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Traumatic spinal cord injury (SCI) results in the disruption of physiological
systems below the level of the spinal lesion. Connexin hemichannels (CxHCs) are
membrane-bound, non-selective pore proteins that are lost in mature myofibers
but reappear de novo on the sarcolemma after peripheral denervation, chronic
SCI, diabetes, and severe systemic stress such as sepsis. Cx43 and Cx45 have
been implicated as the major CxHCs present in diseased muscle, and muscle-
restricted knockout of these genes reduces muscle atrophy after denervation,
likely by reducing excess calcium influx with resultant inflammasome activation.
A muscle-restricted Cx43/45 conditional knockout (mKO) mouse model was
developed and tested to check whether it would improve outcomes following
either a complete spinal cord transection at the level of thoracic vertebrae-
9 (T9) or a motor-incomplete T9 impact-contusion SCI. mKO had no effect
on the body mass after complete T9 transection. There was reduced atrophy
of the plantaris 15 days post-SCI that was not associated with molecular
markers of inflammation, hypertrophic/atrophic protein signaling, or protein
and mRNA expression related to mitochondrial integrity and function. mKO
mice had faster and greater locomotor recovery across 28 days after a
motor-incomplete contusion SCI with no differences in spared white matter;
male mKO mice generally had greater muscle mass than genotype controls
post-injury, but muscle sparing was not observed in female mKO mice
post-injury. The data establish a new paradigm where muscle Cx43/45
may contribute to the tissue crosstalk that determines the neuromuscular
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function of sub-lesional musculature after motor-incomplete SCI in a sex-
dependent manner. Our novel findings should promote investigation to develop
innovative treatment strategies to improve the function and quality of life for

persons with SCI.

KEYWORDS

spinal cord injury, Cx43, skeletal muscle-restricted knockout, Cx45, contusion spinal
cord injury, transection spinal cord injury, recovery of function

Introduction

Spinal cord injury (SCI) is a devastating neurological injury
that results in the loss of sensation and voluntary movement,
with resultant bowel, bladder, and sexual dysfunction. Findings
that SCI results in the rapid upregulation of hepatic expression
of pro-inflammatory cytokines (Goodus et al., 2021) and that SCI
results in a chronic low-grade increase in the levels of circulating
cytokines in humans (Bank et al., 2015) suggest that the initial
trauma and paralysis induce a systemic response that most likely
impacts many tissues. Among the most significant changes observed
after SCI are the rapid and extensive loss of skeletal muscle mass
that, when combined with reduced physical activity, lowers the basal
metabolic rate and, insulin-mediated glucose uptake (Bauman and
Spungen, 2001). Skeletal muscle represents 40% of the mass of a
healthy young adult and releases a wide range of mediators that
modulate fat, bone, brain, and likely other tissues (Das et al., 2020;
Pedersen and Febbraio, 2012). The profile of mediators released by
skeletal muscle changes in response to exercise or immobilization.
For example, our group has shown that paralysis from a sciatic
nerve transection results in altered exosomal miRNA cargo from
cultured myofibers (De Gasperi et al., 2017); however, the role of
skeletal muscle in mediating the systemic effects of spinal cord injury
remains poorly understood.

Muscle wasting is a highly coordinated and rapid biological
process that involves catabolism of muscle proteins, which results
in atrophy and loss of strength (Ebert et al., 2019; Bodine et al.,
2023). Muscle wasting begins within a few days after the onset of
trauma (e.g., burn), disease (e.g., sepsis), or disuse (e.g., paralysis)
(Bodine, 1985; Graham et al, 2021). The paralysis caused by
traumatic SCI results in one of the more severe forms of acute
muscle wasting and extensive chronic muscle atrophy. Although
complete anatomical spinal cord transections are rare in humans,
loss of all voluntary movement below the anatomical level of SCI
(motor-complete SCI) can occur despite there being some spared
white matter at the injury site, and motor-complete SCI accounts
for ~30% of all cases (National Spinal Cord Injury Statistical Center,
2023). Most post-SCI neurological recovery occurs within the first 3
months of injury, with only a 5% conversion from motor-complete
to motor-incomplete SCI from 1year to 5years post-injury
(Kirshblum et al., 2004). Those with motor-complete SCI experience
extensive atrophy of paralyzed muscles (Castro et al, 1999a;
Castro et al., 1999b), loss of force-generating capacity (Castro et al,
1999b), and greater susceptibility to muscle damage after exertion
(Bickel et al., 2004).

The devastating, life-long consequences of SCI highlight the
need for novel translational medicine approaches to improve, and
ultimately maintain, greater voluntary muscle function in those
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with SCI. Pharmaceutical interventions have showed little to no
efficacy in preserving muscle mass and function after motor-
complete SCI in pre-clinical models (Otzel et al., 2021), emphasizing
the need to find novel mechanisms that guide future translational
strategies.

Inhibition of connexin hemichannels (CxHCs) has recently been
established as a promising direction to improve muscle health and
function during muscle wasting (Saez et al., 2015). CxHCs allow
the non-selective passage of small molecules into and out of the
cell with excess calcium entry, intracellular calcium accumulation,
and inflammasome activation being the best described pathological
mechanistic processes (Saez et al, 2015; Plotkin et al., 2017;
Giaume et al., 2013). CxHCs are important regulators for muscle
differentiation (Araya et al, 2005) but are absent from the
sarcolemma of healthy, mature fibers (Cea et al., 2013; Cisterna et al.,
2020). However, they preferentially reappear de novo in fast-twitch
myofibers in multiple models of diseases that induce muscle wasting.
Conditional knockouts of Cx43 and Cx45 in skeletal muscle reduce
denervation atrophy (Cea et al., 2013) and prevent the increased
sarcolemmal permeability caused by denervation (Cea et al., 2013;
Cisterna et al., 2020), endotoxemia (Cea et al., 2019), and diabetes
(Cea et al., 2023). The effects of these genetic manipulations have
been replicated by the oral administration of boldine (Cea et al.,
2019; Ceaetal., 2023; Burrell et al., 2023), which blocks open CxHCs
(Yi et al., 2017; Toro et al., 2023).

