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Background: Dyslipidemia has emerged as a significant clinical risk,
with its associated complications, including atherosclerosis and ischemic
cerebrovascular disease, presenting a grave threat to human well-being. Hence,
it holds paramount importance to precisely predict the onset of dyslipidemia.
This study aims to use ensemble technology to establish a machine learning
model for the prediction of dyslipidemia.

Methods: This study included three consecutive years of physical examination
data of 2,479 participants, and used the physical examination data of the first
two years to predict whether the participants would develop dyslipidemia in the
third year. Feature selection was conducted through statistical methods and the
analysis of mutual information between features. Five machine learning models,
including support vector machine (SVM), logistic regression (LR), random forest
(RF), K nearest neighbor (KNN) and extreme gradient boosting (XGBoost), were
utilized as base learners to construct the ensemble model. Area under the
receiver operating characteristic curve (AUC), calibration curves, and decision
curve analysis (DCA) were used to evaluate the model.

Results: Experimental results show that the ensemble model achieves superior
performance across several metrics, achieving an AUC of 0.88 ± 0.01 (P < 0.001),
surpassing the base learners by margins of 0.04 to 0.20. Calibration curves and
DCA exhibited good predictive performance as well. Furthermore, this study
explores the minimal necessary feature set for accurate prediction, finding that
just the top 12 features were required for dependable outcomes. Among them,
HbA1c and CEA are key indicators for model construction.

Conclusions:Our results suggest that the proposed ensemble model has good
predictive performance and has the potential to become an effective tool for
personal health management.
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1 Introduction

Dyslipidemia has been recognized as a major risk factor for
cardiovascular disease, which seriously endangers people’s health
(Hedayatnia et al., 2020; Zhao et al., 2022; Doi et al., 2022). Over
the past 3 decades, the global incidence of dyslipidemia has risen
markedly, representing a grave threat to public health (Pirillo et al.,
2021). A report from the World Health Organization found that
4.5% of the global mortality rate for people aged 18 and over
and 2% of disability-adjusted life years are due to high cholesterol
(Organization, 2021). Research suggests that the incidence density
of dyslipidemia in China is as high as 101/1,000, 121/1,000 in men
and 69/1,000 in women (Zhang et al., 2019). Cardiovascular events
caused by high cholesterol in China have increased dramatically, and
may reach 9.2 million between 2010 and 2030 (Moran et al., 2010).
Dyslipidemia is defined as elevated plasma concentrations of total
cholesterol (TC), low-density-lipoprotein-cholesterol (LDL-C), or
triglycerides (TG), or a low plasma concentration of high-density-
lipoprotein-cholesterol (HDL-C) or a combination of these features
(Klop et al., 2013; Raja et al., 2023). Its complex pathogenesis,
coupled with the absence of conspicuous symptoms in early stages,
complicates its detection and often leads to its underestimation.
Therefore, the prediction of dyslipidemia occurrence plays an
important role in improving its preventive and therapeutic effects.

In recent years, several studies have investigated the primary
risk factors associated with dyslipidemia, including bodymass index
(BMI), waist-to-hip ratio, obesity, and gender, yielding significant
insights (Vekic et al., 2019; Kavey, 2023; Ruan et al., 2024). Qi et al.
(Qi et al., 2015) analyzed 5,375 participants aged 18 and older to
ascertain the prevalence of dyslipidemia and its associated risk
factors. Similarly, Ni et al. (Ni et al., 2015) employed a multi-stage
stratified cluster random sampling approach to survey 1,995 adults,
averaging 46.56 years in age. The findings indicate a substantial
correlation between dyslipidemia and factors such as age, smoking,
hypertension, diabetes, and BMI. Although these studies have
helped identify risk factors for dyslipidemia, they do not have
the ability to predict the long-term risk of dyslipidemia. Some
studies have noted the limitations of these methods and proposed
various approaches for prediction using logistic regression or Cox
proportional hazards models (Kavey, 2023; Lai et al., 2022; Wang J.-
S. et al., 2022; Kim et al., 2021; Lan et al., 2023). As comprehension
of health outcomes’ complexity deepens, it becomes evident that
traditional models, limited by their inability to account for non-
linear associations, fall short of accurately encapsulating health
outcome intricacies (De Silva et al., 2020).

