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Cancer exhibits substantial heterogeneity, manifesting as distinct morphological
and molecular variations across tumors, which frequently undermines the
efficacy of conventional oncological treatments. Developments in multiomics
and sequencing technologies have paved the way for unraveling this
heterogeneity. Nevertheless, the complexity of the data gathered from these
methods cannot be fully interpreted through multimodal data analysis alone.
Mathematical modeling plays a crucial role in delineating the underlying
mechanisms to explain sources of heterogeneity using patient-specific data.
Intra-tumoral diversity necessitates the development of precision oncology
therapies utilizingmultiphysics, multiscalemathematical models for cancer. This
review discusses recent advancements in computational methodologies for
precision oncology, highlighting the potential of cancer digital twins to enhance
patient-specific decision-making in clinical settings. We review computational
efforts in building patient-informed cellular and tissue-level models for cancer
and propose a computational framework that utilizes agent-based modeling as
an effective conduit to integrate cancer systems models that encode signaling
at the cellular scale with digital twin models that predict tissue-level response in
a tumor microenvironment customized to patient information. Furthermore, we
discuss machine learning approaches to building surrogates for these complex
mathematical models. These surrogates can potentially be used to conduct
sensitivity analysis, verification, validation, and uncertainty quantification, which
is especially important for tumor studies due to their dynamic nature.
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Introduction

Cancer is a heterogeneous disease with malignant cells
that dynamically change their molecular signatures. The
tumor tissue thus has a diverse collection of genetically
distinct tumor sub-populations in a non-uniform spatial
distribution. Each genotype exhibits different sensitivity to
treatments. Spatial and temporal heterogeneity contribute to
the development of resistance against therapies, complicating
the effectiveness of treatments (Zhu et al., 2021; Vitale et al.,
2021). In addition to genetic diversity, epigenetic modifications
like DNA methylation, histone modifications, and chromatin
remodeling can also drive therapeutic resistance (Vitale et al., 2021;
Sadida et al., 2024). Combinatorial therapies targeting not only
the drug/treatment sensitive tumor sub-clones but also the other
drug-resistant subclones are likely to improve therapeutic responses
(Zhu et al., 2021).

The tumor microenvironment also plays an important role
in driving the evolution of cancer cells. It can lead to metabolic
reprogramming in response to the availability of growth factors,
oxygen, nutrients, drug exposure, and even mechanical cues such as
cell density and extracellular matrix stiffness (Demicco et al., 2024).
In the tumor microenvironment, stromal cells and immune cells
exhibit substantial heterogeneity (Vitale et al., 2021), which further
affects overall cancer heterogeneity.

Advances in single-cell sequencing (Baslan and Hicks, 2017;
Lei et al., 2021) and multiomics (He et al., 2023; Menyhárt and
Győrffy, 2021) techniques have enabled genetic, epigenetic, and
even metabolic profiling of cancer cells at a cellular resolution,
helping to delineate intratumoral heterogeneity (Lee et al., 2021;
Schmidt et al., 2021; Ortega et al., 2017). Extensive multimodal
data analysis on sequencing data has successfully identified
biomarkers and stratifying risk in clinical settings (Lee et al., 2021;
Schmidt et al., 2021; Ortega et al., 2017; Subramanian et al., 2020).
Several multi-omic data repositories have been instrumental in
furthering data-driven research to study cancer heterogeneity
(Subramanian et al., 2020). (TCGA (NCI, 2022), TARGET (dbGaP,
2024), CPTAC (NCI, 2024), CCLE (CCLE, 2024), EUREKA
(Peyser et al., 2022), AllofUs (Denny et al., 2019)) They are
essential in guiding patient-specific treatment choices based on
individual tumor profiles. However, these techniques on their
own are not enough to decipher mechanisms or pathways that
lead to the observed subclones. Moreover, these techniques
are insufficient to characterize chemical or physical gradient-
induced extrinsic spatial tissue heterogeneity. Physics-driven
mechanistic systems biology modeling, which includes models
of biochemical and genetic pathways using ordinary or partial
differential equations, boolean networks, and even spatiotemporal
models like hybrid cellular automaton and agent-based simulations,
is essential. There is, however, a need to establish a verifiable
computational framework that can utilize multi-modal patient-
specific clinical information at different scales - molecular, single-
cell sequencing, multi-omics, tissue histology, etc., in addition
to physics-based and systems biology models to make tissue-
level predictions. Such models can be used to explore model
parameter space, simulate different treatments and compare
model outcomes, formulate and test hypotheses to explore
mechanisms of sub-clonal evolution, and elucidate pathways

for tumor malignancy, sub-clonal evolution, resistance, and
metastases.

A digital twin, as defined by the National Academies of Sciences,
Engineering, andMedicine, is a set of virtual information constructs
that mimics the structure, context, and behavior of a natural
or engineered system, dynamically updated with data from its
physical counterpart, with predictive capabilities to informdecision-
making (National Academies, 2024). Cancer, as a complex and
adaptive disease, requires personalized treatment strategies tailored
to each patient’s genetic and environmental factors. Cancer cells’
ability to evolve and resist therapies further complicates treatment.
To address this, an in-silico tumor simulator is needed, capable
of capturing tumor complexity and updating with changes in the
patient’s condition. Digital twin frameworks should incorporate
mechanistic models at the cellular and tissue levels, continuously
updated with real-time clinical and multiomics data. These cancer
digital twins enable virtual patient simulations, allowing clinicians
to test clinical hypotheses and refine therapeutic strategies in a
predictive and personalized manner.

Multiscale hybrid digital twin models (virtual replicas of real-
world entities) can facilitate personalized therapeutic strategies that
are finely tuned to the unique characteristics of each patient. Agent-
based modeling can serve as an effective conduit for integrating
cancer systems models that encode signaling at the cellular scale
into digital twin models that predict tissue-level responses in a
tumor microenvironment customized to patient cohorts. Agent-based
modeling (ABM) operates on a fundamental principle that each
agent (e.g., a cell in a tumor) is programmed to follow a set of
user-defined rules. These rules dictate how agents interact with
each other and respond to their environment, thereby capturing
the complex, dynamic behaviors observed in biological systems
(Bonabeau, 2002). ABM frameworks are useful for cancer tissue
systems because they can in corporate diversity at the single-
cell level and predict the collective complex behavior of the
tumor tissue spatiotemporally (West et al., 2023). These tissue-level
spatiotemporal agent-based models can be powered by physics-
based cellular systems biology models specific to different types
of tumors, leveraging patient-specific clinical information. In this
review, we examine various mechanistic cellular models and tissue-
level agent-based models documented in the cancer research
literature. We cite representative examples and explore potential
strategies for integrating cellular-scale models with tissue-level
frameworks.

