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Objective: Extracting deep features from participants’ bioelectric signals and
constructing models are key research directions in motor imagery (MI)
classification tasks. In this study, we constructed a multimodal multitask hybrid
brain-computer interface net (2M-hBCINet) based on deep features of
electroencephalogram (EEG) and electromyography (EMG) to effectively
accomplish motor imagery classification tasks.

Methods: The model first used a variational autoencoder (VAE) network for
unsupervised learning of EEG and EMG signals to extract their deep features,
and subsequently applied the channel attentionmechanism (CAM) to select these
deep features and highlight the advantageous features and minimize the
disadvantageous ones. Moreover, in this study, multitask learning (MTL) was
applied to train the 2M-hBCINet model, incorporating the primary task that is
the MI classification task, and auxiliary tasks including EEG reconstruction task,
EMG reconstruction task, and a feature metric learning task, each with distinct
loss functions to enhance the performance of each task. Finally, we designed
module ablation experiments, multitask learning comparison experiments, multi-
frequency band comparison experiments, andmuscle fatigue experiments. Using
leave-one-out cross-validation(LOOCV), the accuracy and effectiveness of each
module of the 2M-hBCINet model were validated using the self-made MI-EEMG
dataset and the public datasets WAY-EEG-GAL and ESEMIT.

Results: The results indicated that compared to comparative models, the 2M-
hBCINet model demonstrated good performance and achieved the best results
across different frequency bands and under muscle fatigue conditions.

Conclusion: The 2M-hBCINet model constructed based on EMG and EEG data
innovatively in this study demonstrated excellent performance and strong
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generalization in the MI classification task. As an excellent end-to-end model, 2M-
hBCINet can be generalized to be used in EEG-related fields such as anomaly
detection and emotion analysis.

KEYWORDS

motor imagery, hybrid brain-computer interface, variational autoencoder, channel
attention mechanism, multitask learning

1 Introduction

Movement is a fundamental physiological activity in humans
that is essential for maintaining daily life and work. Currently,
human movement intention detection has significant potential in
the field of artificial intelligence. The brain-computer interface (BCI)
(Vidal, 1973) technology used to recognize human movement
intentions is referred to as motor imagery (MI) task. MI has
widespread applications in rehabilitation therapy (Li et al., 2014),
autonomous driving (Yan et al., 2024), and entertainment (Kilteni
et al., 2018), making it a research hotspot in the BCI field. The
mainstream method for performing MI tasks involves analyzing
electroencephalogram (EEG) signals to identify brainwave patterns
corresponding to motor intentions, thereby recognizing human
motor intentions.

The current methods used by researchers to improve the
accuracy of MI tasks can be categorized into the following two
types: 1. Continuous optimization and improvement of signal
acquisition and classification models (Sreeja et al., 2017;
Ravindran and Vinod, 2019), 2. Expanding the scope of
information analysis by integrating multiple types of information
to achieve the MI task, a method known as hybrid BCI (hBCI)
technology. The hBCI has evolved from traditional BCI and offers
advantages such as strong stability and high accuracy (Zhang et al.,
2007). Depending on their construction, hBCI systems can be
divided into three categories: 1. Systems based on the fusion of
various EEG paradigms, such as the combination of steady-state
visual evoked potentials (SSVEP) and MI paradigms, which enable
precise control of complex devices such as robotic arms (Duan et al.,
2015); 2. hBCI systems constructed using multimodal stimulation
methods, which include the collaborative regulation of SSVEP
amplitude (Li et al., 2019) through visual and tactile stimuli to
enhance system response, as well as the integration and optimization
of visual and auditory signals for the rehabilitation of patients with
consciousness disorders, significantly enhancing rehabilitation
efficiency (Pan et al., 2018). 3. hBCI systems based on the fusion
of various physiological signals, such as the combined use of EEG
and electrooculogram (EOG) signals, to significantly boost target
recognition accuracy, particularly in target selection tasks, and the
deep integration of EEG and electromyography (EMG) signals to
further enhance the performance of MI classification tasks (Hooda
et al., 2020). Because motor control is directly related to muscle
activity, this area is considered a research hotspot and
frontier in hBCI.

In the field of bioelectric signal processing, various methods
have been proposed for effectively analyzing data and completing
MI classification tasks. Traditional machine learning methods
primarily extract time-domain, frequency-domain, time-
frequency, and nonlinear features from EEG and EMG signals

(Jenke et al., 2014; Li et al., 2018), and classify these features
using algorithms such as support vector machines (SVM) and
k-nearest neighbors (KNN) (Mohammadi et al., 2017; George
et al., 2019). However, traditional machine learning methods
have limited generalizability, require relevant domain knowledge
and expert experience, and cannot completely extract and elucidate
the deep features of EEG and EMG signals. With continuing
advances in deep learning technology, an increasing number of
deep learning models that possess end-to-end capabilities and
enhanced performance are being applied to MI classification tasks.

In summary, although current methods for MI classification
have achieved significant results, they still have certain limitations.
These include heavy reliance on single signal sources such as EEG or
EMG, which restricts the comprehensiveness of information and
makes the system susceptible to interference, thereby reducing
classification accuracy and robustness. EEG captures electrical
signals generated by brain activity; however, it is highly
susceptible to noise and has significant individual variability.
Although EMG signals can directly reflect muscle activity,
prolonged or high-intensity usage can lead to muscle fatigue,
significantly affecting the stability and reliability of EMG signals,
and complicating continuous and effective MI classification.
Traditional machine learning methods rely on expert knowledge
for feature extraction, which limits their ability to generalize and
automate, making it challenging to achieve optimal classification
performance. Supervised learning can only extract specific features
that are typically selected based on labeled data. However, in real-
world applications, the label information may not always be
available or accurate. Additionally, although some deep learning
models possess strong feature extraction capabilities, their
performance may be compromised if multimodal information is
not completely utilized. These models also face the challenge of
balancing complexity and generalization capability.

To address these issues, we propose an end-to-end hBCI model
known as 2M-hBCINet, which significantly enhances the accuracy
and robustness of classification tasks by fusing EEG and EMG
signals. Compared to methods that depend solely on EEG or
EMG as a single signal source, this model can comprehensively
capture complementary information between brain and muscles
during the expression of motor intentions. The model utilized a
variational autoencoder (VAE) to extract deep features from EEG
and EMG signals and then employed a channel attention
mechanism (CAM) to assign varying weights to these features,
thereby achieving the goal of feature selection. Subsequently,
multitask learning (MTL) was adopted, with MI classification
task as the primary task and EEG reconstruction, EMG
reconstruction, and feature metric learning as the auxiliary tasks.
The concurrent training of these tasks enhanced the model’s
performance and generalizability. Additionally, we conducted
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module ablation experiments to verify the effectiveness of each
component within the 2M-hBCINet model, multitask ablation
experiments to confirm the efficacy of multitask training, and
validated the model’s superiority under various frequency bands
(theta (four to eight Hz), alpha (8–13 Hz), beta (13–30 Hz), and
gamma (30–50 Hz), as well as under different levels of muscle
fatigue. The main contributions of this study are as follows.

1) We propose an MI classification network model called 2M-
hBCINet, based on EEG and EMG data. Unsupervised
methods were used to extract deep features of EEG and
EMG through VAE networks, the features were combined,
and CAM was then used to select features.

2) We used an MTL approach to train the model. The primary
task in MTL is the MI classification task, and auxiliary tasks
include EEG reconstruction, EMG reconstruction, and feature
metric learning tasks. This effectively improved the accuracy of
the model and enhanced its generalizability.