Machine learning (ML) is a powerful computer-assisted data
mining and analysis method that can handle large, complex, and
diverse data. It has been widely used in healthcare applications,
including disease risk prediction and medical diagnosis (Li et al.,
2023; Ibrahim and Abdulazeez, 2021). ML has powerful nonlinear
fitting capabilities and can solve this problem well. Previous
studies (Zhang et al., 2019; Sasagawa et al., 2024) have developed
some prediction models for dyslipidemia using algorithms such
as the random survival forest model, demonstrating the ML’s
potential in predicting dyslipidemia. Despite these advancements,
the application of ML methods in dyslipidemia prediction remains
underexplored. These studies also have some shortcomings, such
as the reliance on a singular prediction model and the lack of

comprehensive validation of different models, making it hard
to ensure the stability and applicability of the methodology.
Ensemble technology uses the excellent integration ability
of the meta-learner on the results of the base learners to
achieve more effective performance than a single model. It has
been successfully applied in prediction tasks (Lu et al., 2024;
Sun et al., 2024; Zhang et al., 2022).

Therefore, in this study, we aimed to use ensemble
technology to develop a reliable dyslipidemia prediction
model. By integrating the advantages of different machine
learning models and making full use of 3 years of continuous
physical examination data of non-diseased people, an
ensemble model that can effectively predict dyslipidemia was
constructed.

2 Materials and methods

2.1 Participants and data collection

The overall process of the experiment is shown in Figure 1.
We used medical examination data provided by Shenzhen
University General Hospital, China, covering the period from
December 2018 to December 2022. All participants received
a medical examination at the hospital. Ethical approval was
obtained from the Ethics Committee of Shenzhen University,
Shenzhen (approval number: PN-202300093). Informed consent
was waived due to the retrospective nature of the study. The
research adhered to the principles outlined in the Declaration
of Helsinki.

The electronic medical records of participants with a history
of undergoing multiple years’ worth of physical examinations
were meticulously reviewed. Our inclusion criteria comprised
two distinct categories of physical examination subjects, i.e.,
individuals exhibiting consistent normal blood lipid levels
across three consecutive physical examinations, and those
with normal blood lipid levels during the initial two physical
examinations but displaying abnormal blood lipid levels in
the subsequent third examination. By including these two
different participants in the study, we aim to comprehensively
understand the occurrence and development mechanism of
dyslipidemia, and provide a more accurate reference for future
intervention and prediction. In accordance with the 2023 China
guidelines for lipidmanagement (Jian-Jun et al., 2023), dyslipidemia
was precisely defined as the presence of TC ≥ 5.2 mmol/L,
TG ≥ 1.7 mmol/L, LDL-C ≥ 3.4 mmol/L, and/or HDL-C <
1.0 mmol/L.

The data content is primarily categorized into two groups:
demographic data and laboratory test results. Every physical
examination will meticulously document individual demographic
information, encompassing age, gender, height, weight, physical
examination date, blood pressure, pulse rate, and BMI. Laboratory
findings are likewise derived from each physical examination
record. The encompassing examination indicators comprise
blood cell analysis, urinalysis, tumor markers, blood glucose
test, blood lipid test, liver function, kidney function, and
thyroid function.
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FIGURE 1
The analysis workflow for prediction of dyslipidemia from EHR data.

2.2 Development and validation of
machine learning models

2.2.1 Machine learning models
In this study, five different machine learning models were

employed for predictive modeling of dyslipidemia, namely, support

vector machine (SVM), logistic regression (LR), random forest (RF),
Knearestneighbor (KNN)andextremegradientboosting (XGBoost).

SVM (Vapnik, 1999) is a powerful machine learning algorithm
that can be used to solve classification problems. The core idea of
SVM is to find an optimal decision boundary, which can divide
different categories of datapoints in the feature space.
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LR (Cox, 1958) is a statistical method commonly used to
solve binary classification problems. Logistic regressionmodels map
the output values to a range between 0 and 1 by passing linear
combinations of independent variables to logistic functions, which
not only provide a prediction of the occurrence of an event, but also
account for the effect of independent variables on the probability
of an event.

RF (Breiman, 2001) is a powerful ensemble learning algorithm
that is widely used in classification tasks. It works based on the
construction of multiple decision trees, each based on a different
subset of data and features, which helps to reduce the risk of
overfitting and improve the robustness of the model.

KNN (Fix and Hodges, 1989) is a supervised learning algorithm
that is widely used in classification problems by using information
from neighbors to make predictions. It is based on the proximity
between samples, especially using the labels of the K closest training
samples to make predictions.