Our group has found evidence that CxHC expression is
likely to be altered after SCI. Specifically, we demonstrated via
immunofluorescence staining that sarcolemmal Cx39, Cx43, and
Cx45 protein expression are elevated in gastrocnemius muscles
56 days after a complete spinal cord transection in young male rats
(Cea et al., 2013). We also showed in mice that boldine normalized
atleast some of the abnormalities of the skeletal muscle metabolome
and transcriptome (Potter et al., 2023) and the circulating lipidome
(Graham et al., 2023) 7 days post-complete spinal cord transection,
but it did not prevent the atrophy of hind limb muscles or loss
of body weight. Boldine administration also improved locomotor
recovery following motor-incomplete SCI (Toro et al,, 2023). No
studies to date have tested the effects of conditionally regulating the
expression of Cx43 and Cx45 on muscle biochemical, metabolic, or
functional properties after SCL.

Our study aimed to determine whether skeletal muscle-
restricted knockout (mKO) of Cx43 and Cx45 after SCI improves
function, reduces muscle loss, or impacts molecular factors related
to atrophy, inflammation, and mitochondrial dysfunction. We
hypothesized that in a complete spinal cord transection model,
mKO of Cx43 and Cx45 would not prevent muscle atrophy but
would positively affect the biochemical and molecular properties of
paralyzed muscles. Additionally, we predicted that unlike boldine,
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TABLE 1 Primers used.

10.3389/fphys.2024.1486691

Gene Forward sequence (5'-3’) Reverse sequence (5'-3’)

Gial CTTTGACTCTGATTACAGAGCTTAA GTCTCACTGTTACTTAACAGCTTGA

Gjcl GGAAAGGCATATGTCACCACTCTTGGC CTCTAGGAACACTGTAACCTGAGATGTCCC
MyoD-Cre CGGCTACCCAAGGTGGAGAT TGGGTCTCCAAAGAGACTCC

Mutated GCGGATCCGAATTCGAAGTTCC

mKO would not enhance sensorimotor function after a motor-
incomplete contusion SCIL.

Methods and materials
Animals

Transgenic mouse development

All animal studies were approved by the IACUCs of the
University of Alabama, Birmingham (approval # 21639), and
James J. Peters VAMC (approval #: CAR-16-54). We developed
a skeletal muscle-restricted Cx43 and Cx45 knockout mouse
using a Cre-loxP approach. First, commercially available mice
with homozygous floxed Gjal (encoding Cx43) alleles [Cx43D,
B6.129S7-1Gja1t’”1d’g/], Jackson Laboratory, strain #008039] were
bred with mice with homozygous floxed GjcI (encoding Cx45)
alleles [Cx45®D] provided by Dr. James Nagy (Maxeiner et al.,
2005), University of Manitoba, to generate Cx43WM ) Cx450M pice,
To generate the conditional knockouts, Cx43W1/Cxa5@D mice
were bred with commercially available mice with a heterozygous
Cre recombinase knock-in placed in the first exon of Myodl
[MyoD-Cre*”); FVB.Cg-Myod1"™> ()G}, Jackson Laboratory,
strain #014140] to create a MyoD—Cre(”’)—Cx43(ﬂ/ﬂ)/Cx45(ﬂ’ﬂ)
mouse, hereafter referred to as “mKO” The genotype controls
were littermates with no MyoD-Cre alleles, hereafter referred to
as “Con”. Cx43"" and MyoD-Cre™”) were chosen as they are
commercially available and have been utilized successfully across
multiple physiological domains; Cx45%® had no commercial

(+/7) was selected as it has been demonstrated to

vendor. MyoD-Cre
successfully activate Cre-loxP systems in a muscle-specific manner.

Genotyping was completed for all animals using genomic DNA
isolated from ear snips using the QIAGEN Blood and Tissue kit
(Cat. No. 69504) and an agarose gel electrophoresis system (Thermo

Fisher Scientific). The primers used are detailed in Table 1.