3) We constructed a self-made dataset called MI-EEMG,
collecting EEG and EMG data from 14 participants during
MI tasks.

4) Through experiments, we verified the effectiveness of the
proposed 2M-hBCINet model. We performed extensive
experimental validation using the leave-one-out cross-
validation (LOOCV) method, with validation datasets
including the self-made dataset MI-EEMG and public
datasets WAY-EEG-GAL (Luciw et al., 2014), and
Electrophysiological Signals of Embodiment and Ml-BCI
Training in virtual reality (VR) (referred to as the ESEMIT
dataset in the following text) (Katarina and Athanasios, 2023).
The experiments includedmodule ablation, multitask ablation,
multi-frequency band comparison, and muscle fatigue
experiments, which confirmed the superior performance of
the model.

The remainder of this paper is structured as follows: The relevant
work, including VAE, CAM, and MTL is introduced in Section 2. Data
acquisition methods, data preprocessing, self-made dataset MI-EEMG,
and the content of public datasets WAY-EEG-GAL and ESEMIT are
described in Section 3. The 2M-hBCINet model proposed based on
EEG and EMG signals is elucidated in Section 4 along with the
extraction methods of EEG and EMG features, and the MTL
strategy. The performance of the 2M-hBCINet model is validated
and analyzed through extensive experiments in Section 5. Finally,
the conclusions of this study are summarized and potential future
directions are discussed in Section 6.

2 Related work

2.1 VAE

The VAE is a type of deep generative model introduced by
Kingma and Welling in 2014, based on variational Bayes inference
(Kingma and Welling, 2022). VAE uses two neural networks to
establish two probabilistic density models (Rezende and Mohamed,
2016): one for the variational inference of the original input data,
generating a variational probabilistic distribution of the latent

variables, known as the inference network, and the other
generates an approximate probabilistic distribution of the original
data based on the generated variational distribution of the latent
variables, known as the generative network. VAE is an unsupervised
learning method (Pu et al., 2016), and through its powerful
probabilistic generation capabilities and variational inference
mechanisms, it can effectively capture the variability of
bioelectrical signals (EEG, EMG) and extract key information
features related to MI tasks. In recent years, VAE has been
widely applied in the field of bioelectrical signal processing. For
instance, Xia et al. used VAE to map signals to a latent variable
distribution and regularized it in tasks involving EEG signal
processing, capturing the uncertainty and variability within the
signals. This representation in the latent space allows the model
to effectively separate noise from useful features and preserve the key
information of the signal during denoising and feature extraction
(Xia et al., 2023). Chen et al. improved the feature extraction
capability and reconstruction effect of EEG signals through VAE
and applied a Gaussian prior distribution on the latent features,
enabling VAE to capture the main characteristics of the input EEG
signals (Chen et al., 2020). In this study, we extracted deep features
from EEG and EMG signals using VAE to enhance the
representational capacity of features for MI tasks.

2.2 CAM

The CAM is an attention mechanism designed to enhance the
performance of convolutional neural networks (CNNs). Initially
introduced by Jie et al., in 2017 within Squeeze-and-Excitation
Networks (SENet), the core concept of the mechanism involves
capturing the global features of channels through global pooling
operations, followed by a lightweight self-gating mechanism to learn
and recalibrate the importance weights of each channel (Jie et al., 2019).
In practical applications, the CAM has been widely used across various
research domains. For instance, Tang et al. incorporated a multiscale
channel attention mechanism into their proposed architecture of a
multi-scale channel attention CNN (MCA-CNN), effectively capturing
complex features in the spectral domain (Tang et al., 2024). Wang et al.
utilized the CAM to enable CNNs to thoroughly exploit the
characteristic information of photoelectric peaks and Compton edges
while suppressing background noise and interference, further
enhancing the model performance (Wang et al., 2022). These
studies indicate that the CAM significantly improves the sensitivity
and robustness of CNNs to features. The CAM can achieve the goal of
deep feature selection by increasing the weights of advantageous
features and decreasing the weights of disadvantageous features
(Srivastava et al., 2022), thereby optimizing the model’s training
effects. In this study, we employed CAM to select and integrate the
deep features of EEG and EMG, effectively enhancing the
expressiveness and discriminability of the features.

2.3 MTL

MTL was initially proposed by Caruana (Caruana, 1997) as a
method to improve data efficiency and reduce overfitting by sharing
models to learn multiple tasks in parallel. MTL refers to the
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modeling of at least two tasks in a single deep-learning model (Zhou
et al., 2018). By sharing some parameters, the MTL can effectively
enhance the performance of each task and has been widely applied in
the processing of bioelectrical signals. For instance, He et al.
proposed a novel end-to-end multimodal multitask neural
network model, and showed that the classification accuracy of
the MTL approach improved by 4.8%, 4.4%, and 8.6% over
single-task methods, respectively (He et al., 2022). In addition,
Medhi et al. proposed a deep MTL approach to enhance the
detection and classification of arrhythmias in electrocardiogram
(ECG) signals. By jointly training multiple related tasks, MTL
can capture the commonalities between tasks and improve the
performance of each task through shared knowledge, thereby
significantly improving the detection and classification of ECG
arrhythmias (Medhi et al., 2023). In this study, we adopted the
MTL approach to train our model, selecting tasks that included the
primary task that is MI classification, and auxiliary tasks such as
EEG reconstruction, EMG reconstruction, and feature metric
learning tasks, thereby enhancing the model’s generalizability
and accuracy.

3 Datasets and preprocessing

3.1 Datasets

In this study, we utilized a self-made dataset, MI-EEMG, and
publicly available datasets from Mendeley Data, specifically the
WAY-EEG-GAL and ESEMIT datasets. The following sections
provide a detailed introduction regarding data collection and
content information of the in-house dataset, and the content
information of the public datasets.

3.1.1 MI-EEMG
For this study, we collected EEG and EMG data from

14 participants performing MI and created an MI-EEMG dataset.
The group consisted of six males (average age, 21.5 ± 3.2 years) and
eight females (average age, 22.4 ± 4.6 years). All participants were
right-handed, had normal vision, nomotor impairments, and signed
consent forms before the experiment. Participants were informed
regarding the experimental procedures and precautions.

The MI-EEMG dataset included three types of MI actions: left
hand, right hand, and resting state. Each subject underwent 30 trials
of 10-s MI experiments, as shown in Figure 1. EEG electrodes were
placed according to the international 10–20 system (Klem et al.,
1999), with 32 channels and a sampling frequency of 500 Hz; four
EMG electrodes were located on the left biceps (LB), left triceps (LT),
right biceps (RB), and right triceps (RT), all with a sampling
frequency of 500 Hz.

3.1.2 WAY-EEG-GAL
TheWAY-EEG-GAL dataset included data from 12 participants

who were right-handed, had normal vision, and no motor
impairments. During the EEG and EMG data collection process,
the participants were instructed to reach out and grasp an object
when prompted, lift it using their thumb and index finger, hold it for
a few seconds, place it back on the support surface, release it, and
finally return their hand to a specified resting position. EEG signals
were captured using 32 channels from the international
10–20 system, and the EMG electrodes were positioned on the
hands and arms. The experiment involved a total of 3,936 EEG and
EMG data collections.