XGBoost (Chen and Guestrin, 2016) is a widely used ensemble
learning method that performs well in a variety of machine learning
tasks. The core principle of XGBoost is to iteratively add new weak
models to correct the errors of the model in the previous round of
iterations and build an efficient prediction model.

Each of the above machine learning models has been
carefully configured to achieve accurate prediction of dyslipidemia.
Specifically, we first selected the commonly used hyperparameters
and candidate values that need to be optimized for each model,
then used grid search to optimize the hyperparameters of each
model, and used five-fold cross validation to select the best
parameters. The specific parameter selection and optimization
results are shown in Table 1. In addition, based on the above five
machine learning models, ensemble technology will be used to
effectively fuse their prediction results to achieve more accurate
prediction performance.

2.2.2 Feature selection
In this study, we first addressed the heterogeneity in physical

examination items across subjects by excluding those for which
data were available for less than one-third of the cohort. For the
remaining dataset, missing values were imputed using either mean
or mode, depending on the nature of the data, thus completing
the data preprocessing phase. We then defined the sets of index
values for each subject in the first and second years as X f and
Xs, respectively, and used X f , Xs, and their difference D = Xs −
X f as features, identifying a total of 204 features. Recognizing
the potential for irrelevant or redundant information within these
features, the study implemented a two-step feature selection strategy.
Firstly, we used t-test or χ2 test to identify features that showed
significant differences between the dyslipidemia group and the non-
dyslipidemia group, excluding those with P-values above 0.05. We
then applied mutual information to remove redundant features,
ensuring that the selected features were both statistically significant
and independent across the groups. We explored the optimal
number of features (N) to minimize redundancy while retaining
sufficient discriminatory information. This approach enabled us to
investigate the optimal number of features required to maintain
model performance, experimenting with N values in increments of
two from 2 to 20. This process facilitated effective feature selection,
optimizing the efficiency of feature utilization.

2.2.3 Model building and evaluation
To accurately predict dyslipidemia onset utilizing routine physical

examination data, this study introduced a stacking ensemble model
executed in two stages. The first stage employed five base learners,
including LR, SVM, KNN, RF, and XGBoost, to produce preliminary
outputs.These outputs, alongside selected key features, serve as inputs
for the second stage.The second stage integrated these inputs to train
and establish the final predictive model.

In the first stage, to mitigate the risk of overfitting, each base
learner underwent training and evaluation employing a five-fold
cross-validation approach.This entailed partitioning the data into five
subsets, with each subset serving once as the test set while the model
trains on the remaining four.Themodel then predicted outcomes for
both the training and test sets, generating sets of predictions for each.
Concurrently, key features were identified based on their recurrence,
with those appearing more than three times across five folds deemed
significant.Theoutputs from this stage, comprising both the predicted
values and the identifiedkey features for the training and test sets,were
then forwarded as inputs to the second stage. Moreover, an analysis
to assess the impact of varying the number of features on model
performance was conducted, aiming to ascertain the most effective
feature set for the predictive model.

In the second stage, based on the results of each base learner in
the first stage, XGBoost was chosen to develop the ensemble model
for final predictions. To ensure robustness and validity, the five-
fold cross-validation technique was reapplied. The training dataset
encompassed the predictive outcomes and pivotal features from the
first stage, generated by the five base learners in the best feature set.
Similarly, the test dataset was constituted of analogous predictions
and features, also from the same base models. This construction of
new training and test datasets addresses and circumvents potential
issues of data leakage. Ultimately, the ensemble model, having been
thoroughly trained, performs the final predictive analysis on the
test dataset.

2.3 Statistical analysis

Clinical factors were analyzed using Student’s t-test, Mann-
WhitneyU test, orChi-square test according to the data distribution.
Multiple criteria, including sensitivity, specificity, accuracy, and
the area under the ROC curve (AUC), were used to evaluate
the effectiveness of these models. Calibration curve and decision
curve analysis were used to evaluate clinical usability. In addition,
to facilitate understanding of the contribution of the second
stage model input features to the prediction score, we calculated
the SHapley Additive exPlanations (SHAP) values and illustrated
them graphically. Statistical analyses were performed using Python
(version 3.9) or Medcalc (version 22).

3 Results

3.1 Participant characteristics

The dataset encompasses 7,437 distinct medical examination
records from a total of 2,479 participants. Participants were
categorized based on outcomes from their third examination into
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TABLE 1 Specific parameter selection and optimization results of each model.

