhen cognitive impairmentwas not assessed, the
entire 138-subject epilepsy cohort was used.

Statistical significance was defined as p-value <0.05. The BAI
is presented as mean ± standard error (SE). Statistical analyses
were performed using RStudio version 4.2.1 and Python version 3.7
(Python Software Foundation).

Data availability

The de-identified data and code to reproduce the results will be
available after the time of publication. Data will be found at the Brain
Data Science Platform (https://bdsp.io/), and code will be found at
https://github.com/bdsp-core/BAI-EPILEPSY.

Results

Baseline characteristics

We prospectively enrolled 40 patients to perform
neuropsychological testing with the NIH toolbox. We further
retrospectively identified 100 patients from the epilepsy monitoring
unit who met inclusion criteria for BA analysis; these patients
did not have NIH toolbox data available. Two patients were
excluded as they were not diagnosed with epilepsy, leaving 39
with neuropsychological testing and 99 without neuropsychological
testing. The final cohort consisted of 138 participants (54.3%
women) with an average age of 39.6 (standard deviation
13.4 years). The baseline patient characteristics are shown in
Table 1. Control subjects from the Dreem and Sleep Lab non-
epilepsy groups were selected from 2,316 to 8,673 subjects,
respectively. After applying the exclusion criteria, there were
1,077 Dreem and 112 Sleep Lab patients remaining who served
as controls (Supplementary Figure S1).

Sleep EEG macrostructural and
microstructural features in epilepsy

Correlations between epilepsy vs sleep stage distribution
(sleep macrostructure) and EEG features (sleep microstructure)
are shown in Figure 1.Overall, the 138 patientswith epilepsy showed
a reduced percentage of deep sleep (N3) (9.5% vs. 19.1% in Sleep
Lab controls, p < 0.001); proportions for other stages were similar
(8.5%, 58.8%, and 23.2% forN1,N2, andREM, respectively, vs. 9.9%,
51.6%, and 19.5% for controls, p > 0.05 for all).

Within the epilepsy group (Figure 1A), sleep stage proportions
for the generalizable seizure group (n = 106) for N1, N2, N3,
and REM sleep were 8.5%, 56.3%, 10.7%, and 24.6%, respectively;
whereas for the focal seizure group (n = 32), these were 8.4%, 67.1%,
5.7%, and 18.8%, respectively. There was a statistically significant
increase in the proportion of time spent in N3 and REM sleep in
the generalizable seizures group vs the focal epilepsy group (p< 0.01)
and a significant decrease in the proportion of time spent inN2 sleep
in the generalizable seizure group compared to the focal group (p <
0.001). There was no difference seen in the proportion of time spent
in N1 sleep (p = 0.95).
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TABLE 1 Baseline characteristics epilepsy patients (N = 138).

Focal (n = 32) Generalizable (n = 106) p-valuea

Age, years 42.9 ± 15.1 38.6 ± 12.8 0.2

BMI 28.9 ± 7.0 27.6 ± 7.9 0.2

Sex, male 9 (28.1) 54 (50.9) 0.023

Years of education 14.7 ± 3.2 13.6 ± 2.5 0.12

Race 0.3

 White 25 (78.1) 84 (79.2)

 Hispanic/Latino 1 (3.1) 11 (10.4)

 Asian 3 (9.4) 5 (4.7)

 Black 1 (3.1) 4 (3.8)

 Other/unknown 2 (6.2) 2 (1.9)