Though such a hybrid modeling framework can be extremely
useful for capturing the complexity of a tumor, the computational
expense can grow exponentially as one increases the number of
cells in the agent-based simulation. Machine learning approaches
can reduce the computational expense of ABMs, conduct
feature ranking, global sensitivity analysis, and uncertainty
quantification (UQ) leveraging data-driven methods. Such a
framework is outlined in Figure 1. While ML can help manage
stochasticity and heterogeneity in ABMs and generate statistical
measures for complex systems, the integration can result
in limited interpretability due to the “black box” nature of
ML models (Sivakumar et al., 2022). The synergy between ML
and ABM leverages their respective strengths, but finding the right
balance and integration strategy is complex and requires careful
consideration of each approach’s limitations.
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FIGURE 1
Modeling framework for multi-scale multi-agent spatiotemporal models. This figure presents a comprehensive bottom-up framework for hybrid
multi-scale modeling. (A) This framework integrates cellular systems biology models with multi-agent simulations to predict tissue-level
spatiotemporal dynamics. Cellular models, including ODE-based and Boolean approaches, can be embedded within the multi-agent framework to
inform agent decisions. Cellular models can be constrained using patient-specific clinical information. Machine learning techniques can replace
massive cellular models to enhance the efficiency of multi-agent simulations. Thus, the cellular models can also be embedded by training ML
surrogates on data from the mechanistic cellular models. (B) Once the model is built, sensitivity analysis and feature importance assessment can be
conducted (C) To ensure the robustness of the multi-scale framework, verification, validation, and uncertainty quantification (VVUQ) can be
incorporated using AI surrogates. Clinical exploration using Kaplan-Meier survival analysis can help validate observations from the constructed hybrid
model (A) and sensitivity analysis (B).

Cellular systems biology models to encode
cell behavior

Cancer cells undergo multi-faceted changes in the complex
network of pathways, thus differentiating them from normal cells.
These networks involve gene regulation, signaling, metabolism, and
other dynamic pathways (Laubenbacher et al., 2009) responsible for
cancer cells’ superior replicative potential, sufficiency in growth
signals, insensitivity to growth signals, evading apoptosis, and even
improved angiogenesis (Hanahan and Weinberg, 2000). Additional
hallmarks that are generic to all cancer types include reprogramming
of energy metabolism and evading immune destruction (Hanahan
and Weinberg, 2011). Mathematical models have been built for
these pathways in the past couple of decades, and rigorous analyses
have been conducted to delineate mechanisms and simulate and test
hypotheses.With the influx ofmulti-omics data, suchmodels can be
customized to patient information to improve predictability.

At the most fundamental level, cell behavior is governed
by growth-inducing pathways and their counterpart apoptotic

pathways.These twomechanisms work together tomaintain normal
cellular growth conditions. Alterations in these pathways are the
most prominent indications of malignancy. A common pathway
frequently studied in cancers is mitogenic signaling. The ErbB
signaling pathways (ErbB receptor-mediated Ras-MAPK and PI3K-
AKT pathways) have been modeled using mass action kinetics to
study the effect of epidermal growth factor (EGF), heregulin (HRG)
and other ligands in cancer cell mitogenesis (Chen et al., 2009;
Ebata et al., 2022; Kirouac et al., 2013). A cell cycle progression and
apoptotic pathway frequently implicated in several cancers is the
p53-Mediated DNA damage response pathway. Multiple studies
have conducted boolean network modeling and molecular state
transition dynamics to understand oscillatory behavior, regulation
and identify potential therapeutic strategies (Choi et al., 2012;
Wang, 2013; Gao et al., 2020). In addition to these competing
mitogenic and apoptotic pathways, certain additional pathways
can become important to study in specific cancer types. For
instance, the cross-talk between PI3K and androgen receptor
(AR) signaling pathways promotes pathogenesis and treatment
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resistance in prostate cancer (Crumbaker et al., 2017). Moreover,
as understanding of cancer mechanisms has advanced, phenotypic
plasticity and epigenetic reprogramming have emerged as additional
factors responsible for malignant transformation (Hanahan, 2022).
Newer hallmarks highlight the need for models that incorporate
these additional pathways, which are crucial for predicting cancer
cell behavior.

It has become increasingly apparent that single pathway-
specific models are insufficient for high-fidelity cell fate predictions.
Combining these models and enabling dynamic interaction/cross-
talk can be useful in predicting the cellular macrostates
from the individual microstates of pathway-specific species
(e.g., growth factors, tumor suppressors, etc.,) concentrations.
Hybrid modeling protocols are gaining traction in building
multi-pathway informed cancer cell state models. A recent
publication from the CHIC Project Consortium (CHIC, 2017)
describes a molecular model (as a plug-in component of a
cancer digital twin) that combines the ErbB Receptor-Mediated
Ras/Raf/MAPK and PI3K/AKT pathways (Chen et al., 2009)
with p53-Mediated DNA damage-response module (Choi et al.,
2012) by establishing interaction between the two models via
the state of the common nodes, namely, Erk, Akt and PTEN
(Kolokotroni et al., 2024).

Cellular models can predict phenotypes like cell growth and
death probabilities, and cell growth in response to radiotherapy,
chemotherapy, and hormonal therapy treatments. They can be
tailored to patient-specific clinical data for personalized modeling.
These models can help develop insights into individual cancer
cell behavior but are not enough to gain insight into the
collective behavior of tissues with heterogeneous cell types and
cell-cell interactions. These models can, however, power tissue-
level spatiotemporal models to build a holistic representation of a
complex tumor microenvironment.

Multi-agent models for simulating
tissue-level spatiotemporal dynamics

The dynamics of cancer makes it important to capture
and predict the spatiotemporal trends in tumor growth to
develop effective treatment strategies. There has been an
increasing interest in building agent-based models for cancer
systems. Agent-based models consist of individual entities
called agents in a shared environment. Agents can represent
cells in a tissue or sections of blood vessels that reside in a
space. These agents (cells) are programmed to act according to
the rules set by the modeler (Cogno et al., 2024). Such rules
encompass the cell-cell, cell-environment, and intra-cellular
interactions. Cellular (i.e., agent) decisions can be based on
physics-based models or probabilistic rules. When multi-cellular
systems are allowed to evolve spatiotemporally based on these
governing rules, the collective complex behavior of the system
can be captured.