Model Model parameter Range Parameter after optimization

SVM

C [0.1, 0.5, 1] 0.1

kernel [“rbf ”, “linear”, “poly”] “linear”

gamma [0.05, 0.1, 0.15] 0.1

LR

C [50, 100, 150] 100

max_iter [1,000, 2000, 3,000] 2,000

solver [“lbfgs”, “newton-cholesky”, “sag”] “newton-cholesky”

RF

n_estimators [10, 15, 20] 15

max_depth [6, 8, 10] 10

max_features [“sqrt”, “log2”] “sqrt”

KNN n_neighbors [20, 30, 40] 40

XGBoost

n_estimators [10, 50, 100] 50

max_depth [2, 4, 6] 2

learning_rate [0.05, 0.1, 0.15] 0.05

two sets: dyslipidemia, comprising 310 individuals or 12.5% of
the study population, and non-dyslipidemia, numbering 2,169
or 87.5% of the total. The characteristics of the dyslipidemia
and non-dyslipidemia sets were shown in Table 2. As shown,
there were differences in the baseline data between dyslipidemia
and non-dyslipidemia in some characteristics, indicating that
the development of dyslipidemia was traceable. In addition to
the physical examination data listed in Table 2, there were also
blood cell analysis, urinalysis, blood glucose test, liver function,
kidney function, and thyroid function. The baseline data of these
characteristics were in Supplementary Table S1.

3.2 Feature selection

In the first stage, the construction of models involved the
application of various base learners alongside different numbers of
feature. The results were shown in Figure 2 and the quantitative
description of the results was in Supplementary Table S2. In all base
learners, the prediction performance improves with the increase
in features and then reaches a plateau. When the number of
features was 12, themodels generally achieved the best performance.
Notably, disparities in performance were observed among the
base learners, even with identical feature sets. In particular,
the XGBoost model (AUC = 0.84, number of features was 12)
demonstrated superior predictive accuracy compared to the SVM
model (AUC = 0.68, number of features was 12), which lagged in
performance. This result showed that selecting appropriate models
and features can effectively improve the accuracy of dyslipidemia
prediction.

3.3 Feature importance

Following the performance evaluation of base learners, we also
conducted a deep investigation on feature utilization, specifically
focusing on scenarios where the feature number was set to 12.
We tallied the frequency with which each feature was selected
across the five-fold cross-validation process. This examination’s
findings were illustrated in Figure 3. The analysis unveiled a
notable consistency in feature usage across the various folds: five
features (TC and LDL-C at the first examination, TG, TC and
LDL-C at the second examination) were employed in all five
folds of validation, while three features (Glycated hemoglobin
(HbA1c) at the second examination, carcinoembryonic antigen
(CEA) at the first examination, and the difference between the two
CEA examinations) were utilized in four out of five validations.
Additionally, we analyzed the top 12 features in each fold during
the five-fold cross-validation. Supplementary Figure S3 presents the
mutual information scores for these 12 features during feature
selection. The features with higher mutual information scores are
also those mentioned above. This result showed that the model’s
robust consistency and stability throughout different segments of
validation. Among the frequently utilized indicators, TC, LDL-C,
TG, CEA, and HbA1c were distinguished as key features, reflecting
their significant role in the model’s predictive capability.

3.4 Development and validation of
prediction models

Employing the predicted outcomes from the base learners
alongside the key features, the inputs for the ensemble model were
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TABLE 2 Baseline characteristics of dyslipidemia and non-dyslipidemia participants.

Characteristics Dyslipidemia (n = 310) Non-dyslipidemia (n = 2,169) P-value

Age 32.00 (28.00, 37.00) 33.00 (29.00, 38.00) 0.106

Sex <0.001

Male 159 (51.29%) 856 (39.47%)

Female 151 (48.71%) 1,313 (60.53%)