Laminectomy, T9 spinal cord transection, and T9
spinal cord contusion surgeries

We have described our methods for laminectomy-only, T9
spinal cord transection, and T9 impact contusion injuries in detail
previously (Toro et al., 2023; Graham et al.,, 2015; Graham et al,,
2022). In brief, 4-8-month-old mKO and Con male and female
mice received a laminectomy only (sham) or laminectomy, followed
by spinal cord transection (tSCI) or 65 kdyne spinal cord impact
contusion (cSCI). After measuring body mass, the mice were
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anesthetized with continuous inhalation of 2%-3% isoflurane. The
hair around the spinal column was shaved using hair clippers, and
the area was cleaned with 70% ethanol, followed by the topical
application of betadine. An incision was made in the skin over
T4-T11, and the spinal column was exposed by blunt dissection.
The T9 vertebral arch was removed using fine forceps following
cutting of the lateral sections with sharp surgical scissors to expose
the dura. For mice in the sham group, the laminectomy site was
promptly sutured in layers, with the incision site closed using wound
clips. tSCI mice had the spinal cord cut completely using sharp
surgical scissors. A probe was then passed through to ensure a
complete transection, with a second cut used to sever the remaining
spinal cord bridges as necessary. An inert gel foam was placed
in the transection space to prevent spinal cord reattachment.
For c¢SCI mice, after the laminectomy, they were placed within
the lockable forceps of the Infinite Horizons impactor (Precision
Systems and Instrumentation) under continuous isoflurane and
received a 65-kdyne impact force. The force of 65 kdyne was chosen
as we demonstrated that this severity results in temporary paralysis
with acute muscle loss (Graham et al., 2022) with quantifiable
longitudinal improvements in locomotor recovery (Toro et al.,
2023). Following both transection and contusion SCI, the injury site
was closed as noted above. All animals were placed in a clean cage
with ALPHA-dri+ bedding and singly housed for the duration of the
study, with wound clips being removed 10 days post-surgery.

In total, 106 mice were used for these studies. No sham mice
prematurely died or were humanely euthanized before the study
endpoint. Five out of 39 tSCI mice died (13%, 4F/1M) before
the study endpoint: 3 (Con 2F; mKO 1F) from unknown post-
operative complications within 24 h of surgery and 2 (mKO, 1M/1F)
were humanely euthanized within the first 7 days due to excessive
chewing of the hind limbs. For the cSCI mice, 17 out of 53 mice (32%;
8F/9M) died from post-operative complications or were humanely
euthanized before the study endpoint. One mouse (Con, F) was
euthanized immediately after impact contusion due to fractured
vertebrae. Six mice were euthanized between 8 and 10 days after
contusion due to sustained excessive body mass loss compared to
pre-surgery (Con 3F; mKO 3F). Three mice were euthanized due to
signs of excessive abdominal or hind limb chewing (Con 2F; mKO
1M). One mouse was euthanized due to a likely undetected bone hit
during impact resulting in no locomotor recovery (mKO 1F). Lastly,
six animals died during the first 72 h post-cSCI from unknown post-
operative complications (two Con 1F/1F; four mKO 1M/3F). The
final group sizes were Con-sham (n = 8, 4M/4F), mKO-sham (n =6,
3M/3F), Con-tSCI (n = 19, 10M/9F), mKO-tSCI (n = 15, 4M/11F),
Con-cSCI (n = 14, 8F/6M), and mKO-cSCI (n = 22, 10F/12M).
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Post-operative care

All mice were placed in clean cages resting on 37°C
recirculating water warming pads for 24 h post-surgery. They
were subcutaneously administered a cocktail of Ketofen (5 mg/kg)
and enrofloxacin (5 mg/kg) for 3 days, with additional volumes of
lactated Ringer’s solution (up to 1 mL total per day) to maintain
hydration. Bladders were manually expressed 2-3 times per day for
the duration of the study.

Locomotor testing

We used the Basso Mouse Scale (BMS) (Basso et al,
2006) and mouse SCI-adapted horizontal ladder rung walking
(Cummings et al., 2007) to test gross and fine motor function in
¢SCI mice, respectively, as described previously (Toro et al., 2023).
In brief, the BMS test was performed in an open-field environment
(1.5-m-diameter kiddie pool with custom plexiglass floor) by two
trained investigators blinded to the experimental groups. After
familiarization, measurements were taken pre-surgery and then at
3,7, 10, 14, 21, and 28 days post-injury (dpi). The horizontal ladder
rung walk (HLW) was tested using a 1-m-long ladder with a camera
on a rail underneath to record all foot placements. The recordings
were analyzed by a blinded investigator, with the negative stepping
outcomes (hind paw drag, rung slip, and rung miss) counted and
represented as a percentage of the total steps.

Euthanasia and tissue collection

The mice were euthanized for tissue collection by cardiac
exsanguination, removal of the heart, and cervical dislocation at
two different time points. Sham and tSCI mice were sacrificed
15 days post-SCI, with ¢SCI sacrificed 28 days post-SCI. Blood
(200-500 pL) was placed in a 1.5-mL microcentrifuge tube to clot
for 30 min and then spun at 2,000 rcf for 15 min at 4°C to collect
serum. Hindlimb muscles [soleus, plantaris, gastrocnemius, tibialis
anterior (TA), and extensor digitorum longus (EDL)], forelimb
muscles (biceps and triceps), and the heart were carefully excised,
weighed, and then flash-frozen in liquid nitrogen, with the exception
of the left EDL, which was used for ex vivo contractile studies
(described below). Lastly, a subset of n = 12 (n = 6 Con-cSCI and n
= 6 mKO-cSCI) mice were subjected to transcardiac perfusion with
PBS, followed by 4% PFA for whole-body fixation. Due to technical
difficulties in animal and tissue processing, only n = 6 (n = 3 Con-
¢SCI and n = 3 mKO-cSCI) mice had samples that could be used
for analyses.

