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During pregnancy, marked changes in vasculature occur. The placenta is
developed, and uteroplacental and fetoplacental circulations are established.
These processes may be negatively affected by genetic anomalies, maternal
environment (i.e., obesity or diabetes), and environmental conditions such as
pollutants and hypoxia. Chronic hypoxia has detrimental effects on the vascular
adaptations to pregnancy and fetal growth. The typical pregnancy-dependent
rise in uterine blood flow by vascular remodeling and vasodilation of maternal
uterine arteries is reduced, leading to increases in vascular tone. These
maladaptations may lead to complications such as fetal growth restriction
(FGR) and preeclampsia. In this review, the effect of hypoxia on uteroplacental
and fetoplacental circulation and its impact on pregnancy outcomes in humans
and animal models are discussed. Evidence is provided for several mechanisms
that affect pregnancy through hypoxia-induced alterations. Future directions to
fill gaps in knowledge and develop therapeutic strategies to prevent or alleviate
hypoxia-related pregnancy complications, such as FGR and preeclampsia, are
suggested.
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1 Introduction

1.1 Uteroplacental and fetoplacental circulation during
healthy pregnancy

Mammalian pregnancy causes profound and progressive adaptations in the maternal
cardiovascular system intended to sustain the developing fetus. Maternal cardiac output is
increased, arterial blood pressure is decreased, and peripheral vascular resistance is reduced,
among other changes (Mahendru et al., 2014). Importantly, decreased vascular resistance
leads to increased blood flow directed to the uterine circulation (Ford, 1982; Palmer et al.,
1992; Konje et al., 2001), which is responsible for nutrient and gas exchange between the
mother and the fetus through the placenta. Any interruption to these adaptations can result
in suboptimal pregnancy outcomes or complications.

The circulation between the mother and the fetus can be divided into maternal,
placental, and fetal compartments (Figure 1). In the human maternal vascular
component, the main uterine arteries (UtAs) bifurcate from the bilateral internal iliac
arteries. UtAs run along the serosal surface of the uterus and provide most of its blood
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supply, although there is also contribution from the ovarian arteries.
Branching off the main UtAs are the arcuate arteries, which are
parallel to, and embedded in the uterine smooth muscle layer, called
the myometrium. Radial arteries (also known as myometrial
arteries) branch off from the arcuate arteries towards the
endometrium (or decidua in the pregnant state) – the inner layer
of the uterus – where some end in a specialized coiled shape and are
called spiral arteries (Degner et al., 2017; James et al., 2017). In non-
pregnant individuals, the spiral arteries remain coiled and relatively
constricted, as the demand for blood to the endometrium is small.
However, during pregnancy, the spiral arteries near the embryo
implantation site are invaded by placental trophoblast cells and
remodeled to become wider and lower resistance to meet the blood
flow demanded by the developing fetus (Pijnenborg et al., 2006;
Zhang et al., 2023). Once uteroplacental circulation is established,
the placental vascular component comes in contact with the
maternal blood, which bathes the intervillous space of the
placenta, where the syncytiotrophoblast cells allow the transport
of gases and nutrients to and from the fetal circulation. In the fetal
vascular component, the fetal internal iliac arteries connect to two
umbilical arteries which run through the umbilical cord into the
chorionic plate of the placenta. These arteries bifurcate into smaller
branches (the chorionic plate arteries) and deeper into the chorionic
villi to generate the fetal capillaries that will, in turn, become venules

leaving the villous tree and converging into the chorionic plate veins
and the umbilical vein (Chappell et al., 2023). The umbilical vein
carries oxygenated blood and nutrients to the fetal circulation via the
ductus venosus and small portal sinus (Basta and Lipsett, 2024;
Remien and Majmundar, 2023) (Figure 1).

1.2 Maternal vascular changes
during pregnancy

Early in human pregnancy, the embryo implants into the
endometrium, which is then named decidua basalis, but
uteroplacental circulation is not established until the end of the
first trimester. Around this time, placental extravillous trophoblast
cells migrate into the maternal spiral arteries, through somatic tissue
and vessel lumen, and enlarge these blood vessels by replacing the
endothelial cells (ECs), dedifferentiating smooth muscle cells
(SMCs), and increasing vasodilation (Burton and Jauniaux, 2018;
Ma et al., 2021).