Agent-based models can be simulated using lattice-based
or off-lattice methods. On-lattice (Lattice-based) models are
spatially discrete models, where agent positions are asynchronously
updated using simple migration rules. Such modeling style could
lead to restrictions in simulating biologically close population

dynamics. Lattice-based (On-lattice) methods include cellular
automata models (where each lattice is occupied by one agent),
lattice gas cellular automaton models (where each lattice site can
contain multiple agents), and Cellular Potts models (CPMs) (use
multiple lattice sites to represent each cell) (Metzcar et al., 2019).
Off-lattice models usually simulate dynamics of individual agents
using Newton equations of motion. These models provide more
freedom in simulating behaviors like cell motility and chemotaxis.
However, simulating these models is computationally expensive
and the computational complexity increases with the number of
agents. Off-lattice methods involve models that track the center of
mass/volume of each agent and cell boundary-tracking methods
(Metzcar et al., 2019).The latter is better suited for coupling detailed
cell mechanics to fluid and solid tissue mechanics (Metzcar et al.,
2019). Nava-Sedeno et al. (2020) and Metzcar et al. (2019) review
these cell-based ABM methods with specific applications in
cancer biology.

ABMs can simulate cancer initiation and progression by
incorporatingmechanistic cellular models informing each cell’s fate.
They can also model tumor-host interactions, nutrient diffusion,
hypoxia, angiogenesis, immune cell dynamics, and tumor-immune
interaction (Cogno et al., 2024). It is extremely difficult to have
mechanistic models to simulate all cellular behaviors. While
constructing a multiscale hybrid model, one would need to
approximate certain behaviors for whichmechanistic models do not
exist. ABMs thus become a powerful framework in complex multi-
scale systems. ABMs can combine physics-based models (e.g., cell
growth rate, death rate) with stochastic rule-based processes (where
mechanistic molecular pathway-based models are currently non-
existent). Examples of such phenotypes could be cell-cell adhesion,
cell-matrix adhesion, chemotaxis, cellular uptake of drugs, hypoxia,
angiogenesis, etc.

In the past two decades, numerous in-house and adapted
ABMs have been developed to simulate tumor progression
(Wang et al., 2015; Enderling et al., 2009; Norton et al., 2017;
Yu and Bagheri, 2020; Rejniak, 2007) and its dependence on
intra-tumor genetic diversity (Anderson et al., 2006), vasculature
(Mehdizadeh et al., 2013; Yu and Bagheri, 2021; Cai et al.,
2011; Duswald et al., 2024; de Montigny et al., 2021), nutrient
(Kuznetsov and Kolobov, 2023) and oxygen (Anderson et al., 2006;
de Montigny et al., 2021; Bull et al., 2020) (hypoxia and necrosis)
gradients, solid stress (Kuznetsov and Kolobov, 2023), tumor-
immune interactions (Heidary et al., 2020; van Genderen et al.,
2024; Cess and Finley, 2020; Norton et al., 2019; Bergman et al.,
2021), therapies like radiation therapy (Powathil et al., 2016;
Chaudhuri et al., 2023), immunotherapy (Ruiz-Martinez et al.,
2022; Gong et al., 2017) and even pre-clinical preventative
vaccination studies (Palladini et al., 2010). Available open-source
ABM software include PhysiCell (Ghaffarizadeh et al., 2018) (an
off-lattice ABM framework that uses BioFVM (Ghaffarizadeh et al.,
2016) to simulate diffusion partial differential equations for
chemical substrates), BioDynaMo (Breitwieser et al., 2022),
Chaste (Mirams et al., 2013; Cooper et al., 2020), CompuCell3D
(Swat et al., 2012), and EPISIM (Sütterlin et al., 2013). These
have been instrumental in improving the accessibility of multi-
agent, multi-scale simulations for the computational biology
modeling community.
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Embedding cellular models for
decision-making in a multi-agent modeling
framework

Differential equation based and boolean
approaches for cellular modeling

Most systems biology models that simulate intracellular or
molecular processes in a cell include continuous time, nonlinear and
coupled deterministic or stochastic ordinary differential equations
(ODEs). These can be solved using numerical discretization
methods. COPASI (Hoops et al., 2006) is a commonly used open-
source complex pathway simulator that supports systems biology
markup language (SBML) representation of cellular biochemical
networks. Many ABM packages (e.g., Chaste (Mirams et al., 2013),
CompuCell3D (Swat et al., 2012), and EPISIM (Sütterlin et al.,
2013)) support SBML to include systems of ODEs that simulate
molecular pathways in individual cells (Metzcar et al., 2019).
Thus, each cell/agent can have embedded cellular models
informing cellular behavior (Rikard et al., 2019; Corti et al.,
2021; Schuetz et al., 2013). In pathways where quantitative
kinetic data of the constituent chemical species and reactions
is unavailable or large-scale networks need to be modeled that
are computationally expensive, a discrete boolean approach
(Hemedan et al., 2022) ismore feasible to extract qualitative insights.
PhysiCell (Ghaffarizadeh et al., 2018) has an auxiliary boolean
modeling package, MaBoSS (Stoll et al., 2017), that simulates
intracellular pathways or molecular mechanistic models at a
single-cell level.

Machine learning approaches to speed up
multi-agent simulations

ABMs informed by cellular mechanistic models can be used
to understand how intracellular changes can influence tissue-level
behavior in individual cells. Complex intracellular models can have
tens to hundreds of equations with hundreds to thousands of
parameters. Thus, embedding mechanistic ODE-based or boolean
models to inform the decisions of every agent at each time step
in the dynamic simulation can be computationally very expensive.
Surrogate models are data-driven models trained on data generated
from high fidelity models that are computationally expensive to
run. Surrogates can produce new simulation data faster and at a
very little computational cost as compared to the original high-
fidelity models. Such techniques might be extremely valuable in
our hybrid modeling framework. The cellular mechanistic models
can be used to generate data for training ML surrogates. Such
surrogates can be used for predicting agent behavior instead of
running the expensive mechanistic cellular models. An example of
such use case in cancer agent-based modeling has been proposed
by Cess and Finley (2020) proposed a novel data-driven technique
to replace mechanistic models with pre-trained neural networks.
They used an intracellular signalingmodel that informsmacrophage
phenotypes to produce simulation data. This generated data was
used to train a simple input/output model using a neural network
with cytokine concentrations in the microenvironment as input
and macrophage differentiation state (M1 or M2) as output. In
the ABM simulation, each macrophage agent samples the local
cytokine concentrations (solved by diffusion PDEs coupled with the
ABM) and decides its phenotypic fate based on the neural network.