EDL contractile function testing

The contractile function of the EDL from a subset of sham and
tSCI mice was determined using the 1200A Isolated Mouse Muscle
System from Aurora Scientific. 4-0 silk sutures were attached to the
EDL at the proximal and distal tendons in vivo, with the muscle then
removed and placed in a bath containing Krebs-Ringer solution (pH
7.4) supplemented with tubocurarine (30 M) and glucose (11 mM)
(Thermo Fisher Scientific, Cat. Nos J60222.MC and 15023021) with
bubbling O, at 25°C. The tendons were placed in the bath with
the proximal tendon attached to the fixed hook in the bath and
the distal tendon attached to the force transducer. The muscle was
placed just under in vivo resting length and allowed to equilibrate for
5 min. The supraphysiological stimulation voltage was determined
by stimulating the muscle with a single, 500-ms pulse at increasing
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voltages with 1-min rest until the force no longer increased. This
value was then doubled. The optimal length (L) was determined by
lengthening the muscle in 0.5-mm increments, followed by a twitch
stimulus with 1-min rest until the force plateaued. At L, we tested
for maximal twitch force, time-to-peak tension, and half-relaxation
time. Muscles were allowed to rest for 5 min and then put through
a force-frequency protocol using 300-ms pulses at 10, 25, 40, 60,
80, 100, and 150 Hz, with 1-min rest intervals between stimuli, with
the muscle set back to L as necessary. Lastly, fatigue index was
determined using 120 contractions delivered with a 300-ms pulse
at 40 Hz and a 1-s rest interval between contractions. The fatigue
index was calculated by dividing the force of the final contraction
by the peak force generated during the protocol. All force data were
analyzed using Dynamic Muscle Control Software (v5.5; Aurora
Scientific).

Spinal cord histology

White and gray matter was measured using FluoroMyelin
(Thermo Fisher Scientific, Cat. No. F34651) staining of immersion-
fixed spinal cord tissue, as we have described (Toro et al., 2023).
In brief, 10-um sections were cut every 100 um for 2 mm centered
around the lesion using a Leica cryostat at —20°C. Images were
captured using 20 x tiled images using a confocal microscope (Zeiss
LSM 700) and quantified using ImageJ2 (version# 2.9.0/1.53t).

Serum and muscle multiplexed cytokine assay

Serum (1:1 v/v) and plantaris lysates (1:5 v/v) were used
for cytokine detection using the Meso Scale Diagnostics V-
PLEX Proinflammatory Panel 1 Mouse Kit (Cat. No. K15048D-2)
following the manufacturer’s instructions. The plates were run using
the Meso Scale QuickPlex SQ 120 system and analyzed using Meso
Scale Discovery Workbench.

Skeletal muscle RNA isolation and RT-qPCR

RNA was isolated from 5-10 mg of the left plantaris muscles
using the QIAGEN miRNeasy Tissue/Cell Advanced kit (Cat.
No. 217684) according to the manufacturers instructions, with
homogenization completed using the Omni Bead Ruptor Elite
cooled using liquid nitrogen. RNA was quantified using the
Qubit 4.0 Fluorometer (Thermo Fisher Scientific) with RIN scores
determined using the Agilent 4200 TapeStation. All primers and
probes used were “off-the-shelf” commercially available TagMan
Gene Expression Assays. Gene expression analyses were completed
using the 27AACt hhethod (Livak and Schmittgen, 2001), with the
geometric mean of beta-2-microglobulin (B2M) and 18Sr as the
normalization factor.

Skeletal muscle protein expression and
nitrosylation measurements

Next, 5-10 mg of the right plantaris were lysed using RIPA
buffer (Thermo Fisher Scientific, Cat. No. 89900) with a protease and
phosphatase inhibitor cocktail (MilliporeSigma, Cat. No. PPC1010)
using the Omni Bead Ruptor Elite cooled with liquid nitrogen. After
homogenization, the lysates were rested on wet ice for 30 min, with
15 s of vigorous vortexing every 10 min. The lysates were then spun
at 14,000 rcf for 15 min at 4°C, and the supernatant was collected.
microBCA (Thermo Fisher Scientific, Cat. No. 23235) was used
to determine the protein concentration. For the plantaris, 1.2 ug
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of protein was used for automated capillary electrophoresis (Jess,
ProteinSimple), with a 1:50 primary antibody dilution used for all
targets. Target protein expression was detected using the “Chemi”
channel and normalized to the total protein content detected within
the same capillary (i.e., no separate run was needed). Peaks were
detected using the “dropped down” algorithm and quantified with
the “total dynamic range” algorithm using ProteinSimple’s Compass
for Simple Western software. All raw detection and analysis files for
each protein are available in File S1 and can be accessed using the
freely available Compass for Simple Western software.

3-nitrotyrosine was measured using 100 pug of protein from
plantaris lysate mixed in assay diluent using the Cell Biolabs’
Nitrotyrosine Colorometric Kit (Cat. No. STA-305) following the
manufacturer’s guidelines.

All
experiments,

this of
and catalog numbers,

supplies and reagents wused in series
alongside the vendor

are given in Supplementary Table S1.

Statistics

All statistical analyses were completed using GraphPad Prism
(v10.1.1). All data for the T9 complete transection were analyzed
using the “surgery x genotype” two-way mixed model ANOVAs
as there was not sufficient statistical power to determine sex-
specific differences. Single-endpoint data (e.g., muscle mass and
molecular outcomes) for the T9 impact contusion studies were
analyzed using two-way mixed model ANOVAs, with a three-
way mixed model ANOVA “genotype x sex x time” used for the
time series data (body mass change and behavioral tests). Both
analysis strategies used Tukey’s multiple comparison post-testing
when appropriate (denoted by “adj. p”), with statistical thresholds
for meaningful differences set at p < 0.050. Unpaired (parametric)
and Mann-Whitney (non-parametric) t-tests were used for two-
group comparisons when appropriate, with statistical cutoffs for
meaningful differences set at p < 0.050.

Results
T9 transection

Body and muscle mass

A main effect for greater body mass losses was observed in tSCI
mice compared to sham mice (p < 0.001; Figure 1A). There was no
significant effect of genotype on the body mass (Figure 1A).