Nights of EEG recordings 5.6 ± 3.7 6.1 ± 3.5 0.4

Years of epilepsy 13.5 ± 12.7 14.5 ± 13.5 0.5

Number of AEDs 2.3 ± 1.0 2.3 ± 1.0 0.9

Seizure frequency per year 288.8 ± 615.4 290.2 ± 558.1 0.7

Epilepsy risk factors

 History of psychiatric diseases 17 (53.1) 59 (55.7) 0.8

 Family history of epilepsy 8 (25.0) 23 (21.7) 0.7

 Structural (inc. stroke, surgery, brain anomalies) 10 (31.2) 32 (30.2) 0.9

 Trauma with LOC 7 (21.9) 20 (18.9) 0.7

 History of substance abuse 6 (18.8) 24 (22.6) 0.6

 Developmental delay 4 (12.5) 7 (6.6) 0.3

 Febrile seizures 2 (6.2) 5 (4.7) 0.7

Medical history

 Brain surgery 6 (18.8) 19 (17.9) 0.9

 Cardiovascular disease 8 (25.0) 12 (11.3) 0.082

 Diabetes 3 (9.4) 4 (3.8) 0.4

 Stroke 3 (9.4) 4 (3.8) 0.4

 Current smoker 3 (9.4) 21 (19.8) 0.2

 Ex-smoker 8 (25.0) 27 (25.5) 0.9

Psychiatric History 17 (53.1) 59 (55.7) 0.8

 Depression 14 (43.8) 53 (50.0) 0.5

(Continued on the following page)
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TABLE 1 (Continued) Baseline characteristics epilepsy patients (N = 138).

Focal (n = 32) Generalizable (n = 106) p-valuea

 Anxiety 9 (28.1) 26 (24.5) 0.7

 ADHD 2 (6.2) 11 (10.4) 0.7

 PTSD 3 (9.4) 7 (6.6) 0.7

 Psychotic episode 1 (3.1) 7 (6.6) 0.7

 OCD 1 (3.1) 5 (4.7) 0.9

 Bipolar disorder 0 (0.0) 3 (2.8) 0.9

 Borderline disorder 0 (0.0) 3 (2.8) 0.9

 Schizoaffective disorder 0 (0.0) 1 (0.9) 0.9

 Schizophrenia 0 (0.0) 1 (0.9) 0.9

Sleep disorders 6 (18.8) 24 (22.6) 0.6

 Sleep apnea 2 (6.2) 18 (17.0) 0.2

 Restless legs syndrome 0 (0.0) 3 (2.8) 0.9

 Insomnia 5 (15.6) 5 (4.7) 0.052

 Parasomnia 0 (0.0) 1 (0.9) 0.9

All values given as mean ± standard deviation (continuous) or number (percentage, categorical).
ap-value for Mann-Whitney (continuous) or Chi-Square/Fisher Exact (categorical) tests, significant (bolded) for p<0.05.
Abbreviations: SD, standard deviation; IQR, interquartile range; AEDs, Antiepileptic Drugs; GTC, Generalized Tonic-Clonic; CPS, Complex Partial Seizures; SPS, Simple Partial Seizures;
ADHD, Attention-deficit/hyperactivity disorder; OCD, Obsessive-Compulsive Disorder; PTSD, Post-traumatic stress disorder.

Differences in the top 15 most significantly different sleep EEG
(microstructure) features between all 138 epilepsy patients and Sleep
Lab healthy controls are shown in Figure 1B. These EEG features
included average band powers and ratios of power in different EEG
frequency bands (θ, δ, and α EEG frequencies). It is notable that the
top differences involved N2 and N3 sleep features. N3 sleep features,
such as frontal δ band power and frontal δ-α ratio, were highly
predictive features for distinguishing sleep stages between epilepsy
patients and Sleep Lab controls. Supplementary Figure S2 depicts
representative hypnograms and spectrograms for epilepsy patients
with low, average, and high BAI.

Association between BAI and epilepsy

The BAI was higher overall in patients with epilepsy (n = 138)
compared to controls (Figure 2). The BAI [SE] was −0.05 [0.32] for
all controls (Dreem and Sleep Lab), compared to 5.02 [0.43] in all
epilepsy patients, 5.53 [0.48] for generalizable epilepsy patients (n =
106), and 3.34 [0.88] for focal epilepsy patients (n = 32). All patients
with epilepsy had a statistically significant higher BAI compared
to the Dreem (BAI -0.11 [0.34], p < 0.001) and Sleep Lab (BAI
0.53 [0.88], p < 0.001) control groups. Patients with generalizable

seizures had a statistically significant higher BAI compared to the
Dreem (p < 0.001) and Sleep Lab (p < 0.001) groups, as well as
compared to the focal epilepsy group (p = 0.0304). Additionally,
those with focal epilepsy had a higher BAI than the Dreem (p <
0.001) and Sleep Lab (p < 0.03) control groups (Figure 2A). The
differences between the Dreem and Sleep Lab control groups were
not significant (p = 0.56). Seizure frequency, which is a snapshot
in time of how often seizures were occurring immediately prior to
EMU admission, did not have an effect on the association between
BA and chronological age in all patients with epilepsy (Figure 2B),
generalizable epilepsy (Figure 2C), or focal epilepsy (Figure 2D).
Additionally, no statistically significant difference was found
between different focal seizure types (Supplementary Figure S3).