The major changes to the maternal vasculature are both
structural and functional. Structurally, the UtA undergoes
remodeling, evidenced as an increase in diameter with species-
dependent changes in wall thickness (Hilgers et al., 2003; Osol
and Moore, 2014). There are several mechanisms for this

FIGURE 1
Uteroplacental and fetoplacental circulations. Schematic representation of the uteroplacental and fetoplacental blood vessels during pregnancy.
Insets show amore detailed anatomical organization of the circulatory systems (maternal, placental, and fetal). Red vessels represent oxygenated blood,
blue is non-oxygenated blood, and purple ismixed blood. Arrows show the direction of blood flow. Uterine veins and venules have been omitted from the
maternal inset for simplification.
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remodeling, including cell hypertrophy, hyperplasia, and
extracellular matrix remodeling (Osol and Moore, 2014).
Assuming blood flow to be laminar, this increase in UtA
diameter largely leads to increased blood flow as determined by
Poiseuille’s law for laminar flow (Equation 1), in which the
volumetric flow rate (Q) increases with the fourth power of the
radius (r). Increased length (l) of UtA and uterine veins is inversely
linearly related to Q, which is particularly important in multiparous
animals. Both viscosity of the fluid (η) and pressure gradient (ΔP)
are also linearly associated with Q.

Poiseuille′s lawfor laminar flow.Q � πΔP r4

8ηl
(1)

Functionally, UtAs exhibit decreased vasoconstriction and
increased vasodilatory responses, which may contribute to the
pregnancy-dependent rise in blood flow, as vessel diameter
increases and resistance decreases. Several endothelial and
vascular smooth muscle factors contribute to this regulation of
vasoreactivity. Increased production of nitric oxide (NO), via
endothelial NO synthase (eNOS), is elicited by estrogen, shear
stress, vascular endothelial growth factor, or other mechanisms in
ECs (Bird et al., 2003; Luksha et al., 2010). Whereas, in SMCs,
increased K+ channel-dependent hyperpolarization is an important
contributor to the reduced UtA vascular tone and increased
diameter observed during pregnancy (Bresnitz and Lorca, 2022).

1.3 Impairments in vascular adaptations
during pregnancy

Appropriately timed pregnancy-dependent changes in
vasculature are critical for healthy pregnancy outcomes. Thus,
impaired vascular adaptations are associated with several
pregnancy complications, such as fetal growth restriction (FGR)
and preeclampsia, which exhibit a blunted rise in UtA blood flow
(Konje et al., 2003; Julian et al., 2008; Browne et al., 2011). For
instance, human myometrial arteries from FGR pregnancies have
less vasodilatory response than appropriate for gestational age
(AGA) controls (Ong et al., 2003; Lorca et al., 2020), which is
consistent with UtAs in animal models of FGR (Aljunaidy et al.,
2016). Moreover, pregnant eNOS knockout mice develop FGR and
are associated with impaired UtA function, showing higher
vasoconstriction and impaired vasodilation compared to wild-
type mice (Kusinski et al., 2012). The same mouse model also
showed increased UtA resistance associated with structural and
cellular changes contributing to dysregulated uteroplacental blood
flow during pregnancy (van der Heijden et al., 2005; Rennie et al.,
2015). Similarly, preeclampsia reduces the vasodilatory responses in
the UtAs and myometrial arteries (Cockell and Poston, 1997;
Kublickiene et al., 2000; Luksha et al., 2010). Although the
etiology of preeclampsia is likely multifactorial, a common
contributor to this pregnancy complication is a shallow invasion
of the maternal spiral arteries by the extravillous trophoblast. This
prevents the proper remodeling of the spiral arteries and impairs the
normal function of the placenta (Burton et al., 2009). Maternal
endothelial progenitor cells may also contribute to the etiology of
preeclampsia insofar as endothelial progenitor cells from
preeclamptic pregnancies promote a transition of spiral artery