3.1.3 ESEMIT
The ESEMIT dataset included data from 26 participants,

including 10 males (average age, 25.4 ± 7.4 years) and 16 females
(average age, 23 ± 3.2 years). All the participants were right-handed,
had normal vision, and no motor impairments. The ESEMIT dataset
includes three types of MI actions: left hand, right hand, and resting
state. Each participant underwent a 4-min resting state and 15 min
of MI induced by VR for collecting EEG and EMG data. EEG
electrodes were placed according to the international 10–20 system,
with 32 channels and a sampling frequency of 500 Hz; two EMG
electrodes were located on the LB and RB, with a sampling frequency
of 500 Hz.

3.2 Preprocessing

3.2.1 EEG preprocessing
The original EEG signals were recorded in this study as shown in

Equation 1:

FIGURE 1
Experimental process of myoelectric electromyography acquisition. Fourteen participants were informed regarding the experimental procedure
and prepared for the experiment within 30min. They then performedMI tasks (left hand, right hand, and resting state) guided by cross signals on a screen,
to complete the collection of electromyography (EMG) signals.
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X � x1, x2, , xC1( ) ∈ RC1×L1 (1)
Where C1 represents the number of channels for EEG acquisition
(C1 � 32 in this study), L1 denotes the number of samples, with
L1 � T × f EEG, T is the sampling time, and f EEG is the EEG
sampling frequency.

EEG data are very weak bioelectrical signals and factors such as
ECG signals, electromagnetic waves generated by power
components, and inherent noise from the acquisition equipment
can cause interference during data collection (Ferracuti et al., 2021).
Therefore, it is necessary to preprocess EEG signals to eliminate
interference and improve the signal-to-noise ratio. In this study,
EEG preprocessing (Sun and Mou, 2023) included baseline
correction, 50 Hz notch filtering, 4–50 Hz bandpass filtering,
independent component analysis (Zhukov et al., 2000), and
removal of EOG artifacts (ElSayed et al., 2021).

3.2.2 EMG preprocessing
The original EMG signals were recorded in this study as shown

in Equation 2:

Y � y1, y2, , yC2
( ) ∈ RC2×L2 (2)

Where C2 represents the number of channels for EMG acquisition
(C2 � 4 in this study), L2 denotes the number of samples
(L2 � T × f EMG), T denotes the sampling time, and f EMG is the
EMG sampling frequency.

Similar to EEG signals, EMG signals also require preprocessing
to remove noise. This study employed a bandpass filter from 30 to
150 Hz to eliminate the influence of ECG signals, along with a 50 Hz
notch filter to remove specific frequency noise.

4 Methods

Traditional MI classification task models tend to focus on the
extraction of explicit features in the time and frequency domains;
however, EEG and EMG signals possess a multitude of deep-level
characteristics. Based on this, we designed a 2M-hBCINet model
that can simultaneously extract deep features of EEG and EMG
signals in an unsupervised manner and perform fusion.
Additionally, an MTL approach was employed to enhance the
performance and generalizability of the model, as shown in the
network structure in Figure 2. The model consists of the following
three parts: a deep feature extraction module, CAM, and MTL with
loss functions.

4.1 Deep feature extraction module

4.1.1 Encoding
4.1.1.1 EEG electrode encoding

To better describe the EEG processing procedure, this study was
based on the current internationally accepted EEG electrode
placement rules 10–20 system. The brain electrodes were
numbered, and the position coordinates of the electrodes were
(W ,H), (W � 9, H � 9 as shown in Figure 3). The spatial
coordinates of the electrodes were (W ,H), and the original
spatiotemporal coordinates of the EEG were defined as Equation 3:

XEEG ∈ RLEEG×H×W (3)
Where L � T × f EEG represents the number of sampling points, T is
the sampling duration, and f EEG is the EEG sampling frequency.

FIGURE 2
2M-hBCINet network structure. The system primarily includes three modules: the deep feature extraction module, the channel attention
mechanism, and the multitask learning with loss functions. The VAE module efficiently integrates deep features from electroencephalogram (EEG) and
electromyography (EMG) signals, while the CAMmodule intelligently allocates channel weights. Within themultitask framework, the primary task ismotor
imagery classification, and the auxiliary tasks include feature metric learning and EEG/EMG reconstruction. Different loss functions are applied to
each task, including cross-entropy loss, triplet-center loss, and the VAE network’s loss function, and an overall loss function, Total Loss, is constructed.
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4.1.1.2 EMG electrode encoding
As with the EEG electrodes, the EMG electrodes were assigned

codes. Because of the small number of EMG electrodes, they were
coded as follows: LB, LT, RB, and RT, as shown in Figure 4. The
original spatiotemporal coordinates of the EMG are defined as
Equation 4:

XEMG ∈ RLEMG×2×2 (4)
where L � T × f EMG represents the number of sampling points, T is
the sampling duration, and f EMG denotes the EMG
sampling frequency.

4.1.2 Feature extraction
As shown in Figure 5, this process consists of two steps:

encoding and feature extraction of the bioelectrical signals. First,
the collected bioelectric signals were encoded according to Equation
3 and Equation 4, to obtain Xψ ,ψ ∈ EEG, EMG{ }. Then, Xψ was
input into the VAE network for feature extraction, resulting in
relevant deep features Zψ ,ψ ∈ EEG,EMG{ }.

Below is a detailed description of the process for extracting deep
features from EEG and EMG signals using VAE. Let the input EEG
and EMG signals be denoted as X, with its true distribution
probability represented as Pθ(X). The relevant latent features Z
are obtained from X using a VAE, and the reconstructed data are
denoted as X′. Then the inferential network can be expressed as
Qϕ(Z|X), and the generative network can be expressed as
Pθ(Z)Pθ(X′ |Z).

Because the potential feature Z is unobservable and cannot be
solved directly, Z is estimated by calculating the lower bound. The
true posterior distribution that the inference network could not
determine is denoted as Pθ(Z|X), and it is assumed that the inferred
network Qϕ(Z|X) is a known distribution, and Qϕ(Z|X) is used to
approximate the replacement of Pθ(Z|X), such that both the VAE

FIGURE 3
Electromyography electrode coding. (A) The current internationally accepted EEG electrode placement diagram. (B) Based on the internationally
accepted EEG electrode placement system, the 10–20 system, electrodes have been numbered, with their positional coordinates denoted as (W,H),
where W � 9 and H � 9.

FIGURE 4
Electromyogram electrode coding. (A) Schematic diagram
showing the locations of the left biceps (LB), left triceps (LT), right
biceps (RB), and right triceps (RT). (B) Electrode numbering for
electromyography, with electrode positional coordinates
denoted as (W,H), where W � 2 and H � 2.
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inferred and generated networks are known distributions. To make
Qϕ(Z|X) as close to Pθ(Z|X) as possible, KL divergence is used to
measure the degree of similarity between the two, and is minimized
by optimizing the constraint parameters θ and ϕ. It can be expressed
as shown in Equation 5:

ϕ, θ � arg minDKL Qϕ Z|X( )‖Pθ Z|X( )( )
� EQϕ Z|X( ) 1bQϕ Z|X( ) − 1bPθ Z|X( )[ ] + 1bPθ X( ) (5)

Noted as Equation 6:

L θ,ϕ;X( ) � EQϕ Z|X( ) 1bQϕ Z|X( ) − 1bPθ Z|X( )[ ] (6)

It can be obtained as Equation 7:

1bPθ X( ) � DKL/(Qϕ Z|X( )����Pθ Z|X( ) + L θ,ϕ;X( ) (7)

Since the KL divergence DKL(*)≥ 0 is always true, therefore
1bPθ(X)≥ L(θ,ϕ;X) is always true; thus, the variational lower
bound function of the marginal likelihood 1bPθ(X) of the input
electrical signal Xψ can be obtained as L(θ,ϕ;X). Assuming
Qϕ(Z|X) follows a normal distribution, the optimization
objective for the inferred network is Equation 8:

ϕ, θ � arg max
ϕ,θ

L θ,ϕ;X( ) (8)

To generate samples, the conditional distribution is generally a
Bernoulli or Gaussian distribution whose probability density
function is obtained using neural network computation. The
optimization objective for the generative network is given
in Equation 8.