Higher BAI (which is calculated as Brain Age Index =
Brain Age–Chronological Age) was weakly associated with an
increased lifetime seizure burden overall (R2 = 0.0416, p = 0.02
(Figure 3A). The association was stronger in the generalizable
epilepsy group, with an R2 of 0.11 (p < 0.001) (Figure 3B), and
weaker for focal epilepsy patients (R2 = 0.09, p = 0.10 (Figure 3C).
The average age and number of years with epilepsy were not
significantly different between focal and generalizable seizure
patients (see Table 1), suggesting that the associations above are
not due to age alone. Supplementary Figure S4 demonstrates weaker
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FIGURE 1
Correlation between epilepsy vs. sleep stage and EEG features. (A) Sleep macrostructure features, specifically sleep stages Nl, N2, N3, and REM, were
identified for the Sleep Lab control group, as well as for generalizable epilepsy patients, focal epilepsy patients, and the combined all epilepsy patients.
Of note, there is a statistically significant decrease in N3 sleep in all epilepsy patients relative to controls, while the differences between the remaining
sleep stages are not statistically significant. (B) The top 15 microstructural features based on sleep EEG that differed between the patients with epilepsy
and Dreem controls were noted, with the most prominent features including average central delta–theta ratio in N2 sleep, average central delta–alpha
ratio in N2 sleep, and average frontal delta–alpha ratio in N2 sleep.

FIGURE 2
Brain age is positively associated with chronological age for patients with epilepsy. Brain age was calculated using our algorithm and compared to
chronological age in patients with epilepsy, in subgroups of patients with generalizable epilepsy and focal epilepsy, and in control groups consisting of
the Dreem cohort and Sleep Lab cohort. Seizure frequency was determined for all epilepsy patients and depicted using a color gradient. (A) Brain age
index (BAI) by group indicated a higher BAI in epilepsy, most notably in the generalizable group. The DREEM (n = 1,077) and Sleep Lab (n = 112) cohorts
serve as controls with ∗ < .05; ∗∗p < .01;∗∗∗p < .001. (B) Brain age and chronological age for all patients with epilepsy were compared, demonstrating a
positive linear relationship with the intercept of 10.64 and a slope of 0.86, but no clear association based on the seizure frequency. (C) Brain age and
chronological age for patients with generalizable epilepsy showed a positive linear relationship with an intercept of 9.47 and a slope of 0.90, but no
clear association based on the seizure frequency. (D) Brain age and chronological age for patients with focal epilepsy showed a positive linear
relationship with an intercept of 12.59 and slope of 0.78, but no clear association based on the seizure frequency.
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FIGURE 3
Brain age index is positively associated with lifetime seizure burden. The logarithm of the lifetime seizure burden was calculated based on the seizure
frequency (per year) multiplied by the years of epilepsy and was then compared to the brain age index (BAI), demonstrating a weakly positive
association. (A) For all epilepsy patients, a regression showed an R-squared of 0.0416 with an intercept of 2.16 and a slope of 0.45 with an associated
p-value of 0.016. (B) For generalizable epilepsy patients, a regression showed an R-squared of 0.120 with an intercept of 3.30 and a slope of 0.59 with
an associated p-value <0.001. (C) For non-generalizable (focal) seizure patients, a regression showed an R-squared of 0.0844 with an intercept of
−0.76 and a slope of 0.92 with an associated p-value of 0.099.

but positive associations with other metrics of epilepsy severity,
including years with epilepsy and seizure frequency immediately
prior to EMU admission.