Such data-driven cellular embedding can significantly increase the
computational speed. In case of absence of mechanistic models,
machine learning models trained on clinical data can also be used
to inform agent behavior (Sivakumar et al., 2022).

Sensitivity analysis and feature importance
in the multi-scale hybrid model

Predictivemodels are invaluable in biological research; however,
they often lack sufficient experimental data to determine model
parameters or initial conditions accurately (Zi, 2011). Building
robust patient-specific predictive models requires longitudinal
data from multi-omics, tissue imaging, and biopsies. However, in
retrospective modeling efforts, access to such comprehensive data is
often limited. Evenwhen predictivemodeling runs alongside clinical
trials, challenges persist. These include uncertain data acquisition
due to patient dropouts, failure to capture long-term post-trial
data, and variability in data collection caused by non-standardized
protocols across trial sites. These issues hinder the ability to
create accurate and reliable models. In many instances, these
values are estimated, thus leading to uncertainties that propagate
through the model and affect its predictions. Sensitivity analysis
techniques quantify the effect on fluctuations in the model output
as caused by changes/uncertainties in the model inputs (Zi, 2011;
Global Sensitivity Analysis, 2008). In the hybrid modeling context,
these model inputs include model parameters, boundary conditions
and initial conditions for cellular and tissue level models. Sensitivity
analysis is used for evaluating robustness ofmathematical surrogates
of biological systems (Streif et al., 2016), parameter estimation
(Linden et al., 2022), and rank themost important model parameter
subsets that have the greatest impact on model outputs (Li et al.,
2010). Such insights can also be used to design better experimental
studies for the given biological system (Zi, 2011; Qian and Mahdi,
2020). Two types of sensitivity analyses exist - local and global
(Table 1). Local sensitivity analysis (LSA) assesses the effect of small
changes in individual model parameters on the output, varying
one parameter at a time. On a wide range of values, parametric
sensitivity analyses can be done on the multiscale hybrid agent-
based model by scanning a few orders of magnitude for the
parameter of interest. Global sensitivity analysis (GSA) evaluates the
impact of varying all parameters simultaneously across their entire
ranges, providing a comprehensive understanding of parameter
influence and interactions. This method is more suited for highly
nonlinear and coupled systems. Parameter sampling methods like
Monte-carlo sampling and Latin hypercube sampling are required
to conduct GSA. GSA includes variety of techniques - Multi-
parametric sensitivity analysis (MPSA), Partial rank correlation
coefficient (PRCC) analysis, Morris sensitivity analysis, Weighted
average of local sensitivities (WALS), Sobol sensitivity analysis,
Random sampling high-dimensional model representation (RS-
HDMR), Fourier amplitude sensitivity test (FAST) (Zi, 2011). Zi
(2011) discusses the advantages and disadvantages of all sensitivity
analysis methods in the context of systems biology models. Global
sensitivity methods are computationally expensive, even for simple
models.They are extremely difficult to implement on hybridmodels.
Thus, there is scope for developing novel approaches to conducting
global sensitivity analysis on complex hybrid multiscale models.
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TABLE 1 Summary of sensitivity analysis types, including relevant methods, pros and cons of each analysis type, and a few examples of
method use cases.

Type Methods Pros Cons A few examples of
use cases

Local Sensitivity Analysis Local derivative, One-way,
Multi-way

Simple implementation, low
evaluation cost

Only valid for small
perturbations, May not capture
interactions between
parameters

Cancer models: Non-small cell
lung cancer Kolokotroni et al.
(2016), Advanced Gastric
Adenocarcinoma Wen et al.
(2016), Lung Cancer Screening
Mahadevia et al. (2003), Solid
Tumors Sefidgar et al. (2014)
Other models: Aquatic
Ecosystem Stressors
Mondy et al. (2016), Electrical
Power systems Qin et al.
(2023)

Global Sensitivity Analysis Sobol’ Indices, Morris Method,
FAST/eFAST, PRCC, WALS,
MPSA

A quantitative measure of
sensitivity, Considers
interactions, Provides a
comprehensive view of
parameter importance

Generally more
computationally expensive,
Requires a large number of
model evaluations

Cancer models: Non-small cell
lung cancer Kolokotroni et al.
(2016), microbicide PK models
Jarrett et al. (2016)
Other models: Chemerin
based anti-inflammatory
treatment simulations
Laranjeira et al. (2017), Liver
radiofrequency ablation
Hall et al. (2015), Electrical
Power systems Qin et al.
(2023)

Surrogate models for sensitivity analysis and
feature importance

Surrogate models are data-driven approximations trained on
outputs from high-fidelity models, which are often computationally
expensive to execute. By providing rapid predictions with minimal
computational effort, surrogate models offer a more efficient
alternative to the original high-fidelity simulations. Traditionally,
GSA requires sampling of points in the model input parameter
space. The complex models need to be evaluated at these
sampled points. The corresponding outputs are used to define
a measure of sensitivity. Direct use of such sampling methods
for GSA on complex models is often unaffordable due to high
computational costs. Surrogates offer a practical alternative
(Cheng et al., 2020). Surrogate models can approximate complex
mechanistic models, thus reducing the computational costs
associated with global sensitivity analysis (Cheng et al., 2020).
They are developed using machine learning data-driven regression
techniques (Tsokanas et al., 2022). The traditional surrogate models
include polynomial regression and response surface models,
Kriging/Gaussian process, polynomial chaos expansion, and
Multivariate Adaptive Regression Splines (Cheng et al., 2020;
Alizadeh et al., 2020). Supervised learning algorithms like neural
networks (Liu et al., 2021; Li et al., 2016; Yang et al., 2021), random
forests (Dasari et al., 2019), and support vector machines (Pruett
and Hester, 2016) have also been used to build surrogate models
and conduct sensitivity analysis.