The optimization objective of both the inferential and generative
networks is to maximize the variational lower-bound function;

therefore, the optimization objective of the VAE is to maximize
the variational lower-bound function. Subsequently, the auxiliary
parameter ε is introduced to transform the distribution of Qϕ(Z|X)
to obtain Gϕ(ε,X) with Zψ � Gϕ(ε,X), where ε ~ p(ε), and p(ε)
have a known marginal likelihood distribution. Assuming that
Qϕ(Zψ |Xψ) follows a normal distribution, the sampling of Zψ

can be described as Equation 9:

Zi � μi + σ iεi (9)
where μ represents the mean of the posterior probability and σ2

represents the variance of the posterior probability. Subsequently,
the variational lower bound can be simplified as Equation 10:

L θ,ϕ;X( ) � −DKL Qϕ Z|X( )‖Pθ Z|X( )( ) + 1
L
∑L
l�1
1bPθ X′

i

∣∣∣∣Zi,j( )
� 1
2
∑ 1b σi( )2 − μi( )2 − σi( )2 + 1[ ] + 1bPθ X′

i

∣∣∣∣Zi( )
(10)

The introduction of auxiliary parameters changes the relationship
between Z and σ and μ from sampling calculation to numerical
calculation, which can be optimized using the stochastic gradient
descent method (Dai and Wipf, 2019). The mean and standard
deviation of Pθ(X′

i|Zi) can be calculated using neural network,
enabling the calculation of each term in the lower bound of the
variational inference. Consequently, the structure of the VAE model
can be established.

4.2 CAM

In this study, the CAM was used to select and fuse the extracted
EEG and EMG deep features. This end-to-end trainable module

FIGURE 5
Deep feature extraction. Encoded EEG and EMG signals are fused through the VAE network to extract deep features Zψ , where ψ ∈ EEG,EMG{ }.
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enhances the network’s ability to focus on key information while
suppressing extraneous information, thus improving the accuracy
and generalization of the model. The detailed process for processing
deep features using CAM is shown in Figure 6.

This module highlights useful EEG and EMG signal features.
After the EEG and EMG signals pass through the VAE module, they
obtain features denoted as Z ∈ RH×W×C . To capture the spatial
information of each channel, a global average pooling (GAP)
over the spatial dimensions of Z is required, which compresses
the spatial information of each channel into a single global feature
value, denoted as G. The dimension then becomes 1 × 1 × C. The
computation process for the c-th channel can be described as
Equation 11:

Gc � 1
H × W

∑H
i�1
∑W
j�1
zc i, j( ) (11)

where zc(i, j) represents the feature of the channel c
at position (i, j);

The computational results are sent to a multilayer
perceptron (MLP) for processing to capture the dependencies
between channels. When the MLP contains two fully connected
layers, the first layer maps the features to a lower dimension C/r
and applies the ReLU activation function to introduce
nonlinearity to obtain the output U . Assuming the weight
matrix W1 and the bias vector b1, the output U can be
expressed as Equation 12:

U � ReLU W1 · Gc + b1( ) (12)
where the dimension of W1 is C × C/r, and r is the dimensionality
reduction coefficient used by MLP to decrease the computational
effort by reducing the number of channels.

The second fully connected layer maps the vectors of the
intermediate dimensions back to the original channel
dimensions and applies a sigmoid activation function to
restrict the weights to between 0 and 1 to obtain the channel
attention weight matrix Mc . Similar to the first layer, Mc can be
expressed as Equation 13:

Mc � Sigmoid W2 · U + b2( ) (13)
where theW2 dimension isC/r × C and the output dimension ofMc

is guaranteed to be 1 × 1 × C;
At this time, the attention weight Mc of each channel is

obtained, which indicates the degree of “attention” of the model
to each channel, and the weight is applied to the original feature
map Zc , and the final feature map ~Z is weighted by element-by-
element multiplication of the feature map, as shown in
Equation 14:

~Z � Mc ⊙ Z (14)

CAM realizes the effective utilization and enhancement of
different channel information in the feature map through three
steps: global information aggregation, interchannel dependency
modeling, and attention weighting.

4.3 MTL

To enhance the classification accuracy of MI tasks and improve
the model’s generalization capabilities (Ruder, 2017), this study
incorporated a MTL approach to train the 2M-hBCINet. In this
study, three learning objectives were set. The primary task was the
MI classification task, and the auxiliary tasks included feature metric
learning and EEG and EMG reconstruction. Feature metric learning
aimed to minimize the distance between similar samples and
maximize the distance between dissimilar samples by optimizing
the metric criterion to learn more discriminative and expressive
features, which indirectly improved the performance of the
primary task.

Different loss functions were used for the different tasks in this
study. For the primary task of MI classification and the auxiliary
tasks of feature metric learning, EEG, and EMG reconstruction, the
loss functions of cross-entropy loss, triplet-center loss, and VAE
network were used, respectively, and the overall loss function was
constructed as the total loss.

4.3.1 Cross-entropy loss
To ensure that the classification results were close to the actual

situation in the MI classification task, cross-entropy was adopted as
the loss function. Cross-entropy loss was first introduced by
Rubinstein in 1999 (Rubinstein, 1999), and it measures the
discrepancy between the predicted and true distributions through
simple calculations. The calculation is shown in Equation 15:

Lcross−entropy y, ŷ( ) � −∑k
k�1

yk log ŷk, k � 0, 1( ) (15)

where y and ŷ represent the true label and classification model
prediction probabilities, respectively. The result of the MI
classification task is the type with the highest probability.

4.3.2 Triplet-center loss
In feature metric learning as the auxiliary task, the triplet-

center loss (TCL) (He et al., 2018) was used as the loss function.
TCL combines the advantages of triplet loss for interclass
relationship processing with those of center loss for intraclass

FIGURE 6
Channel attention mechanism. After feature extraction by the
VAE module, the electrical signal X produces a feature map Z. Global
average pooling compresses the spatial information of Z into a global
feature value G. This global feature value G is then fed into a
multi-layer perceptron (MLP) with ReLU and Sigmoid activation
functions to compute attention weights Mc for each channel. These
weights are then applied to the original feature map to obtain the final
feature map.
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relationship processing and reduces certain computational
complexities to effectively improve the accuracy of feature
metric learning, which is calculated as in Equation 16

LTCL � ∑M

i�1 max D f i, cyi( ) +m −min
j≠yi

D f xi( ), cj( ), 0( ) (16)

Where, yi represents the label of the i-th type, f (·) represents the
feature vector extracted in the neural network, f i represents the feature
vector extracted by f from the i-th class, cj represents the center of the
j-th class, and D(·) is the euclidean distance function is expressed as
Equation 17:

D f xi( ), cyi( ) � 1
2
f xi( ) − cyi
���� ����22 (17)

4.3.3 TotaI loss
In this study, the abovementioned loss functions Lcross−entropy

and LTCL and the loss functions LVAE−EEG and LVAE−EMG of the VAE
network were combined to obtain the final loss function:

Ltotal � λ1Lcross−entropy + λ2LVAE−EEG + λ3LVAE−EMG

+ 1 − λ1 − λ2 − λ3( )LTCL (18)

where, λ1, λ2, and λ3 represent the hyperparameters for the
contributions of models Lcross−entropy , LVAE−EEG, and LVAE−EMG,
respectively, satisfying the condition λ1 + λ2 + λ3 ≤ 1. To
determine the hyperparameters in Equation 18, a preliminary
study was conducted using a grid-search algorithm. The sets of
parameters λ1, λ2, and λ3 in the grid search algorithm were
defined as {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}. The experimental
results indicate that λ1, λ2, and λ3 should be set to 0.7, 0.1, and 0.1,
respectively. In addition, to complete the multitask ablation
experiments, the parameters for two-task and three-task
collaborative training were investigated. The parameters for
the two-task model 2M-hBCINet-CEEGR were λ1 � 0.7 and
λ2 � 0.3, while the parameters for the model 2M-hBCINet-
CEMGR were λ1 � 0.7 and λ3 � 0.3. The parameter for the
model 2M-hBCINet-CF was λ1 � 0.7. For the three-task model
2M-hBCINet-CEEMGR, the parameters were λ1 � 0.6, λ2 � 0.2,
and λ3 � 0.2. The parameters for the model 2M-hBCINet-
CEEGRF were λ1 � 0.6 and λ2 � 0.2, and for the model 2M-
hBCINet-CEMGRF, the parameters were λ1 � 0.6 and λ3 � 0.2.

4.4 2M-hBCINet

To better accomplish MI tasks, we explored, selected, and
integrated the deep features of EEG and EMG signals, and
designed a 2M-hBCINet model.

First, the raw EEG and EMG signals were encoded, and deep
features were extracted using the VAE network. The structure of
the VAE network is shown in Figure 2, which consists of an
encoder and a decoder. The extraction process of deep spatio-
temporal feature Xψ ,ψ ∈ EEG, EMG{ } is shown in Figure 5. After

completing Xψ extraction, CAM was used to combine, select, and
assign relevant weights to the features, as shown in Figure 6,
which effectively improved the utilization of potential features. In
addition, the 2M-hBCINet model adopts a MTL approach for
training. The primary task designed for this study was the MI
classification task, whereas the auxiliary tasks included a feature
metric learning task and reconstruction tasks for both EEG and
EMG, along with the relevant loss functions, Lcross−entropy and
LTCL. These were combined with the VAE network loss functions,
LVAE−EEG and LVAE−EMG to obtain the overall loss function Ltotal.

Subsequently, joint training of the 2M-hBCINet model was
performed by updating the parameters in the VAE network,
CAM, weight parameters, and bias values in the fully connected
(FC) layer in each training session, as shown in Algorithm 1. After
the fully connected layer, the predicted values for MI classification
were calculated using Equation 19. ZEEG represents the EEG
potential features extracted by the VAEEEG network, ZEMG

represents the EMG potential features extracted by the VAEEMG

network, ZEEMG represents the features after fusing EEG and EMG,
and ZCBA denotes the features after selection, fusion, and weighting
by the CAM. The 2M-hBCINet model used the joint loss function
Ltotal as the loss function.

Ŷ � sof tmax ωFCZEEMG + bFC( ) (19)
During the backpropagation process of the 2M-hBCINet model,

the CAM and deep feature extraction module were updated
synchronously. The specific process is as follows:

In the CAM, the gradient ∂total(Y ,Ŷ)
∂Ŷ

of the parameters of the fully

connected layer is solved first, the gradient ∂Ŷ
∂ZFC

t+1 of the fully

connected layer acting on CAM is calculated next, and finally,

the gradient ∂ZFC
t+1

∂ωCBA
t of the parameters of the entire CAM is

calculated. According to the chain rule, the gradient ∇ωCBA
t+1 �

∂total(Y ,Ŷ)
∂Ŷ

· ∂Ŷ
∂ZFC

t+1 · ∂ZFC
t+1

∂ωCBA
t of the CAM and the corresponding fully

connected layer parameters can be obtained. Subsequently, the CBA

network parameters are updated according to ~ωCBA
t+1 � ωCBA

t −
ηCBA∇ωCBA

t+1 to complete the CAM parameter update.
For gradient extraction of parameters of the VAE module, the

gradient ∂ZFC
t+1

∂ZCBA
t+1 of the CAM parameters is solved, following which

the gradients ∂ZCBA
t+1

∂ωEEG
t and ∂ZCBA

t+1
∂ωEMG

t of the VAEEEG and VAEEMG

networks are computed respectively. According to the chain rule,

the gradients ∇ωEEG
t+1 � ∂total(Y ,Ŷ)

∂Ŷ
· ∂Ŷ
∂ZFC

t+1 · ·ZFC
t+1

∂ZCBA
t+1 · ∂ZCBA

t+1
∂ZEEMG

t+1 ·
∂ZEEMG

t+1
∂ωEEG

t and ∇ωEMG
t+1 � ∂total(Y ,Ŷ)

∂Ŷ
· ∂Ŷ
∂ZFC

t+1 · ∂ZFC
t+1

∂ZCBA
t+1 · ∂ZCBA

t+1
∂ZEEMG

t+1 ·
∂ZEEMG

t+1
∂ωEMG

t of the VAE network parameters and the full connection

layer parameters can be obtained. After that, the VAEEEG, VAEEMG

network parameters are updated according to

~ωEEG
t+1 � ωEEG

t − ηVAE−EEG∇ωEEG
t+1, ~ωEMG

t+1 � ωEMG
t −

ηVAE−EMG∇ωEMG
t+1 to complete a VAE module parameter update.

After updating the CAM and VAE module, the parameters of the
fully connected layer are updated according to ~ωFC

t+1 � ωFC
t −

ηFC∇ωFC
t+1 such that it can completely learn the selected

deep features.
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Require: Bioelectric signal Xψ ,ψ ∈ EEG,EMG{ };
The motor imagery task corresponds to the label Y;

Ensure: parameters of VAE: ωEEG ,ωEMG; parameters of CBA:

ωCBA; parameters of FC: ωFC;

1. for t � 1;t< max ;t + +
1. ZEEG

t+1 � VAEEEG(XEEG ,ωEEG
t)

2. ZEMG
t+1 � VAEEMG(XEMG ,ωEMG

t)
3. ZEEMG

t+1 � ZEEG
t+1,ZEMG

t+1

4. ZCBA
t+1 � CBA(ZEEMG

t+1 ,ωCBA
t)

5. Ŷ � FC(ZCBA
t+1 ,ωFC

t)
6. ∇ωEEG

t+1 � ∂total(Y,Ŷ)
∂Ŷ

· ∂Ŷ
∂ZFC

t+1 · ∂ZFC
t+1

∂ZCBA
t+1 · ∂ZCBA

t+1

∂ZEEMG
t+1 · ∂ZEEMG

t+1
∂ωEEG

t

7. ∇ωEMG
t+1 � ∂total(Y,Ŷ)

∂Ŷ
· ∂Ŷ
∂ZFC

t+1 · ∂ZFC
t+1

∂ZCBA
t+1 · ∂ZCBA

t+1

∂ZEEMG
t+1 · ∂ZEEMG

t+1
∂ωEMG

t

8. ~ωEEG
t+1 � ωEEG

t − ηVAE−EEG∇ωEEG
t+1

9. ~ωEMG
t+1 � ωEMG

t − ηVAE−EMG∇ωEMG
t+1

10. ∇ωCBA
t+1 � ∂total(Y,Ŷ)

∂Ŷ
· ∂Ŷ
∂ZFC

t+1 · ∂ZFC
t+1

∂ωCBA
t

11. ~ωCBA
t+1 � ωCBA

t − ηCBA∇ωCBA
t+1

12. ∇ωFC
t+1 � ∂total(Y ,Ŷ)

∂Ŷ
· ∂Ŷ
∂ZFC

t

13. ~ωFC
t+1 � ωFC

t − ηFC∇ωFC
t+1

14. end for

Algorithm 1. 2M-hBCINet.