Association between lifetime seizure
burden and cognitive impairment

There was a negative association between cognitive functioning
and lifetime seizure burden. Of the 39-subject epilepsy cohort who
underwent prospective cognitive testing, patients with an increased
lifetime seizure burden had lower scores on the NIH Toolbox
Cognitive Function Battery (Figure 4). Total composite cognition
had the strongest negative association (R2 = 0.130, p = 0.011),
followed by total crystallized cognition (R2 = 0.125, p = 0.012), and
finally by total fluid cognition (R2 = 0.104, p = 0.024). In comparison
to healthy controls, there was a significant decrease in cognitive
performance between epilepsy patients and controls, with mean (±
standard deviation) values for total composite, fluid composite, and
crystallized composite for epilepsy patients of 99.6 ± 16.6, 97.7 ±
18.9, and 102.6 ± 11.8 and for Sleep Lab controls of 109.2 ± 12.5,
105.8 ± 16.0, and 110.7 ± 9.6, with p-values of <0.001, 0.026, and
<0.001 respectively.

Association between BAI and cognitive
impairment in epilepsy

In the Sleep Lab control cohort, the BAI was not significantly
correlated with total composite cognition (p = 0.75) or fluid
cognition (p = 0.15) and had a significant negative correlation with
crystallized cognition (R2 = 0.0632, slope −0.1683, p = 0.002). In
the 39-subject epilepsy group (patients who underwent prospective
cognitive testing), higher BAI was associated with lower total
crystallized cognition (R2 = 0.102, p = 0.048), but not with total
composite cognition (R2 = 0.0467, p = 0.19) or fluid cognition (R2

= 0.0146, p = 0.46) (Figure 5).
When comparing the association of BAI and cognition between

patients with epilepsy (39-subject cohort with cognitive testing)
and controls, the explained variance was higher in epilepsy patients
for composite, fluid, and crystallized cognition (0.0467, 0.0146,
and 0.102 in epilepsy patients vs. 0.0007, 0.0142, and 0.0632 in
controls). The slope, or degree by which cognition worsens as BA
increases, was steeper in epilepsy patients compared to healthy
controls but did not meet statistical significance. ANCOVA between
the slopes of the linear regressions for total composite, fluid, and
crystallized cognition in epilepsy patients compared to healthy
controls (−0.66, −0.42, and −0.69 compared to −0.0244, 0.1322, and
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FIGURE 4
Cognitive functioning decreases with worsening lifetime seizure burden. The logarithm of the lifetime seizure burden was calculated based on the
seizure frequency (per year) multiplied by the years of epilepsy and was then compared to scores on the NIH Toolbox cognitive function battery,
demonstrating a negative association. (A) For total composite cognition, a regression demonstrated an R-squared of 0.130 with an intercept of 109.93
and a slope of −2.21 with an associated p-value of 0.011. (B) For total fluid cognition, a regression demonstrated an R-squared of 0.104 with an
intercept of 107.70 and a slope of −2.30 with a p-value of 0.024. (C) For total crystallized cognition, a regression demonstrated an R-squared of 0.125
with an intercept of 110.58 and a slope of −1.46 with a p-value of 0.012.

−0.1683) indicated p-values of 0.12 for total composite, 0.28 for fluid
composite, and 0.09 for crystallized composite cognition.

Discussion

Our main findings are as follows: 1) conventional sleep
architecture differs between patients with epilepsy and controls,
with increased N2 and decreased N3 across all epilepsy cases, and
an increase in REM in the generalizable and total groups; 2) BAI
is substantially elevated in patients with epilepsy, with an average
excess BA of 5.02 years; 3) BAI is higher in epilepsy patients
with generalizable seizures compared to those with focal seizures
that do not generalize; 4) BAI is positively associated with an
increased lifetime seizure burden; 5) there is a significant negative
association between lifetime seizure burden and fluid, crystallized,
and composite cognition, and epilepsy patients had worse cognitive
outcomemeasures than healthy controls, and 6) in epilepsy patients,
higher BAI is associated with reduced crystallized cognition.