One of the major goals of global sensitivity analysis techniques
is selecting the most important model features that have the most
impact on the model output. Traditionally, feature selection has
long been used as a pre-processing step while building large

multi-parametric data-driven models. The objectives of feature
selection include building simpler and more comprehensible
models, improving data-mining performance, and preparing
clean, understandable data (Li et al., 2017). Li et al. (2017) classify
feature selection methods into these categories: similarity-
based, information-theoretical-based, sparse-learning-based, and
statistical-based. In addition to data-driven models, these methods
can also be exploited to extract important features from complex
mechanistic models like ODE systems, boolean networks or
even hybrid tissue-level agent-based models. Identifying such
features can provide meaningful insights into the important
pathways for malignancy represented in the model. Since all
feature selection algorithms require sampling through large input
parameter spaces, computations can get very expensive with the
complex multiscale hybrid models. Surrogates of these complex
models can be used to perform feature selection. The variance-
based Sobol global sensitivity method is among the most popular
feature rankingmethods.This variance-based technique determines
the contribution of each model (or surrogate model) feature and
their interactions with the overall variance of the target variable.
It has been implemented for purely data-driven models as well
(Zouhri et al., 2022; Fel et al., 2021; Efimov et al., 2017).

A game theoretic approach to feature ranking is Shapley value
analysis. Shapley value (Winter, 2002) is a cooperative game theory
approach used to distribute the total gain (or cost) among players
based on their individual contributions. For feature attribution in
machine learning models, each feature is considered a player in
a coalition, and the Shapley value assigns a value to each feature
representing its contribution to themodel’s prediction. Featureswith
higher Shapley values can be considered more important, aiding in
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selecting the most relevant features (Chen et al., 2023). Though this
method is a straightforward check for global sensitivity, there are
a few downsides: assumption of feature independence, difficulties
with scalability, and high computational expense (Aas et al., 2021).

Clinical exploration of feature importance
predictions

Sensitivity analysis methods can predict the top model
parameter subsets that are responsible for aggressive tumor
proliferation and metastatic tendencies, thus leading to poor patient
prognosis. Once the most important model parameter subsets are
identified, a simple check for clinical significance can be done by
conductingKaplan-Meier survival analysis on available clinical data.
Worse survival in patient cohorts with alteration in the identified
most sensitive model species would corroborate the model ranking
results from the multiscale model.

Verification, validation, and uncertainty
quantification (VVUQ) of the multi-scale
hybrid-modeling framework

Experimental data for validation are available in cancer data
repositories like TCGA (NCI, 2022), TARGET (dbGaP, 2024),
EUREKA (Peyser et al., 2022), and AllofUs (Denny et al., 2019).
These sources have clinical information like mutations, RNA
sequencing, or other forms of liquid biopsies such as ctDNA,
miRNA, or exosome profiling. Relevant data from these repositories
can be used to calibrate different sub-modules (cellular models,
tissue level diffusion, cell-population ABM) in the hybrid model.
The key predictions from the multi-scale hybrid model can be
compared against or regressed with the measured biomarkers. The
time evolution of key biomarker concentrations in the hybrid
level model can be compared against experimental and clinical
data where possible (eg., comparing predicted PSA levels with
available patient PSA level data for prostate cancer studies) Spatial
tissue-level ABM results can be compared with tumor imaging
results, particularly, tumor spheroid diameters and aspect ratio
measurements. Spatial tissue-level ABM results can be compared
with tumor imaging results, particularly, tumor spheroid diameters
and aspect ratio measurements. A caveat here is that most
spatiotemporal modeling studies might not find enough relevant
clinical information including imaging, multi-omics and biopsies,
to sufficiently validate the models.

Hybrid multi-scale models can have high fidelity but can
be computationally expensive owing to several sub-modules
capturing the complexities of the system. Heterogeneous multiscale
approaches can be used for cost-effective linking of the submodules
via information transfer at specific time intervals (Ee et al., 2007;
Kevrekidis et al., 2004). However, increasing model complexity
complicates model validations and inferential understanding
(Cogno et al., 2024). Additionally, there is a scarcity of patient-
specific clinical data for training or validation of such complex
models. To ensure these models are viable in a clinical setting,
extensive validation of their predictions is necessary, along
with quantification of the uncertainty in the predicted outputs
based on the model inputs. Verified and validated GenAI-
based digital twins can increase the size of the data cohort and

improve the robustness of uncertainty analysis, providing reliable
predictions (Kamruzzaman et al., 2024).

Mathematical models inherently provide approximations of
real-world phenomena, necessitating verification processes to
quantify numerical errors and ensure model accuracy. Uncertainty
Quantification (UQ) goes a step further by assessing the
range of possible values that a quantity of interest may take
within a given problem. UQ accounts for inherent variability
and uncertainties in model inputs, parameters, and structure,
offering a more comprehensive understanding of the model’s
predictive capabilities and the reliability of its outcomes. Roy
and Oberkampf (2011) classify uncertainty in model predictions
arising from three broad categories: (1) model inputs, (2) numerical
approximations, and (3) assumptions in the mathematical model.
Input uncertainties encompass variability in data and parameters.
(1) Model input uncertainties encompass inherent variability in
data and parameters. They can be classified as aleatory or epistemic.
Aleatory uncertainties refer to the variability in model input due to
inherent random effects. In cellular or tissue level systems biology
models, aleatory uncertainties can include experimentally derived
kinetic parameters for ODEs, and physiologically relevant initial
conditions to simulate diffusion of nutrients, oxygen in the tissues.
Epistemic uncertainty stems from incomplete knowledge about
the system, particularly, input data or model parameters. Such
uncertainties are usually explored through alternative assumptions.
In systems biology models, unknown mechanisms can be treated
as epistemic uncertainties, and the range of assumptions used to
bridge each epistemic uncertainty can be evaluated. (2) Numerical
approximation errors assess simulation accuracy associated with
computational solving techniques (verification). (3) Assumptions
in the mathematical model are usually made to keep the model
tractable. These assumptions contribute to model form uncertainty.

Roy and Oberkampf (2011) present a practical approach for
quantifying uncertainty using probability boxes (P-boxes). To
generate the P-boxes, both aleatory and epistemic uncertainties
are propagated through the model to generate an ensemble of
cumulative distribution functions of model output quantity of
interest. For model validation, model predictions are compared
with experimental data to estimate model form uncertainties.
These are treated as epistemic uncertainties. The final step in this
approach involves determining the total uncertainty in the system
response by combining P-boxes derived from input uncertainties,
extrapolated model form uncertainties, and uncertainties due
to numerical approximations (Roy and Oberkampf, 2011).
This comprehensive approach delineates confidence in model
predictions, ensuring robust and reliable assessments of the system’s
performance. Even though this method is valuable for UQ in
complex models, it can get computationally expensive with increase
in number of uncertain model input parameters and model form
complexity. Hybrid multiscale models in cancer are built using
several approximations and simplifications of tumor heterogeneity,
tumor–microenvironment interactions. All these could contribute
to epistemic uncertainty. Moreover, calibration of certain cellular or
tissue models to clinical and experimental data involves significant
aleatoric uncertainty. This would lead to a huge computational
burden. ML surrogates offer a promising avenue for enhancing
VVUQ by efficiently approximating complex models and providing
rapid sampling. There is considerable scope for improvement with
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further research into the mathematics of VVUQ and the use of ML
surrogates to enhance VVUQ for complex models.