There were main effects for reduced soleus and gastrocnemius
mass in the tSCI mice compared to sham mice (both muscles p <
0.001; Figures 1B, C). There was a “genotype x surgery” interaction
effect for the plantaris (p < 0.001; Figure 1D). Multiple comparison
post-testing showed that both tSCI groups were reduced compared
to both sham groups, with the mKO-tSCI group having greater mass
than the Con-tSCI group (adj. p < 0.001). There were main effects
for reduced mass in the EDL, TA, biceps, triceps, diaphragm, and
heart in the tSCI mice compared to the sham mice (p < 0.001-0.010;
Figures 1E, F; Supplementary Figures SIA-D), but there was no
effect of genotype on the weights of these muscles.
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MRNA expression

Relative expression levels of the inflammatory factors
IL6, IL6ST, TNE TNFRSFI, TNFSF12, and NKFBIA were
determined in plantaris mRNA but were not changed post-
SCI (Figures 2A-E, respectively). There was a main effect for
reduced expression in PPARGCIA, which encodes PGCla
following SCI (p < 0.001; Figure 2F). There were no group
differences for the E3 ligase genes FBOX32 (encoding MAFbx;
Supplementary Figure S2A) and TRIM63 (encoding MuRFI;
Supplementary Figure S2B) or mitochondrial E3 ligase genes MULI
and PARK2 (Supplementary Figures S2C-D, respectively). There
were also no differences among groups for fast myosin expression
[MYHI (type IIx), MYH2 (encoding type Ila), or MYH4 (encoding
type IIb); Supplementary Figures S2E-G, respectively].

Protein expression

Markers of inflammasome activation, mitochondrial integrity,
and hypertrophy were measured in the plantaris. There was no
difference in p-Stat3Y’% following SCI (p = 0.103), but there
were elevated levels of p—NFKB8536 in the SCI mice (p = 0.019;
Figures 3A, B, respectively). There were no differences in the
mitochondrial outer-membrane fusion protein Mfn2 (Figure 3C),
but there was a main effect for the reduced inner-membrane fusion
protein OPA1 expression post-SCI (p = 0.047; Figure 3D). There
was no difference in the mitochondrial calcium channel (MCU)
(Figure 3E) and no difference in the main activation site of the
key mechanosensor p-FAKY*” (Figure 3F). The expression of p-
AktS*73 was not different among the groups (Figure 3G), but there
was a main effect for elevated p-4eBP1737/4¢ and K48 ubiquitination
post-SCI (p = 0.004 and 0.002, respectively; Figures 3H, I). The
representative images are provided in Supplementary Figure S3.

Muscle cytokine concentrations

A 10-plex cytokine ELISA was used to determine the
concentrations of cytokines within the plantaris. Six cytokines
were undetected or present at concentrations lower than needed
for reliable measurements (IFN-y, IL-1B, IL-4, IL-5, IL-6, and
IL-12p70). There were no interactions or main-effect group
differences for the four cytokines that were detectable: IL-2, IL-10,
KC/GRO, and TNF-a (Supplementary Figures S4A-D).

Oxidative stress

There was no interaction effect (p = 0.290) or main effect of
genotype (p = 0.081) or surgery (p = 0.907) in plantaris nitrotyrosine
concentrations among the groups (Supplementary Figure S4E).

EDL contractile function

There was a main effect for elevated max relative twitch force
in the SCI mice (p = 0.006; Supplementary Figure S5A), with no
differences observed for time-to-peak tension or half-relaxation
time (Supplementary Figures S5B, C). There was a “genotype
x surgery” interaction effect for the fatigue index (p = 0.011;
Supplementary Figure S5D). Multiple comparison post-testing
showed that both tSCI groups had a greater fatigue index than
both sham groups, with the mKO-tSCI group having a greater
fatigue index than the Con-tSCI group (adj. p < 0.001-0.01). There
was a main effect of genotype for max relative tetanic contraction
(p = 0.008; Supplementary Figure S5E), with mKO mice having
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FIGURE 1

Changes in body and tissue mass 15 days after a complete transection SCI. (A) Percent change in body mass. Normalized wet tissue mass at the time of
euthanasia for the (B) soleus, (C) gastrocnemius, (D) plantaris, (E) EDL, and (F) TA. Data are shown as violin plots with individual data points. Thin dashed
lines represent quartiles, with the thick dashed line representing the mean. (A) = adj. p < 0.050 vs. Con-sham; (B) = adj. p < 0.050 vs. mKO-SCI; and (C)
= adj. p < 0.050 vs. mKO-SCI. Group sizes: Con-sham (n = 8, 4M/4F), mKO-sham (n = 6, 3M/3F), Con-tSCl (n = 19, 10M/9F), and mKO-tSCl (n =

15, 4M/11F).

elevated force compared to Con mice. For the force-frequency = T9 impact contusion
contractile function, there was a “group x time” interaction, with Body mass

multiple comparison post-testing showing multiple differences There was a “genotype x sex x time” interaction effect for the
across the groups at each Hz. percent change in body mass (Figure 4A; p = 0.026). Follow-up
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FIGURE 2

MRNA expression of key proinflammatory and mitochondrial markers in the plantaris after complete SCI. Expression of the cytokine (A) /L6 and the
signaling component of its receptor (B) IL6ST (encoding gp130). Gene expression of factors required for the activation of NF-«kB signaling: (C) TNF, (D)
TNFRSF1, and (E) TNFSF12. mRNA levels of the key mitochondrial biogenesis regulator (F) PPARGCIA. Data are shown as violin plots with individual data
points. Thin dashed lines represent quartiles, with the thick dashed line representing the mean. Group sizes: Con-sham (n = 7, 4M/3F), mKO-sham (n =
6, 3M/3F), Con-tSClI (n = 12, 6M/6F), and mKO-tSCl (n = 10, 4M/6F).
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FIGURE 3