5 Experiment and discussion

5.1 Experimental setting

5.1.1 Evaluation methods
Common machine learning evaluation metrics were selected for

this study to serve as evaluation indicators, with the performance of
the 2M-hBCINet model described from various perspectives. The
evaluation indicators included accuracy, precision, recall, and F1-
score. The calculation methods are shown in Equations 20–23:
Model performance was assessed by plotting the receiver
operating characteristic (ROC) curve and calculating the area
under the curve (AUC), known as the ROC-AUC.

Accuracy � TP + TN( )/ TP + TN + FP + FN( ) (20)
Precision � TP/ TP + FP( ) (21)
Recall � TP/ TP + FN( ) (22)

F1 − score � 2 × Precision × Recall( )/ Precision + Recall( ) (23)
where TP, FP, TN , and FN represent true positive, false positive,
true negative, and false negative, respectively.

5.1.2 Experimental methodology (LOOCV)
The LOOCV method (Walter et al., 2013) was employed to

validate the performance of the 2M-hBCINet model. In the LOOCV
method, one sample is extracted from the dataset to serve as the
validation set for testing at each iteration until all samples are used as
the validation set. The number of validations correspond to the
number of samples, and the validation results are expressed as the
average of all experimental outcomes, as indicated by Equation 24.
The advantages of the LOOCV method include its ability to fully
utilize data in small sample sizes for MI and to effectively prevent
overfitting, thereby enabling a comprehensive assessment of the
model’s generalization ability.

eM � 1
N
∑N
n�1

errM 2M − hBCINet xn( ), yn( )
M ∈ Accuracy,Precision,Recall.F1 − score,ROC − AUC{ } (24)

Where N represents the number of samples, n represents the index
of the selected sample, xn represents the samples, yn represents the
corresponding labels of the samples, M represents the selected
evaluation indices, errM(·) denotes the performance assessment
results of the 2M-hBCINet model using different evaluation
indices, and eM represents the validation results obtained for the
corresponding evaluation metrics using the LOOCV method.

5.1.3 Parameter setting
This study used parameter settings for three models: VAEEEG,

VAEEMG, and total loss function. A symmetrical structure consisting
of four convolutional layers was utilized for encoding and decoding
in both VAEEEG and VAEEMG. Each layer was composed of
convolutional kernels of sizes 3 × 3 × 128, 3 × 3 × 256,
3 × 3 × 256, and 3 × 3 × 512, with a stride of 1.
Hyperparameters λ1, λ2, and λ3 were set to 0.7, 0.1, and 0.1,
respectively, for the total loss function.

5.2 Experiment and discussion

We performed several experiments involving the LOOCV
method on the self-made MI-EEMG dataset and the public
datasets WAY-EEG-GAL and ESEMIT. These experiments
include module ablation studies, comparisons of MTL, multi-
band comparison experiments, and muscle fatigue experiments.

5.2.1 Module ablation experiment
To validate the effectiveness of each module of the proposed

2M-hBCINet model, an ablation study was conducted using the MI-
EEMG, WAY-EEG-GAL, and ESEMIT datasets. LOOCV was used
as the validation method. The validated models included model
VAEEEG − CBA without the module VAEEMG, model VAEEMG −
CBA without the module VAEEEG, model VAEEEG − VAEEMG

without the module CBA, and the complete 2M-hBCINet model.
In the MI-EEMG dataset, 70 MI classification experiments were

conducted for each model (14 participants × 5 trials). Figure 7A
illustrates the performance of each participant in this experiment,
and Figure 8A presents the significance analysis results for each
model. In the WAY-EEG-GAL dataset, 60 MI classification
experiments were performed for each model (12 participants ×
5 trials). Figure 7B shows the performance of each participant in the
experiment, and Figure 8B shows the significance analysis results for
each model. In the ESEMIT dataset, 130 MI classification
experiments were performed for each model (26 participants ×
5 trials). Figure 7C shows the performance of each participants in
this experiment, and Figure 8C displays the significance analysis
results for each model. The statistical results of the experiments for
each model across all the datasets are presented in Table 1.

Table 1 shows that the accuracy of the models missing various
modules decreased by 6.1%–10.3%, 5.7%–8.0%, and 7.1%–10.5%
compared to the 2M-hBCINet model. The precision, recall, and F1-
score also decreased, demonstrating the necessity of each

Frontiers in Physiology frontiersin.org10

Cao et al. 10.3389/fphys.2024.1487809

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1487809


FIGURE 7
Statistical results of module ablation experiment. (A) In the MI-EEMG dataset, 70motor imagery classification experiments were performed for each
model (14 participants × 5 trials). Compared to models missing certain modules, the 2M-hBCINet model showed an accuracy improvement of 6.1%–
10.3%. (B) In theWAY-EEG-GAL dataset, 60motor imagery classification experiments were performed for eachmodel (12 participants × 5 trials). The 2M-
hBCINet model demonstrated an increase of 5.7%–8.0% in accuracy over models with missing modules. (C) In the ESEMIT dataset, 130 motor
imagery classification experiments were performed for each model (26 participants × 5 trials). The 2M-hBCINet model achieved an accuracy
enhancement of 7.1%–10.5% compared to models without the respective modules.

FIGURE 8
Significance analysis of eachmodel inmodule ablation experiment. (A) The t-test results for eachmodel in theMI-EEMG dataset are shown in figure.
(B) The t-test results for each model in the WAY-EEG-GAL dataset are shown in figure. (C) The t-test results for each model in the ESEMIT dataset are
shown in the figure.
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submodule. Furthermore, in both the MI-EEMG and ESEMIT
datasets, the model VAEEMG − CBA achieved better performance
than VAEEEG − VAEEMG and VAEEEG − CBA. This indicates that
the features obtained from EMG signals provide greater
expressiveness for MI tasks and allow for better representation
than features obtained from EEG signals.

In the significance analysis presented in Figure 8, the p-values
are categorized into five levels: p≥ 0.05, p< 0.05, p< 0.01, p< 0.005,
and p< 0.001; statistical significance was set at p< 0.05, with smaller
p-values indicating greater significance and p≥ 0.05 indicating that
the difference between the two models was not statistically
significant. A statistically significant improvement in the accuracy
of the 2M-hBCINet model compared to other models missing
various modules indicated a notable difference, and demonstrated
the significant superiority of the 2M-hBCINet model.