These findings are largely consistent with those of existing
research on sleep changes in epilepsy. In our study, we found that
the underlying sleep architecture in epilepsy differed from that of
controls. We find that epilepsy patients have a greater proportion of
N2 sleep and a lower proportion ofN3 sleep,most notably in patients
with focal seizures. REM sleep constituted a larger proportion
of sleep in epilepsy patients overall, and particularly within the

generalizable seizure subgroup, while the focal seizure group had a
similar proportion of REM sleep compared to controls. Our finding
that patients with epilepsy had increased REM sleep relative to
controls was unexpected and could reflect changes in drug therapy
(Tork et al., 2020; Yeh et al., 2021; Placidi et al., 2000; Bazil, 2003). It
is important to note that our sample is not entirely representative
of epilepsy patients as a whole, specifically that patients who
undergo EMU stays tend to be medication-refractory (require more
medications at higher doses) and during EMU stays often have
variable titrations of medications to induce seizures and undergo
multiple days of interrupted sleep during close clinical monitoring;
this may affect the sleep architecture of this epilepsy patient cohort.
Our cohort was otherwise representative of those included in
studies identifying decreased REM in those with epilepsy, so this
discrepancy warrants further investigation.

BAI was higher in epilepsy patients than in controls. The control
group had a BAI near 0 (−0.1 and 0.53), while epilepsy patients
had higher brain age indices, ranging from 3.3 in the focal seizure
group to 5.53 in the generalizable seizure group. Of note, we did not
expect the BAI in the control groups (Dreem and Sleep Lab to be
exactly 0) since there could be other diseases or health issues that
individualsmight face that were not part of the exclusion criteria; the
fact that the Sleep Lab control group, which contains patients who
were referred to the hospital sleep lab for evaluation, demonstrated
a slightly higher BAI that the Dreem control group, which consists
of community-dwelling participants who are relatively healthy,
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FIGURE 5
Higher crystalized cognitive functioning is negatively associated with brain age index. Brain age index (BAI) for all epilepsy patients was compared to
scores on the NIH Toolbox cognitive function battery, demonstrating a negative association. (A) For total composite cognition, a regression
demonstrated an R-squared of 0.0467 with an intercept of 103.00 and a slope of −0.66 with an associated p-value of 0.19. (B) For fluid cognition, a
regression demonstrated an R-squared of 0.0146 with an intercept of 99.86 and a slope of −0.42 with an associated p value of 0.46. (C) For crystallized
cognition, a regression demonstrated an R-squared of 0.102 with an intercept of 106.26 and a slope of −0.69 with a p-value of 0.048.

supports this premise. Based on our understanding of generalizable
epilepsy as disrupting large-scale brain networks, thus enabling
seizure spread, it is reasonable to conclude that generalizable
epilepsy is associated with more significant sleep changes due
to widespread brain connectivity alterations (Focke et al., 2014;
Peng et al., 2014). This could potentially explain the higher BAI of
the generalizable seizure group compared to that of the healthy
controls. Similarly, although there is a weak positive association, the
generalizable seizure group demonstrated the strongest association
between lifetime seizure burden and higher BAI, suggesting that
ongoing, frequent generalizable seizures disrupt sleep networks,
“aging” the sleeping brain. Epilepsy, both generalized and focal,
is associated with sleep disruption and is known to disrupt
the thalamic-generated sleep spindles, which are associated with
memory consolidation (Myatchin and Lagae, 2007; Kramer et al.,
2021; Schiller et al., 2022; Nobili et al., 2022). These seizure-based
changes to the thalamus, and thalamo-cortical networks, might
be more extensive in generalized and generalizable seizures and
thus could provide a possible explanation for some of our
findings, including why seizure generalizability, rather than seizure
burden, appears to be relatively more associated with brain aging.
Additionally, the relatively stronger association between lower

crystallized cognition, which represents acquired knowledge (that
requires memory consolidation), and higher BAI in both controls
and patients with epilepsy provides further support for sleep spindle
disruption as an etiology.