There is a critical need for benchmarks to ensure the safe
and reliable use of computational models in real-world settings.
These benchmarks would provide standardized criteria for model
verification, validation, and performance, ensuring models meet
the necessary requirements before deployment. The ASME V&V 40
standard (ASME, 2018), recognized by the FDA, offers a risk-based
framework to establish the credibility of computational models used
in medical device development. ASME also has VVUQ standards
for various modeling techniques, including Computational Fluid
Dynamics, Computational Solid Mechanics, and machine learning
models. There are verification and validation benchmarks for digital
twins for manufacturing applications as well (Bitencourt et al.,
2024). However, a similar benchmark for physiological
models developed for clinical applications has not yet been
established. In clinical contexts, the development of a robust
Verification, Validation, and Uncertainty Quantification
(VVUQ) benchmark is crucial to ensure that these models are
trustworthy and safe for use, as patient safety becomes the
paramount concern.

Discussion

Building verifiable cancer digital twins for
precision medicine

Cancer is characterized by its dynamic and evolving nature. As
the disease progresses, the diversity within cancer cell populations
typically increases (Jacquemin et al., 2022). Such diversity can lead
to uneven distributions of genetically varied tumor cells across
different areas of the tissue (known as spatial heterogeneity). It
can also cause changes over time in the genetic composition of
these cells (temporal heterogeneity). This heterogeneity is a key
factor in developing treatment resistance, making precise evaluation
of tumor heterogeneity crucial for effective treatments (Dagogo-
Jack and Shaw, 2018). Technologies like multi-region sequencing,
single-cell sequencing, autopsy sample analysis, and longitudinal
liquid biopsy are advancing rapidly and hold significant promise
for unraveling the intricate clonal structure of tumors (Lee et al.,
2021; Ortega et al., 2017; Gilson et al., 2022). Nevertheless, the
complexity of the data gathered from these methods cannot be fully
interpreted through multimodal data analysis alone. Data-driven
techniques can help uncover important pathways and give insights
into important biomarkers of malignancy (Sathyanarayanan et al.,
2020; Vaske et al., 2010). This crucial information can be leveraged
to build relevant mathematical models incorporating the identified
pathways. Mathematical models can incorporate physical laws
and dynamic behaviors, allowing for more detailed insights
into the mechanisms of cancer growth, treatment response and
resistance. The predictive capability of mathematical models
are superior to purely data-driven models as the former allow
hypothesis testing via insilico clinical trials, leading to more
informed decision making. Mathematical modeling is critical
in integrating personalized data, providing the groundwork for
creating verifiable cancer digital twin (VCDT) models that could
revolutionize our approach to understanding and treating cancer

(National Academies, 2024; Strobl et al., 2023). Physics based
models can be informed using clinical or experimental data. In
context of our proposed hybrid modeling framework, data can
be integrated in different the sub-modules. For example, tissue
imaging information can help initialized cell-population agent-
based models (Cess and Finley, 2023); genomics, proteomics and
other omics data can be used to identify, model and calibrate
cellular pathways (Kolokotroni et al., 2024; Byrne et al., 2016).
Physics-based modeling has effectively integrated data across
different scales and physics to reveal mechanisms underlying
functional emergence. In addition to the genetic spatial and
temporal heterogeneity, physics-based spatiotemporal models
are well-suited to represent extrinsic heterogeneity in the tissue
microenvironment due to substrate gradients, signal gradients, etc.,
(Bray et al., 2019)

Integrating physics-based hybrid models with multi-modal data
can increase the computational complexity of the system, thus
increasing computational costs. The recent emergence of machine
learning as a powerful method to integrate diverse data types and
uncover correlations among complex phenomena offers significant
potential. However, relying solely on machine learning can overlook
fundamental physical laws, leading to poorly defined problems or
unrealistic solutions. Machine learning can be used to enhance
physics-based hybrid models by facilitating better data integration.
Generative AI methods can produce synthetic data for physics-
based model calibration and validation, in cases where real-world
data is sparse (Kamruzzaman et al., 2024). ML methods can also be
used to create simplified surrogates of physics-based hybrid models
(Peng et al., 2021). Consequently, a multidisciplinary approach to
creating a digital twin by integratingmachine learning with physics-
based modeling can provide new insights into disease mechanisms,
identifying new targets and treatment strategies (Alber et al., 2019).

This review discusses physics driven methods to encode the
mechanisms driving an evolving primary tumor personalized to the
genotype of a real-world patient. We underline the importance of
mechanistic, multiscale hybrid cellular models that can integrate
core biological pathways universally connected to cancer hallmarks
of continued proliferation and evasion of cell cycle checkpoints
common to several tumors. In addition to these core modules,
several tumor-specific and patient-specific pathways can also
be added to drive context-specific cell decision-making in the
tumor microenvironment. Such cellular physics-based models can
be embedded in a tissue-level framework. ABMs are modular
and can embed many physics-based, stochastic, or data-driven
models to enhance biological accuracy. ABMs can be spatially
initialized using high-resolution imaging and tissue histology
information (Cess and Finley, 2023). They can leverage patient-
specific omics data to calibrate models for patient-representative
prediction. ABMs can thus provide insights into cancer biology
that can guide experimental designs and patient-specific therapeutic
strategies (Cogno et al., 2024).

In addition to the bottom-up, cancer biology-driven
digital twin development, a top-down, clinical medicine-driven
approach has emerged in the literature (Kolokotroni et al., 2024;
Kolokotroni et al., 2016; Stamatakos, 2010; Ouzounoglou et al.,
2017; Stamatakos et al., 2014). This approach aims to create digital
twins designed to answer specific clinical questions, such as the
optimal sequencing of chemotherapy and surgery for individual
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patients. A careful hybridization of both approaches can be highly
effective for certain cases. Some recent examples of top-down digital
twin models include Oncosimulator developed by Stamatakos
(2014). It is an information technology system that simulates tumor
responses to therapies. This system includes modules for multiscale
data handling, image processing, and spatiotemporal simulations.
It combines clinical data with advanced modeling techniques to
predict tumor evolution and optimize personalized treatment
strategies. Using similar principles, Oncosimulator (Ouzounoglou
et al., 2017) for acute lymphoblastic leukemia was created using
hybridization of discrete entity-discrete event-based (Stamatakos,
2010) spatiotemporal modeling with machine learning. This
model leverages extensive patient transcriptomics data to enhance
predictive accuracy.