Height 164.00 (159.00, 170.50) 166.00 (159.00, 172.00) 0.021

Weight 57.40 (51.70, 65.80) 60.90 (53.30, 70.30) <0.001

SBP 113.00 (105.00, 122.00) 116.00 (108.00, 127.00) <0.001

DBP 68.00 (63.00, 75.00) 70.00 (65.00, 77.00) <0.001

Pulse 79.00 (72.00, 88.00) 79.00 (72.00, 88.00) 0.754

BMI 21.40 (19.70, 23.40) 21.97 (20.20, 24.50) <0.001

TC 4.03 (3.70, 4.34) 4.45 (4.17, 4.73) <0.001

TG 0.79 (0.63, 1.01) 0.99 (0.75, 1.23) <0.001

HDL-C 1.54 (1.34, 1.75) 1.45 (1.22, 1.78) 0.002

LDL-C 2.50 (2.17, 2.84) 2.92 (2.63, 3.17) <0.001

HbA1c 5.30 (5.10, 5.40) 5.30 (5.10, 5.50) 0.314

CEA 1.39 (0.95, 1.99) 1.56 (1.16, 2.19) 0.001

P < 0.050 is considered statistical significance. SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol;
LDL-C, low-density lipoprotein cholesterol; HbA1c, glycated hemoglobin; CEA, carcinoembryonic antigen. Categorical variables, expressed as frequencies (proportions), line χ2 test. Non-normally
distributed variables, expressed as median (interquartile range), line Mann–Whitney U test.

synthesized, culminating in the final predictive analysis conducted
using the XGBoost algorithm. Using ROC curve analysis, we
calculated the corresponding AUCs for the different base learners
and ensemble model when the number of features was 12 in five-
fold cross validation. As can be seen in Figure 4, the AUC scores
for the base learners fluctuate between 0.68 ± 0.05 and 0.84 ±
0.02, whereas the ensemble model achieved an AUC of 0.88 ±
0.01 (P < 0.001), markedly surpassing those of the individual
base learners. Table 3 showed a more detailed average performance
comparison.The ensemble model exhibited pronounced superiority
in several performance metrics, with accuracy of 0.78 ± 0.01
and specificity of 0.78 ± 0.02, both of which were better than
other base learners. Additionally, we conducted experiments
by adjusting the ratio of dyslipidemia and non-dyslipidemia
samples under the same hyperparameters, and the results
showed that the model maintained good predictive performance
across different sample ratios (Supplementary Table S3). These
insights not only highlighted the capability of machine learning
techniques in dyslipidemia predictions but also illustrated the
profound impact of ensemble learning approach on improving
predictive accuracy.

3.5 Clinical usage of the models

To visually demonstrate the clinical usability of the ensemble
model, we plotted calibration curves and conducted decision
curve analysis (DCA). The calibration curve showed that the
actual observations were well consistent with the predictions of
the ensemble model (Figure 5A), suggesting that the ensemble
model has an excellent predictive value. The DCA curve of
the ensemble model also demonstrated good clinical utility,
showing preferable positive net benefit (Figure 5B). In addition,
similar results were shown in each fold of the five-fold cross
validation (Supplementary Figures S1, S2).

3.6 Model explainability

We visualized the influence of predictor variables on the results
based on SHAP plots. Figure 6 shows the SHAP summary plot of
the second stage model input features in five-fold cross-validation.
Specifically, the influence of variables on the results can be intuitively
explained by the magnitude of the SHAP value (indicated by color
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FIGURE 2
Predictive performance of different base learners and different number of features.

change) and the trend on the horizontal axis of the variable (the
probability of an adverse outcome). For example, in the scenario
of HbA1c_s, individuals with higher indicators (indicated in red)
were more likely to have dyslipidemia (on the right) compared to
those with lower HbA1c_s indicators (indicated in blue). Overall,
it is evident that the important predictors of these five models
have strong consistency, among which XGBoost_prob, LR_prob,
HbA1c_s, CEA_d, LDL-C_s, KNN_prob, and TG_s were extracted
as important predictors.

4 Discussion

Dyslipidemia has become a common disease among patients,
posing a significant risk for the development and progression
of cardiovascular disease and is one of the most important risk
factors for atherosclerotic cardiovascular disease, which accounts
for the most deaths worldwide (Sandesara et al., 2019). Therefore,
early risk prediction is particularly important for the prevention
and management of dyslipidemia. In this research, we developed
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FIGURE 3
The frequency of features using in the five-fold cross-validation. Among them, the suffix f means the first examination, s means the second
examination, and d means the difference between the two examinations.

an ensemble model tailored to predict dyslipidemia risk in
the third year based on data from the initial 2 years’ physical
examinations. The efficacy of this model was corroborated on
a dataset encompassing 2,479 participants, where it attained an
AUC value of 0.88 ± 0.01 (P < 0.001), indicating a high capacity
for dyslipidemia prediction. The improved performances of the
ensemble model over the base learners were consistent with our
assumption that ensemble model performs better than individual
machine learning models. Different models are suited to handling
different types of data patterns. For instance, LR is well-suited for
linear relationships, RF and XGBoost excel at handling nonlinear
data, SVM performs well with high-dimensional data, and KNN are
effective at capturing local patterns. By combining these algorithms
(LR, SVM, RF, KNN, and XGBoost) into an ensemblemodel, we can
leverage the strengths of each algorithm and compensate for their
individual weaknesses, leading to significantly improved predictive
performance.