Plantaris whole-muscle protein expression following complete SCI. Phosphorylated protein expression for activated inflammasome markers (A)
pSTAT3Y7% and (B) p-p65-NF-KkB%>36. Total protein expression of regulators of mitochondrial function: (C) mfn2, (D) OPAL, and (E) MCU.
Phosphorylation of key activation sites for the mechanosensor (F) p-FAK*’, the mTORC2 target (G) p-Akt>*’3, and downstream translational regulator
(H) p-4eBP1™3%/47 Lastly, (I) smear of K48-linked ubiquitin. Data are shown as violin plots with individual data points. Thin dashed lines represent
quartiles, with the thick dashed line representing the mean. Group sizes: Con-sham (n = 7, 4M/3F), mKO-sham (n = 6, 3M/3F), Con-tSCI (n = 15,

8M/7F), and mKO-tSClI (n = 13, 4M/9F).

two-way ANOVAs highlighted the “genotype x sex” interaction as
statistically meaningful (p = 0.044). Simple-effect follow-up testing
within time points demonstrated group differences in the males,
with the mKO-cSCI mice having higher relative body mass (less
weight loss) at dpil0O (adj. p = 0.032) and dpil4 (adj. p = 0.028)
than Con-cSCI mice; body weights for mKO-cSCI mice appeared
to remain higher than that of Con-cSCI mice until dpi28, although
this effect did not reach our statistical threshold (adj. p = 0.101 at
dpil4, and p = 0.080 at dpi28); there was no differential response for
female mice.

Behavioral outcomes

There was a “genotype x time” interaction effect for BMS scores
(Figure 4B; p < 0.001). Follow-up analyses showed greater BMS
scores in mKO mice than in Con mice at dpi7 (adj. p = 0.027), dpil0
(adj. p = 0.036), dpil4 (adj. p = 0.053), dpi2l (adj. p = 0.016), and
dpi28 (adj. p = 0.039). For HLW testing, no interaction effects were
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detected, but there was a main effect of genotype, with mKO mice
having a reduced percentage of negative step outcomes compared to
Con mice (p = 0.023; Figure 4C).

Tissue mass

There were no differences in soleus or plantaris masses among
the groups (Figures 5A, B). There was a “genotype x sex” interaction
for the gastrocnemius, with follow-up testing showing greater mass
in the male mKO-cSCI mice than in the male Con-SCI group
(Figure 5C; adj. p = 0.001). There were no differences noted for the
TA, EDL, or heart mass among the groups (Figures 5D-F).

Serum cytokine

IL-4 was either undetectable or present at levels below those
required for reliable quantification. Serum TNF-a was higher in the
mKO-cSCI mice than that in Con-cSCI mice (p = 0.046; Figure 6A).
There was no difference in serum levels between mKO-cSCI and
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FIGURE 4

Muscle-restricted knockout improves functional outcomes after motor-incomplete SCI. (A) Body mass recovery of male and female knockout and
genotype controls. Locomotor improvements over time for (B) the Basso Mouse Scale and (C) horizontal ladder walk tests. Data are shown as the
mean +SEM with adjusted p-values for genotype*time multiple comparison post-testing when applicable. Con-cSCI (n = 14, 8F/6M) and mKO-cSCl

(n =22, 10F/12M)

Con-cSCI mice for KC/GRO, IL-6, and IL-1f (Figures 6B-D) or for
IL-2, IL-5, IL-10, and IL-12p70 (Supplementary Figures S6A-D).

Spinal cord histology

In the small subset of fixation-perfused animals, there were
no differences in the markers of spinal cord integrity around the
lesion site as the white and gray matter volume was similar between
the groups (Figures 7A-E).

Discussion

The goal of this study was to determine the biological
significance of our previously reported findings that complete SCI
results in the reappearance of sarcolemmal expression of multiple
CxHC (Cx39/43/45) in rat gastrocnemius muscle (Cea et al,
2013). To accomplish this objective, we tested whether muscle-
restricted knockout of Cx43/45, which has been demonstrated
to be effective at reducing paralysis-induced atrophy following
peripheral denervation, altered skeletal muscle outcomes in two
different models of SCI. Because this model differs from atrophy
following peripheral denervation (e.g., sciatic or peroneal nerve
transection) in that the lower motor neuron is intact with some reflex
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activation remaining, a complete spinal cord transection was used to
understand how Cx43/45 contributed to changes in skeletal muscle.
We also tested whether muscle-restricted Cx43/45 knockout affects
sensorimotor function following an impact contusion-induced
motor-incomplete SCI. Our data show that the muscle-restricted
knockout of Cx43/45 did not protect body mass and muscle mass
or alter molecular outcomes after complete spinal cord transection,
but such a model resulted in greater and faster functional recovery in
motor-incomplete contusion SCI. These data highlight Cx43/45 as a
potential regulator of motor unit function in motor-incomplete SCI.