5.2.2 MTL comparison experiments
To validate the effectiveness of the MTL approach in the

proposed 2M-hBCINet model, comparative experiments were
performed using the MI-EEMG, WAY-EEG-GAL, and ESEMIT
datasets, with LOOCV as the validation method. The validated
models included the single-task model 2M-hBCINet-C, the two-
task models 2M-hBCINet-CEEGR, 2M-hBCINet-CEMGR, and 2M-
hBCINet-CF, as well as the three-task models 2M-hBCINet-
CEEMGR, 2M-hBCINet-CEEGRF, and 2M-hBCINet-CEMGRF,
and the four-task model 2M-hBCINet. In this context, C, EEGR,
EMGR, and F denote MI classification (primary task), EEG
reconstruction, EMG reconstruction, and feature metric learning
(auxiliary tasks), respectively. The dataset and number of
experiments used in this study were consistent with those used in
the ablation study. Figure 9 illustrates the experimental performance
of the participants across different datasets, and Figure 10 presents
the significance analysis results for each model, with A, B, and C
corresponding to the three types of datasets. The experimental
results are presented in Table 2.

Table 2 shows that the 2M-hBCINet model, which employs all
tasks, achieved an average accuracy improvement of 1.2%–11.0%,

1.5%–10.5%, and 1.7%–10.0% with the MI-EEMG, WAY-EEG-
GAL, and ESEMIT datasets, respectively, compared to other
models. Additionally, the precision, recall, F1-score, and ROC-
AUC evaluation metrics showed improvements, demonstrating
the effectiveness of each task during the model training process.
This enhancement is attributed to the strong correlation between the
selected EEG reconstruction, EMG reconstruction, and feature
metric learning tasks, and the primary task of MI classification.
The collaborative training process allows for mutual reinforcement
and complementary learning among these tasks. Overall, MTL
effectively enhanced the generalization ability and accuracy of the
2M-hBCINet model.

5.2.3 Multiband comparison experiments
To further validate the superiority of the 2M-hBCINet model

across different EEG frequency bands, we categorized EEG signals
into four frequency bands: theta (four to eight Hz), alpha (8–13 Hz),
beta (13–30 Hz), and gamma (30–50 Hz), and conducted
comparative experiments for each band. The comparison models
included the single EEG model VAEEEG − CBA, single EMG model
VAEEMG − CBA, and reference EEG models Reference-Leeb (Leeb
et al., 2011), Reference-Barachant (Barachant et al., 2012), and
Reference-Hutchison (Hutchison et al., 2010).

Altogether, 420 experiments were conducted with the MI-
EEMG dataset (6 models × 5 frequency bands × 14 participants),
and the results are shown in Figure 11A. Figures 12A–D illustrate
the performance of each participant across different frequency
bands. For the WAY-EEG-GAL dataset, 360 MI classification
experiments were performed for each model (6 models ×
5 frequency bands × 12 participants), and the results are shown
in Figure 11B. Figures 12E–H depict the performance of each
participant across different frequency bands in this dataset. A
total of 780 MI classification experiments were performed with
the ESEMIT dataset for each learning method (6 models ×
5 frequency bands × 26 participants), and the results are
summarized in Figure 11C. Figures 12I–L illustrate the
performance of each participant across different frequency bands.

TABLE 1 Module ablation experiment.

Dataset Model Accuracy (%) Precision Recall F1-score ROC-AUC

MI-EEMG VAEEEG − CBA 81.2 82.312 81.543 81.926 80.251

VAEEMG − CBA 85.4 88.553 88.672 88.612 81.216

VAEEEG − VAEEMG 84.3 87.771 86.528 87.145 80.115

2M-hBCINet 91.5 93.546 93.648 93.596 85.618

WAY-EEG-GAL VAEEEG − CBA 81.3 83.562 81.796 82.700 78.562

VAEEMG − CBA 83.6 84.523 84.196 84.359 79.653

VAEEEG − VAEEMG 82.9 84.128 85.963 85.036 78.956

2M-hBCINet 89.3 91.256 90.568 90.911 87.635

ESEMIT VAEEEG − CBA 80.1 82.617 81.152 81.878 78.156

VAEEMG − CBA 83.5 85.618 84.612 85.112 81.624

VAEEEG − VAEEMG 83.2 85.946 85.946 85.946 82.653

2M-hBCINet 90.6 93.612 92.584 93.095 96.325
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FIGURE 9
Statistical results of multitask learning comparison experiments. The models evaluated include single-task model 2M-hBCINet-C; two-task models
2M-hBCINet-CEEGR, 2M-hBCINet-CEMGR, and 2M-hBCINet-CF; three-task models 2M-hBCINet-CEEMGR, 2M-hBCINet-CEEGRF, and 2M-hBCINet-
CEMGRF; and the four-task model 2M-hBCINet. (A) In the MI-EEMG dataset, 70 motor imagery classification experiments (14 participants × 5 trials) were
performed to test each learning approach. The 2M-hBCINet model showed an average accuracy improvement of 1.2%–11.0% compared to other
models. (B) In the WAY-EEG-GAL dataset, 60 motor imagery classification experiments were performed for each model (12 participants × 5 trials). The
2M-hBCINet model achieved an average accuracy increase of 1.5%–10.5% compared to other models. (C) In the ESEMIT dataset, 130 motor imagery
classification experiments (26 participants × 5 trials) were conducted for each learning approach. The 2M-hBCINet model demonstrated an average
accuracy enhancement of 1.7%–10.0% compared to other models.

FIGURE 10
Significance analysis of eachmodel inmultitask learning comparison experiment. (A) In theMI-EEMGdataset, the t-test results for eachmodel are depicted.
(B) In the WAY-EEG-GAL dataset, the t-test results for each model are shown. (C) In the ESEMIT dataset, the t-test results for each model are shown.
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TABLE 2 Multitask learning comparison experiment.