Furthermore, the investigation delved into identifying the
optimal minimal set of features necessary for accurate predictions.
Through rigorous application of statistical analyses and mutual
information for feature selection, the study identified that a

subset of the top 12 features suffices to achieve reliable predictive
outcomes. In the statistical examination of the 12 features utilized
in the modeling process by base learners, it was observed that
five features were consistently selected across the five-fold cross-
validation, whereas an additional three features were chosen
in four out of five folds. These eight key features encompass
TC, LDL-C, and CEA from the first physical examination;
TC, TG, LDL-C, and HbA1c from the second examination;
along with the difference in CEA levels between the two
examinations.

Notably, TC, TG, and LDL-C were acknowledged as
fundamental metrics for assessing blood lipid status, with HbA1c
also recognized for its association with lipid concentrations
(Li et al., 2022; Bulut et al., 2017). Previous study (Feng et al.,
2019) have shown that high LDL-C is the most common
component of dyslipidemia, followed by elevated TG. HbA1c
was a recognized indicator related to dyslipidemia, and it was
significantly correlated with common lipid parameters such as
TC, TG, and LDL-C (Ozder, 2014; Reddy et al., 2014). Previous
study (Huang et al., 2021) have shown that lowering HbA1c
levels may improve blood lipid levels. At the same time, HbA1c
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FIGURE 4
The AUC performance and average AUC performance of base learners and ensemble model in five-fold cross validation.

TABLE 3 Average prediction performance of different machine learning models in five-fold cross validation.

Models Accuracy (mean ±
SD)

AUC (mean ± SD) Sensitivity (mean ±
SD)

Specificity (mean ±
SD)

P-value

LR 0.71 ± 0.01 0.80 ± 0.02 0.77 ± 0.07 0.70 ± 0.01 <0.001

RF 0.72 ± 0.02 0.83 ± 0.04 0.77 ± 0.05 0.71 ± 0.02 <0.001

KNN 0.71 ± 0.01 0.79 ± 0.02 0.74 ± 0.08 0.70 ± 0.02 <0.001

SVM 0.61 ± 0.10 0.68 ± 0.05 0.64 ± 0.12 0.61 ± 0.13 <0.001

XGBoost 0.70 ± 0.03 0.84 ± 0.02 0.84 ± 0.07 0.68 ± 0.03 <0.001

Ensemble Model 0.78 ± 0.01 0.88 ± 0.01 0.80 ± 0.06 0.78 ± 0.02 <0.001

Values in bold indicate best performance

was closely related to diabetes, and abnormal lipid metabolism
was part of the pathogenesis of diabetes (Sunjaya and Sunjaya,
2018). Metabolic syndrome was a combination of metabolic
abnormalities such as hypertension, obesity, hyperglycemia, and
dyslipidemia, which increases the risk of cancer (Mendrick et al.,
2018). CEA was widely considered to be a serological tumor
marker, and CEA levels can affect a variety of metabolic diseases
(Lu et al., 2018; Wang C.-H. et al., 2022). Therefore, CEA levels may
have a certain relationship with dyslipidemia, which was consistent
with the results of the model. The inclusion of these indicators as
key features demonstrates the model’s strong clinical relevance and
interpretability.

Moreover, the importance of predictors in the ensemble model
evaluated using SHAP values was consistent across five-fold cross
validation. Among them, the prediction probabilities of the XGBoost,
LR, and KNN models in the first stage were important predictors
of ensemble models, which proved that the ensemble model can
well integrate the advantages of each base learner and achieve better
prediction performance. In addition, an interesting phenomenon
was observed that HbA1c and CEA were more important than TC,
TG, and LDL-C, which were conventionally considered predictors
of dyslipidemia. This may be because the ensemble model does not
obtain results based on a simple linear relationship, but explores a
more complex relationship between predictors and results.
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FIGURE 5
The calibration curves and decision curve analysis curves of the ensemble model.