Sensitivity analysis is a fundamental tool in studying biological
systems. It quantifies the influence of parameter changes on system
responses, aiding in identifying key model inputs driving output
variations. In precisionmedicine, this understanding is instrumental
in assessing disease prognosis and designingmore effective therapies
by elucidating critical factors influencing disease progression
and treatment response. Global sensitivity analysis methods are
conducted on mechanistic models to identify the most important
model parameters and conduct robustness analysis (Whitacre,
2012) to determine stiff and sloppy modes in the system. In
addition to the traditional methods, data-driven approaches
are becoming increasingly popular for GSA and feature
importance.

The Digital Twin of a tumor of a real-world cancer patient
aims to encode the dynamic, bidirectional interaction of the
patient and a digital twin to inform clinical decisions regarding
interventions, treatments, and assessments, which in turn updates
the digital twin (National Academies, 2020). Data is gathered from
the patient and the tumor through various clinical assessments
to inform the digital twin, creating a virtual representation
comprised of models that describe the temporal and spatial
characteristics of the patient and tumor, with dynamic updates
from real-world data (National Academies, 2020). Integrating
interpretability through physics, biomarker alignment, cohort
stratification, and cell state dynamics represents an aspirational
approach to advancing precision medicine via digital twins. As the
patient and tumor constantly evolve and the data collection can
change over time, VVUQ must occur continually for digital twins
(National Academies, 2020), see Figure 2. The VVUQ framework
for the digital twin model consists of identifying and quantifying
aleatory and epistemic uncertainties in the model inputs, verifying
numerical approximation errors associated with the solvers, and
quantifying uncertainties originating from the chosen form of
the model by comparing model outputs with experimental data.
It is essential to address UQ comprehensively, covering all
aspects of the digital twin, including patient data, modeling and
simulation, and decision-making processes (National Academies,
2020). There is a compelling need to develop novel methods
to perform VVUQ in multiscale, dynamic digital twins. By
addressing UQ comprehensively across patient data, modeling and
simulation, and decision-making processes (National Academies,
2020), we can enhance the reliability and clinical viability of digital
twin models.

Data-driven methods for multi-modal
model interpretability and forecasting

Digital twins are invaluable in simulating virtual tumor
dynamics and treatment. In the process, thesemodels can vigorously
generate high-dimensional data, owing to the tissue-level ABMs
and embedded cellular models. For every patient, the digital twin
can provide temporal tumor evolution information, spatial tumor-
immune or tumor-drug interactions, temporal concentrations
of important biomarkers and much more. Sensitivity analysis
and large parametric studies on digital twins can result in a
treasure trove of synthetic training data for building supervised
machine learning surrogates. This data can be used to drive
several machine learning methods for improving VVUQ, risk-
stratifying patient cohorts and predicting important cancer system
dynamics (illustrated in Figure 3). The recent advancements in
multi-modal (Baltrusaitis et al., 2019; Stahlschmidt et al., 2022;
Ektefaie et al., 2023) and physics-informed (Cuomo et al., 2022;
Jabbari Zideh et al., 2023) machine learning have significantly
enhanced the ability to analyze complex, multimodal scientific
datasets summarized in Figure 3. Physics-informed neural networks
(PINNs) operate by embedding physical laws, expressed as
partial differential equations (PDEs), into the training process
of neural networks. This integration allows PINNs to leverage
both observational data and underlying physical principles
to infer solutions to complex problems (Cuomo et al., 2022;
Karniadakis et al., 2021). In systems biology (Yazdani et al.,
2020), PINNs are particularly useful for modeling biological
processes by providing robust predictions even with limited and
noisy data, facilitating the understanding of high-dimensional
biological systems, and improving the accuracy of simulations.
The extensive spatiotemporal data generated through parametric,
aleatoric, and epistemic variations in the digital twin can
provide an opportunity to implement innovative approaches
to capture data-informed dynamics effectively. Computationally
efficient data-driven models can be built to simulate tumor
dynamics by utilizing sparse identification of nonlinear dynamics
(Brunton et al., 2016) integrated with neural ordinary differential
equations. Neural ordinary differential equations (Chen et al.,
2019) (ODEs) can learn black-box dynamics and structure-
preserving formalisms to capture key dynamics of course-
grained variables like surface area, circularity, aspect ratio, and
clustering index. For our suggested digital twin architecture, Neural
ODES could conform to the physics of reaction, diffusion, and
convection powering the core ABM and preserve the fluctuation-
dissipation relationship when coupling the agent dynamics with the
dynamics of fields.

Developing AI-enabled computationally efficient surrogate
models will reduce computational overload while also aiding
the implementation of robust methodologies for VVUQ.
McCulloch et al. (2022) propose a novel framework for calibrating
agent-based models (ABMs) by integrating History Matching
(HM) and Approximate Bayesian Computation (ABC) (Toni et al.,
2009). By first employing HM, the parameter space is reduced by
ruling out implausible models, thus decreasing the computational
burden. This is followed by using ABC to generate a detailed
posterior distribution of parameters, incorporating quantified
uncertainties. Bayesian Neural Networks (BNNs) (Neal, 1996)
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FIGURE 2
Proposed schematic of the Verifiable Cancer Digital Twin (VCDT) framework. The VCDT will enable dynamic, bidirectional information exchange
between the patient and the digital twin, continuously updating with new clinical data. Digital twin models [illustration adapted from CHIC
consortium (CHIC, 2017) final report] can span across temporal and spatial scales, include relevant bioprocesses, incorporate different treatment
modalities, and simulate several cancer types. This adaptive physics-based model will integrate physical and data-driven approaches to represent the
evolving tumor, generating synthetic data to enhance AI surrogate model training. Continuous Verification, Validation, and Uncertainty Quantification
(VVUQ) will ensure robustness and reliability, supporting informed clinical decisions for personalized treatments.

integrate Bayesian inference into neural networks to quantify
uncertainties in model predictions. By treating the weights and
biases of the neural network as probability distributions rather
than fixed values, BNNs can account for both aleatoric uncertainty
(inherent noise in the data) and epistemic uncertainty (uncertainty
due to limited data). Such models can be used for reliable ensemble
forecasting (Olivier et al., 2021). Additionally, multiple trajectory
simulations can be done by direct sampling of multiple neural
network parameters. The simulated data statistics can be validated
by comparison with real data summary statistics and quantifying
the residuals.