Dataset Model Accuracy (%) Precision Recall F1-score ROC-AUC

MI-EEMG 2M-hBCINet-C 80.5 82.617 82.157 82.386 80.654

2M-hBCINet-CEEGR 84.5 85.617 86.023 85.820 83.512

2M-hBCINet-CEMGR 88.6 90.235 90.845 90.539 87.684

2M-hBCINet-CF 81.2 83.157 83.698 83.427 80.951

M-hBCINet-CEEMGR 90.3 91.592 92.574 92.080 88.325

2M-hBCINet-CEEGRF 85.2 88.561 89.624 89.089 84.158

2M-hBCINet-CEMGRF 89.1 90.238 91.687 90.957 88.637

2M-hBCINet 91.5 93.546 93.648 93.597 89.651

WAY-EEG-GAL 2M-hBCINet-C 78.8 79.562 80.752 80.153 76.532

2M-hBCINet-CEEGR 81.5 81.968 82.345 82.156 79.635

2M-hBCINet-CEMGR 86.3 87.628 86.355 86.987 84.523

2M-hBCINet-CF 80.5 80.457 80.354 80.405 76.428

M-hBCINet-CEEMGR 87.8 88.624 89.524 89.072 84.632

2M-hBCINet-CEEGRF 83.4 84.529 83.524 84.023 80.528

2M-hBCINet-CEMGRF 87.5 87.635 88.352 87.992 84.638

2M-hBCINet 89.3 91.452 90.385 90.915 94.852

ESEMIT 2M-hBCINet-C 80.6 81.215 82.365 81.786 78.952

2M-hBCINet-CEEGR 82.1 83.914 84.561 84.236 81.524

2M-hBCINet-CEMGR 88.2 89.226 88.954 89.090 86.321

2M-hBCINet-CF 81.3 82.645 82.648 82.646 78.514

M-hBCINet-CEEMGR 89.9 90.621 91.584 91.100 86.952

2M-hBCINet-CEEGRF 84.2 86.324 85.962 86.143 82.352

2M-hBCINet-CEMGRF 88.7 89.452 90.236 89.842 86.325

2M-hBCINet 90.6 93.612 92.584 93.095 96.325

FIGURE 11
Statistical results of multi-band comparison experiments. The signals were divided into four frequency bands: theta (four to eight Hz), alpha (8–13 Hz), beta
(13–30 Hz), and gamma (30–50 Hz), and comparative experiments were conducted for each band. (A) In the MI-EEMG dataset, a total of 420 experiments were
conducted (6 models × 5 bands × 14 participants). Compared to other models, the 2M-hBCINet model’s average accuracy increased by 4.5%–13.6% for theta,
1.9%–12.9% for alpha, 1.7%–11.2% for beta, and 3.7%–12.8% for gammabands. (B) In theWAY-EEG-GALdataset, a total of 420 experimentswere conducted
(6models × 5bands× 14participants). Compared toothermodels, the 2M-hBCINetmodel’s average accuracy improvedby4.6%–12.1% for theta, 2.0%–11.4% for
alpha, 0.5%–10.9% for beta, and 0.6%–9.7% for gamma bands. (C) In the ESEMIT dataset, 780motor imagery classification experimentswere conducted for each
learning approach (6models × 5 bands × 26 participants). Compared to othermodels, the 2M-hBCINetmodel demonstrated an average accuracy enhancement
of 7.1%–14.3% for theta, 3.5%–11.2% for alpha, 2.4%–11.7% for beta, and 3.6%–10.5% for gamma bands.
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From Figure 11, it can be observed that in the theta (four to
eight Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–50 Hz)
frequency bands, the 2M-hBCINet model achieved average accuracy
improvements of 4.5%–13.6%, 1.9%–12.9%, 1.7%–11.2%, and 3.7%–
12.8%, respectively, compared to the models VAEEEG − CBA,
VAEEMG − CBA, Reference-Leeb, Reference-Barachant, and
Reference-Hutchison for the MI-EEMG dataset. Considering the
WAY-EEG-GAL dataset, the improvements were 4.6%–12.1%,
2.0%–11.4%, 0.5%–10.9%, and 0.6%–9.7%. For the ESEMIT
dataset, the model demonstrated accuracy increases of 7.1%–

14.3%, 3.5%–11.2%, 2.4%–11.7%, and 3.6%–10.5%. Overall, the

2M-hBCINet model exhibited the best performance across all
datasets, confirming its superiority. The reason for the optimal
performance of the 2M-hBCINet model across different
frequency bands is its ability to extract more discriminative EEG
features using unsupervised methods. In addition, unlike other
models that rely solely on EEG, such as Reference-Leeb,
Reference-Barachant, and Reference-Hutchison, the 2M-hBCINet
model effectively integrates deep EMG features through the CAM,
further enhancing its performance across different frequency bands.
This resulted in superior MI classification capabilities across all EEG
frequency bands.

FIGURE 12
Multi-band comparison experiment performance of each model. (A), (B), (C), and (D) describe the performance of each model in the theta (four to
eight Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–50 Hz) bands in the MI-EEMG dataset, respectively. (E), (F), (G), and (H) describe the
performance of eachmodel in the theta (four to eight Hz), alpha (8–13 Hz), beta (13–30Hz), and gamma (30–50 Hz) bands in theWAY-EEG-GAL dataset,
respectively. (I), (J), (K), and (L) describe the performance of eachmodel in the theta (four to eight Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma
(30–50 Hz) bands in the ESEMIT dataset, respectively.
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5.2.4 Muscle fatigue experiment
In practical MI classification tasks, issues such as muscle fatigue

and decreased muscle strength can occur in participants. In this
study, a muscle fatigue experiment was designed to evaluate the
performance of the 2M-hBCINet model under muscle fatigue
conditions. Referencing a previously described method (Xi et al.,
2021), we simulated the muscle strength state of participants
experiencing fatigue by reducing the amplitude of the EMG
signals (with an amplitude reduction resolution of 5%). The
comparative models included a single EEG model
(VAEEEG − CBA), a single EMG model (VAEEMG − CBA), and
EMG classification models that used the same feature selection
but different classifiers, namely, Reference-Leonardis (Leonardis
et al., 2015) and Reference-Tang (Tang et al., 2014). A total of
525 experiments were conducted with the MI-EEMG, WAY-EEG-
GAL, and ESEMIT datasets (5 models × 21 muscle strength states ×
5 repetitions), and the visualization results are presented
in Figure 13.

Figure 13 shows the trends in accuracy for each model across the
MI-EEMG, WAY-EEG-GAL, and ESEMIT datasets. For models
relying solely on EMG, such as VAEEMG − CBA, reference-
Leonardis, and reference-Tang, the accuracy dropped to 71.6%–
75.7%, 64.6%–77.7%, and 61.2%–69.9% when the muscle strength
was 50%. At a muscle strength of 25%, the accuracy further declined
to 62.3%–67.8%, 54.8%–60.2%, and 54.5%–57.9%. As the muscle
strength continued to decrease, the accuracy of these EMG-only
models stabilized at approximately 50%. In contrast, for the
proposed EEG-EMG classification model, 2M-hBCINet, the
accuracy was 86.1%–87.6% at a muscle strength of 50% and
82.6%–85.6% at 25%. When the muscle strength was further
reduced, the accuracy of 2M-hBCINet stabilized at 80.1%–81.3%.

6 Conclusion

In this study, EEG and EMG data were collected from the
participants, and corresponding datasets were created. A new model
for MI classification based on 2M-hBCINet utilizing EEG and EMG
signals was proposed. This model first processed the EEG and EMG
signals using VAE networks to extract deep feature information
specific to each signal. The features were then combined, and

different weights assigned to the extracted features using CAM to
achieve selective feature optimization. Additionally, the model
employed MTL, training simultaneously on the primary task of
MI classification and auxiliary tasks of EEG and EMG
reconstruction, and a feature metric learning task. Different loss
functions were used for each task to enhance the learning
effectiveness. Finally, the superiority of the proposed model and
its broad applicability under different frequency bands and muscle
conditions were validated through ablation, MTL comparison,
multi-frequency band comparison, and muscle fatigue
experiments based on the LOOCV method. The necessity and
effectiveness of each module and training task were verified
through ablation experiments.

Despite the model’s excellent performance in deep feature
extraction and classification of EEG and EMG signals, only basic
preprocessing was performed for the EEG signals. Currently,
multivariate iterative filtering (MIF) techniques have shown
significant results in EEG signal processing, thereby improving
the signal handling accuracy and efficiency. Future work could
consider integrating MIF techniques with this model to further
enhance its performance.

This approach has broad application potential as an end-to-end
MI classification model. Beyond applications in rehabilitation
robotics, it can be extended to other fields related to EEG and
EMG signals, such as driver anomaly detection, motion-sensing
games, and emotion analysis. For driver anomaly detection, the
model can monitor driver fatigue, distraction, and emotional states
through EEG and EMG signal analyses, thereby enhancing road
safety. In the realm of motion-sensing games, the model can provide
more intuitive control methods, enriching player experience, while
in emotion analysis applications, it can accurately identify individual
emotional responses. With continuous technological advancements,
potential application scenarios are expected to increase.
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FIGURE 13
Muscle fatigue test. (A), (B), and (C) show the results of visualization comparison of the 2M-hBCINet model with other models. These results are
based on 525 experiments (5 models × 21 muscle force states × 5 trials) across the MI-EEMG, WAY-EEG-GAL, and ESEMIT datasets.
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