CxHC and muscle atrophy and function
after tSCI

Transgenic and pharmaceutical approaches have demonstrated
that both in vivo and in vitro knockout or inhibition of Cx43
and Cx45 is beneficial for muscle health and function by
preventing excess intracellular calcium accumulation with resultant
inflammasome activation, along with other cellular processes, in a
variety of preclinical disuse and pathological models (Cea et al.,
2013; Cisterna et al., 2020; Cea et al.,, 2019; Cea et al., 2023;
Cisterna et al., 2016; Cea et al., 2016). The role of CxHCs in
the muscle atrophy process following SCI is unknown outside
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FIGURE 5

Wet tissue mass 28 days after motor-incomplete SCI. Excised and normalized wet tissue mases of the principal hind limb muscles: (A) soleus, (B)
plantaris, (C) gastrocnemius, (D) TA, and (E) EDL. (F) Heart mass following cardiac puncture and exsanguination. Data are shown as violin plots with
individual data points. Thin dashed lines represent quartiles, with the thick dashed line representing the mean. Con-cSCl (n = 14, 8F/6M) and mKO-cSClI
(n = 22, 10F/12M). Data are shown as violin plots with individual data points. Thin dashed lines represent quartiles, with the thick dashed line

representing the mean. Con-cSClI (n = 14, 8F/6M) and mKO-cSCI.
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their elevated sarcolemmal expression, as noted above. Our data
convincingly show that muscle-restricted knockout of Cx43/45 does
not protect against the loss of body mass or muscle mass 15 days
after a complete SCI, with the exception being attenuated loss of
plantaris mass. The lack of preservation of muscle and body mass
highlights the established difficulty of protecting these outcomes in
motor-complete SCI models (Otzel et al., 2021) and further suggests
that motor-complete SCI is a multifactorial process resulting in
muscle atrophy.

The explanation for the selective effect of mKO on the plantaris
muscle is not well understood. De novo sarcolemmal expression of
Cx43 and Cx45 occurs preferentially in type-II fibers, such as the
plantaris, and results in intracellular calcium accumulation, a key
molecular signal that activates the muscle inflammasome (Cea et al.,
2013) and initiates mitochondrial dysfunction and oxidative stress
(Gonzélez-Jamett et al., 2022). We measured molecular markers
of these domains and could not find a unique genotype profile.
The mRNA expression of key pro-inflammatory markers and their
receptors was not altered among groups. We did observe an elevation
in p65-NFkB activation and mean changes in Stat3 activation
after SCI, suggesting potential pro-inflammatory signaling, but we
observed no effect of the genetic knockout. Furthermore, markers of
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mitochondrial integrity were not different among the groups, with
the exception of SCI-induced reduction in mRNA expression of
PPGCAIA, the gene encoding the mitochondrial regulator PGCla,
which we have reported previously (Graham et al.,, 2022). Although
not reaching statistical thresholds, there was a distinct SCI-induced
elevation in protein tyrosine nitrosylation that was prevented in
mKO-tSCI plantaris muscle, consistent with the observed reduced
atrophy, suggesting the potential for CxHCs to prevent cellular
stress and excess protein nitrosylation. The markers of protein
atrophy, such as gene expression of the major atrophy-associated
E3 ligases, protein synthesis signaling, and protein ubiquitination,
were not altered by our mKO. Thus, it appears that the plantaris
was uniquely affected with no clear molecular signature. The
responsible molecular mechanisms and effects on muscle metabolic
and contractile function remain to be defined.

Effects of mKO in a cSCIl model

Our major finding was the relevance of skeletal muscle Cx43/45
in hindlimb locomotor function after a motor-incomplete cSCI. BMS
scoring, which tests observations of hindlimb movement and stepping
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(B) quantified inset for the Con-cSCI mice. Similarly, (C) complete lesion FluoroMyelin stain and (D) quantified inset for the mKO-cSCI mice. (E)
Quantification of FluoroMyelin staining as the percent area of inset. Data are shown as violin plots with individual data points. Thin dashed lines
represent quartiles, with the thick dashed line representing the mean. Con-cSCl (n = 3, 2F/1M) and mKO-cSClI (n = 3, 2F/1M). Scale bar = 500 pm.

based on simple criteria (Basso et al., 2006), revealed that mKO
mice recovered faster and to a greater degree than Con-cSCI mice.
When using HLW, which quantifies positive steps (e.g., correct plantar
placement) and negative steps (e.g., slipping off of a horizontal rung)
to measure more fine motor function (Cummings et al, 2007),
there was a clear main effect for the reduction in the percent of
negative step outcomes in the mKO mice compared to Con-cSCI
mice. mKO mice did not have greater white matter sparing based on
FluoroMyelin staining. One interpretation of this result is that the de
novo sarcolemmal expression of CXxHC in the Con-cSCI mice likely
acts on the motor unit to degrade NM]J integrity. This is supported by
a previous work showing that sarcolemmal CxHC largely prevents
innervation using in vitro co-cultures of isolated myofibers and
primary dorsal root ganglia. When sarcolemmal Cx43/45 is reduced
by targeting mRNA using morpholinos or via transgenic approaches
using muscle-restricted knockouts, innervation is ~5-6-fold greater
(~5-10% to 50%-60%) (Cisterna et al., 2020). Other explanations
include mKO mice having greater synaptic strength of residual neural
circuits to support sensorimotor function and greater numbers of
relay circuits that convey signals between the brain and hind limbs.
Our current data do not provide sufficient evidence to distinguish
between these possibilities.