Multimodal synthetic data generated from the digital twin and
available real-world clinical data can be disentangled and mapped
to clinical stratification of patients based on risk, genetic footprint,
and other drivers of population heterogeneity. One notable
framework, the Physics-Informed Multimodal Autoencoders
(PIMA) (Walker et al., 2024), presents a solution for disentangling
multimodal data. PIMA fuses data into a multimodal posterior by
embedding individual modalities into a shared latent space and
utilizing a product-of-experts formulation. Integrating a Gaussian
mixture model (GMM) prior further identifies shared features

across different data modalities, while a mixture-of-experts decoder
incorporates prior scientific knowledge (in the form of digital twin
synthetic data), ensuring structured disentanglement of the latent
space. This approach enables cross-modal generative modeling
and inference and facilitates the discovery of high-dimensional
features, overcoming traditional limitations related to high-fidelity
measurement and characterization (Walker et al., 2024).

These advancements can significantly enhance the
interpretability, forecasting capability, andmechanism identification
of cancer digital twin models. AI-enabled verifiable cancer digital
twins will facilitate the development of personalized treatment
strategies across various cancer types, ultimately leading to more
effective and tailored healthcare solutions. This integration of
cutting-edge technologies holds the promise of revolutionizing
cancer treatment and patient outcomes.

From a clinical perspective, emphasizing comprehensive and
individualized data collection from single patients is crucial
to ensure accurate computational modeling and avoid artificial
or amalgamated data. Educating clinicians on necessary data
during the patient journey, and ensuring collaboration among
hospital information systems and external providers, is vital.
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FIGURE 3
Data-driven methods to enhance utility and reliability of digital twins. Synthetic data generated from the digital twins can be used to construct AI
surrogate models that capture data-informed dynamics while preserving the system physics - PINNs, Neural ODEs. Bayesian Neural Networks can
enable ensemble forecasting and aid model validation. Additionally, Physics-Informed Multimodal Autoencoders can be used to disentangle
multi-modal data and stratify patients. These techniques can improve personalized treatment strategies.

Integrating diverse data sources such as social media, wearables,
ePROs (electronic Patient-Reported Outcomes), and ePROMs
(electronic Patient-Reported Outcome Measures) enhances data
quality. Ensuring data privacy and security through federated
learning, and addressing trust through clinical validation and
randomized trials comparing digital twin model predictions with
standard treatments, can foster acceptance and utilization in clinical
decision support.

Current limitations and future perspectives

Digital twins in oncology hold significant promise but
face several challenges that need to be addressed before they
can be widely adopted in clinical settings. In the past few
years, there have been National Cancer Institute and US
Department of Energy initiated collaborative exploratory projects
to promote development of patient-specific cancer digital twins
(Stahlberg et al., 2022). Hadjicharalambous et al. (2021) review
recent cancer mathematical models in literature, with the potential
for utility for insilico-clinical trials. Including image-driven models,
radio/chemo-therapeutic planning models and tumor vasculature
models. These models have demonstrated the potential of digital

twins in oncology, while also highlighting key challenges that
need to be addressed. One major limitation is the sparse and
incomplete multimodal data currently available, which hinders
the effective integration of patient-specific information into models.
Advancements in AI could potentially help resolve this problem.
Furthermore, continuously updating digital twins with real-time
patient data remains a challenge. This requires the development
of novel dynamic calibration methods to maintain accuracy and
adaptability of digital twins in clinical applications.

Validation of digital twin model predictions is crucial and
will need to be done through randomized clinical trials that
compare these predictions with standard treatments. Additionally,
for reliably exploring hypotheses and conducting in-vivo clinical
trials, advancements in gaps in applicability of VVUQ methods to
digital twins need to be addressed. As highlighted in this review,
recent machine learning advancements, and others still emerging,
will play a critical role in refining digital twin models and utilizing
digital twin derived synthetic data to answer important clinical
questions.

For digital twins to support clinical decision-making effectively,
collaborations between cancer modelers, bioinformaticians,
machine learning experts, mathematicians, and clinicians are
essential. Clinicians must be educated on the necessary data
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required during a patient’s treatment journey, ensuring seamless
data collection and integration. Hospital information systems, along
with external medical service providers, need to work together to
compile comprehensive and individualized data. In addition, the
integration of diverse data sources, such as social media, wearables,
ePROs (electronic Patient-Reported Outcomes), and ePROMs
(electronic Patient-ReportedOutcomeMeasures), will help enhance
data quality and better support cancermodeling. However, concerns
around data privacy and ownership must be addressed, requiring
stringent benchmarks and regulatory frameworks to ensure patient
data protection.

Similar to the ASME V&V40 guidelines for model verification
and validation in medical devices, there is a need for standardized
frameworks to ensure the safe and effective deployment of cancer
digital twin models in clinical settings. Such guidelines will help
establish clear protocols for verifying the accuracy, reliability, and
clinical relevance of digital twins, ensuring their safe integration
into patient care. Regulatory bodies like the FDA (US) and EMA
(Europe) will need to develop clear guidelines for using digital
twins in clinical trials, with the regulatory landscape likely to
evolve continuously (Li, 2024). The scientific community must
remain adaptable to these changes. Despite all these challenges,
cancer digital twin technology has the potential to transform cancer
medicine by accelerating drug development and reducing clinical
costs. It could potentially become a cornerstone of future cancer
treatment.

Concise Summary

Cancer’s heterogeneity often undermines the efficacy of
conventional treatments. Advances in multiomics and sequencing
have provided insights, but the complexity of the data requires robust
mathematical models for full interpretation. This review highlights
recent advancements in computational methodologies for precision
oncology, emphasizing the potential of cancer digital twins to
enhance patient-specific decision-making.We propose a framework
that integrates agent-based modeling with cellular systems biology
models, utilizing patient-specific data to predict tissue-level
responses. Additionally, we discuss machine learning approaches
to build surrogates for these models, facilitating sensitivity analysis,
verification, validation, and uncertainty quantification. These
advancements are crucial for improving the accuracy and reliability
of clinical predictions.
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