Compared to healthy controls, there was an 8- to 10-
point statistically significant decrease across composite cognition
measures for epilepsy patients. Increasing seizure burden was noted
to be associated with poorer performance on cognitive testing.
Prior studies have indicated that cognitive measures, like IQ,
demonstrate a significantly negative association with the number
of lifetime seizures, with a close to 20-point IQ drop between
those with 2–10 lifetime seizures and those with >100 lifetime
seizures (Aldenkamp and Bodde, 2005). The NIH Toolbox has been
used in epilepsy to identify specify cognitive dysfunction, such as
slower processing speed andmulti-domain dysfunction in both focal
and generalized epilepsies (Hwang et al., 2019; Garcia-Ramos et al.,
2021). The general decrease across composite, crystallized, and fluid
cognition seen in our study is consistent with the existing cognitive
dysfunction literature in epilepsy and is worse in those with a
higher seizure burden (Nickels et al., 2016; Hermann et al., 2021).
Higher BAI scores were associated with poorer performance on
cognitive testing, for composite, fluid, and crystallized cognition.
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Both controls and epilepsy patients demonstrated a similar negative
association between increasing BAI and poorer cognition (with the
notable exception of fluid cognition in healthy controls); epilepsy
patients appeared to have a slightly stronger association that did not
reach statistical significance. It is important to note also that while
the controls were healthier and tended to have BAIs closer to 0,
individual variability in health and other factors likely contributed to
the negative association in the control group between increasing BAI
and poorer crystallized cognition. Several subanalyses also indicated
no significant effect on the BAI–cognition association based on
seizure frequency, seizure burden, or seizure type. Overall, this study
demonstrates that changes in sleep EEG in epilepsy patients that
resemble the changes that occur with aging are associated with
reduced cognitive performance.

Our study has several limitations. Since sleep EEG is generated
by the brain itself, it is not possible to disentangle an underlying
aging of the brain from a specific aging of sleep dynamics through
this biomarker; they are inextricably linked. However, BAI is robust,
in that it is primarily determined from EEG patterns during NREM
sleep (especially N2 and N3), which would reflect brain physiology
and not mental activity. An assessment of seizure frequency and
associated seizure burden was conducted via a retrospective chart
review, which may introduce errors based on patient recollection
and physician recording; the seizure frequency used here is likely
to be lower than that experienced by patients. Additionally, the
sleep EEG recordings used to calculate the BAI were taken from
patients who were in the EMU, which may introduce biases in
sampling a population with more severe epilepsy than the general
epilepsy population, often requiring more medications at higher
doses, which can affect the BAI due to sleep disruption. During
EMU hospitalization, seizure capture is the goal, so medications are
weaned, and frequent seizures are often seen. Additionally, sleep is
often interrupted in the hospital due to close clinicalmonitoring.The
sleep EEG clips taken for the BAI calculation were not compared to
medication levels or to a recently increased frequency of seizures.
Nevertheless, prior studies of sleep and epilepsy have primarily
investigated those with refractory epilepsy, whichmakes this sample
representative of those found in the literature.

Additionally, while epilepsy cases were assessed during EMU
hospitalization, control patients completed sleep assessments either
in a sleep lab or at home, resulting in different environmental
influences between the two cohorts. Furthermore, lab-based PSG
and home-based EEG can use different numbers of electrodes,
therefore reducing the quality of the assessment. However, our
recent study suggests that even the use of two frontal electrodes
(i.e., a limited number and a proxy for home-based EEG) has
sufficient internal accuracy to assess BA (Sun et al., 2019). BAI, as
an automated detection tool, can be biased by noise and systemic
error; however, a trained EEG reader manually confirmed that we
successfully excluded seizures. The trajectory of BAI over the course
of life and any parallelism with change in cognition or even brain
structure cannot be established from our data.

Subsequent investigations will seek to address these limitations
through prospective analyses and a broader epilepsy cohort
including those with less severe disease. Additionally, we will
evaluate patients with epilepsy at onset for early prediction of future
cognitive dysfunction on EEG. Future clinical implementation of
the BAI could help with early detection of cognitive dysfunction

in epilepsy and might assist in early interventions, like cognitive
prehabilitation (Baxendale, 2020).

Conclusion

Our study demonstrates that BAI, calculated from the sleep
EEG, is associated with generalizable epilepsy and increased seizure
burden. Cognitive dysfunction was shown to worsen with increased
lifetime seizure burden, and, in epilepsy patients, a higher BAI was
associated with poorer crystalized cognitive performance. Future
work will investigate the association between sleep changes and
BAI with other cognitive measures, change over time, post-surgical
outcomes, and structural network abnormalities in epilepsy.
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