FIGURE 6
SHapley Additive exPlanations summary plot of the input features in second stage model. XGBoost_prob, LR_prob, KNN_prob, SVM_prob, and
RF_prob are the probabilities corresponding to the first stage XGBoost, LR, KNN, SVM, and RF models; HbA1c, glycated hemoglobin; CEA,
carcinoembryonic antigen; LDL-C, low-density-lipoprotein-cholesterol; TG, triglycerides; TC, total cholesterol. The suffix f means the first
examination, s means the second examination, and d means the difference between the two examinations.

Current research into dyslipidemia predominantly centers
on elucidating its risk factors. For example, Qi et al. (Qi et al.,
2015) and Ni et al. (Ni et al., 2015) undertook analyses using
different datasets and statistical methodologies to investigate
dyslipidemia prevalence and the differential indicators between
affected individuals and the general populace, with the objective of
identifying dyslipidemia risk factors. However, such cross-sectional

investigations are largely constrained to singular temporal analyses,
neglecting the longitudinal progression of dyslipidemia, which
curtails their predictive utility. Conversely, our research examines
the dynamic evolutions of physiological indicators over time.
Through a longitudinal analysis of indicator fluctuations within the
same cohort across multiple intervals, we discern patterns indicative
of alterations in lipid concentrations, thereby facilitating effective
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dyslipidemia prediction. While several studies have employed
cohort data for dyslipidemia predicting (Sasagawa et al., 2024),
the majority are limited by their reliance on singular predictive
model, overlooking the varied data mining emphases inherent to
different algorithms. Their performance, as measured by the AUC,
usually hovers around 0.83. Our methodology diverges by adopting
a multifaceted perspective, substantially augmenting predictive
efficacy through the exploitation of diverse model strengths and
their integration. This strategy not only elevates the accuracy of
our predictive model but also its applicability in real-world settings,
furnishing a robust scientific foundation for dyslipidemia’s early
prevention and management.

The primary application of this model is in health examination
centers, where it can be used to predict the risk of dyslipidemia in
the following year based on consecutive years of health examination
data. Examination centers need to maintain continuous health
records for each patient, and by analyzing both historical and
current examination data, the model can provide predictions on
the likelihood of developing dyslipidemia in the future. This model
not only provides early warnings of dyslipidemia for patients,
but also reinforces the value of regular health check-ups, thereby
encouraging patients to adhere to scheduled examinations. For
health examination centers, the model offers more personalized
services, enhancing customer satisfaction. Moreover, this modeling
approach can be extended to risk prediction for other diseases,
showcasing its broad clinical application potential.

The strength of this study lies in the integration of multiple
machine learning algorithms to construct an ensemble model
for dyslipidemia prediction. In comparison to base learners,
including LR, SVM, RF, KNN, and XGBoost, our ensemble model
has shown an improvement in the AUC indicator, with the
AUC improved by 0.04–0.20. In addition, we also conducted a
detailed analysis of the features selected by the model to ensure
transparency and facilitate the interpretation of the results. This
study provides a health management tool that can help identify
individuals at risk of dyslipidemia early, potentially reducing its
prevalence. However, this study has several limitations. Firstly,
the data samples were exclusively sourced from Shenzhen City,
Guangdong Province, China, which may impart a regional bias to
the findings. It is worth noting that Shenzhen is a city with a large
migrant population, resulting in a relatively diverse demographic
composition. Therefore, the impact of regional and demographic
characteristics on the results may not be as significant as in other
areas. Secondly, the median age of the participants is 32 years,
predominantly under 50, leading to an underrepresentation of the
elderly demographic in the analysis. These limitations underscore
the necessity for subsequent studies to encompass a more diverse
and representative population sample and to explore alternative
methods of feature construction. Such expansions are crucial for
augmenting themodel’s generalizability and enhancing its predictive
precision.

5 Conclusion

In conclusion, we presented an ensemble learning approach
to predict dyslipidemia risk in the third year based on physical
examination data from two successive years. The empirical findings

substantiate the effectiveness of our proposed methodology in
accurately predicting dyslipidemia, with the model also exhibiting
notable clinical interpretability. This study also found that HbA1c
and CEA could be used as key indicators for assessing blood lipid
status. Future directions include refining the model through the
inclusion of a more extensive population sample and investigating
the potential for more efficient exploitation of existing features or
the innovation of new feature engineering strategies to elevate the
predictive accuracy for dyslipidemia.
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