In contrast to the tSCI model, we noted distinct genotype
differences in the ¢SCI model. Regarding body mass, female mice
in both the mKO and Con groups and male mKO mice began to
recover 7 days post-SCI, which is similar to our general timeline
using both contusion and transection models (Toro et al., 2023;
Graham et al., 2015; Graham et al., 2022). However, male Con mice
continued losing body mass up to 14 days. By the end of our 28-
day experiment, mKO males had the greatest relative preservation
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in body mass, while the Con males had the poorest. Reduced food
intake and excess body fat loss are logical explanations for our
finding, but neither of these possibilites were investigated in this
report; thus, confirmatory studies in this SCI genotype model that
investigate these endpoints are required.

Data generated from our contusion mKO mice are consistent
with our reported effects of orally administered boldine, a noted
CxHC inhibitor, on sensorimotor function. Boldine has been shown
to recapitulate multiple effects on muscle health and function
compared to muscle-restricted CxHC knockout models in vivo
and in vitro (Cea et al, 2019; Cea et al, 2023; Cea et al,
2020). In prior work, both male and female mice that received
50 mg/kg/d boldine had greater BMS scores and a reduced
proportion of negative HLW steps than vehicle-treated mice across
28 days®’. However, the magnitude of difference between the
experimental and control animals was larger in the boldine study.
This difference may be explained by the systemic administration
of boldine with this agent’s other beneficial effects on the central
nervous system, as our group observed that boldine administration
reduced white sparing and glial cell activation at the lesion
site, along with neurorecovery signatures in spinal cord tissue
directly below the lesion (Toro et al., 2023). In addition to
CxHC antagonism, boldine blocks other channel proteins, such
as pannexins and P2XR7, which represent additional therapeutic
targets independent of CxHCs. The available evidence suggests
that peripheral CxHCs play a role in reducing the sensorimotor
function in motor-incomplete SCI. Further investigation is needed
to address the precise mechanisms responsible for our findings, such
as alterations in the muscle secretome, to address the gap in our
knowledge.
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When analyzing sex-based variation, it is important to note that
the recovery of body mass post-SCI showed differences between
male and female mice. These results suggest sex-specific differences
in response to the injury and subsequent recovery processes,
with male mKO mice having better overall outcomes in terms of
body mass retention than their female counterparts. However, our
mixed-model approach did not highlight sex as a main effect in a
meaningful manner, likely due to being underpowered to detect this
difference explicitly. Thus, there may be a biological mechanism(s)
underlying recovery after SCI that is influenced by sex. Future
studies should aim to further investigate sex-specific molecular and
physiological responses to improve targeted treatments.

Conclusion

The hypothesis of this study proposed that muscle-restricted
knockout of Cx43/45 would mitigate muscle atrophy and improve
motor function outcomes following SCI, particularly in models
where some degree of neural activation remained, such as after
an incomplete SCI. The results partially support this hypothesis,
especially in the motor-incomplete cSCI model, where mKO of
Cx43/45 led to faster and more complete functional recovery, as
demonstrated by the improved hind limb locomotor function and
reduced proportion of negative stepping outcomes. However, the
hypothesis did not align with the results in the motor-complete
SCI (tSCI) model. In this case, the knockout of Cx43/45 neither
protected against muscle or body mass loss nor showed significant
molecular changes, aside from some selective muscle effects in
the plantaris. This suggests that while Cx43/45 may play a role in
motor unit function preservation in motor-incomplete SCI, it does
not significantly influence muscle atrophy in more severe injury
models where the motor neuron is entirely severed. Thus, the results
indicate that Cx43/45 plays a more complex and context-dependent
role than initially hypothesized, with its benefits primarily evident
in conditions where some motor function remains, highlighting
the importance of motor unit integrity for muscle preservation
and recovery.

There was no significant effect observed following mKO of
Cx43/45 15 days after a complete spinal cord transection at the
whole-body, individual muscle (with the exception of the plantaris),
and molecular level. However, in both male and female mice across
28 days following motor-incomplete contusion SCI, the mKO model
resulted in greater and more rapid functional recovery, without
any clear effects on the spared white matter. There are several
considerations and limitations to our studies. The post-operative
death rate following cSCI was higher than typically observed in such
studies without a discernable explanation. Cx43®/Cxa5® was
generated on a C57BL6 background, with the MyoD-Cre*'~) mice
on an FVB background, which is a common cross not expected
to result in any unexpected behavior, and this strain crossing
has even been suggested as a better model for neurobehavioral
outcomes, including locomotor tests such as the rotarod Sloin
et al,, 2022. We also did not record food intake or activity levels
in the ¢SCI mice, which would have helped better understand
the distinct sex and genotype effect on body mass and whether
the improvements in locomotor function were related to cage
activity, food intake, or other general markers of improved systemic
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health and function. Lastly, we did not investigate any molecular
outcomes in the muscle from cSCI mice. The effects of increased
muscle loading of mKO mice as the result of their improved
sensorimotor function and associated increased capacity to walk
may be hypothesized to be of greater consequence than the
molecular changes induced by the mKO model alone, which may
potentially confound the interpretation of the results. Further
study is required to better understand the mechanisms by which
sarcolemmal Cx43/45 contributes to tissue injury and subsequent
functional recovery after traumatic motor-incomplete SCI.
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violin plots with individual data points. Thin dashed lines represent quartiles, with
the thick dashed line representing the mean. Panel (F) is shown as the mean +
SEM. (a) = adj. p < 0.050 vs. Con-sham; (b) = adj. p < 0.050 vs. mKO-sham; (c) =
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Serum proinflammatory cytokine concentrations 28 days after a
motor-incomplete SCI. Con and mKO levels were determined for (A) IL-2, (B)
IL-5, (C) IL-10, and (D) IL-12p70. Data are shown as violin plots with individual
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20, 10M/10F).
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