SMCs into a synthetic phenotype that accumulates extracellular
matrix components before trophoblast invasion/remodeling,
ultimately contributing to reduced uteroplacental perfusion (Tan
et al., 2024). Other insults that reduce UtA blood flow, such as
surgical ligations of the uterine vessels or exposure to hypoxic
conditions, are often utilized in animal models of these
pregnancy complications (Alexander et al., 2001; Vuguin, 2007;
Janot et al., 2014; Aljunaidy et al., 2016; Lane et al., 2020c).

1.4 Effect of hypoxia on systemic
vascular function

Hypoxia is a strong driver of vascular reactivity, inducing
constriction in pulmonary arteries and vasodilation in systemic
arteries. These diverse physiological effects of hypoxia respond to
the need to preserve gas exchange in the lungs and promote blood
delivery to systemic tissues under low oxygen conditions. Systemic
arteries dilate in response to hypoxia via multiple mechanisms.
Specifically, hypoxia produces a decrease in ATP levels, activation of
ATP-sensitive K+ (KATP) channels, and reduction in intracellular
Ca2+ levels in smooth muscle, leading to dilation (Taggart andWray,
1998). Chronic hypoxia also elicits vascular remodeling. For
instance, in pulmonary arteries, high-altitude residence and
animals exposed to artificial ambient hypoxic conditions thicken
the arterial wall and increase the production of extracellular matrix
proteins (Arias-Stella and Saldana, 1963; Rabinovitch et al., 1979;
Heath et al., 1981; Wang and Chesler, 2012).

2 Maternal vascular dysfunction
induced by hypoxia

In uterine vasculature, hypoxia decreases vasodilation and
increases vascular tone by multiple mechanisms (Figure 2).
Hypoxia is a necessary trait during early mammalian
development to prevent excess reactive oxygen species (ROS)
during the highly proliferative early pregnancy stages. However,
prolonged exposure to low oxygen levels during pregnancy can lead
to FGR (Jensen and Moore, 1997; Julian et al., 2008) and
preeclampsia (Palmer et al., 1999; Moore, 2021). Hypoxia-
induced uterine vascular dysfunction is characterized by
alterations in hemodynamic parameters. Several reports have
shown increased UtA resistance and decreased UtA diameter
reduce blood flow in women living at high altitudes (defined as
elevations above 2500 m) compared to low altitudes (Zamudio et al.,
1995; Krampl et al., 2001; Julian et al., 2008). Reduced UtA blood
flow in high-altitude pregnancies is attributed, in part, to a high
endothelin-1/NO metabolites ratio (Julian et al., 2008). Similarly,
chronic hypoxia-exposed pregnant guinea pigs show increased UtA
pulsatility and resistance indexes (Turan et al., 2017) and decreased
UtA capacity for growth during pregnancy. These responses to
hypoxia are due to modifications in the proliferative response of
vascular SMCs in vitro (Rockwell et al., 2006) and compromised
biomechanical properties of the UtA, such as increased blood vessel
distensibility and an altered stress-strain relationship (Mateev et al.,
2006). The similar effects of hypoxia on maternal UtA blood flow in
humans and guinea pigs could be a result of the similarities in their
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pregnancies, as both species develop haemomonochorial placentas,
deliver precocial neonates, present similar uterine blood flow
distribution throughout pregnancy, and fetal growth and
development (Morrison et al., 2018; Carter, 2020; Candia
et al., 2023).

Rats exposed to chronic hypoxia during pregnancy also exhibit
reduced endothelium-dependent vasodilatory responses, however,

their UtA pulsatility and resistance indexes are decreased (Aljunaidy
et al., 2016). Likewise, mice exposed to chronic hypoxia during
pregnancy show an increase or no change in UtA blood flow
compared to normoxic mice (Lane et al., 2020b; Lane et al.,
2020c). This hypoxia-induced increase in UtA blood flow in mice
and rats, opposite humans and guinea pigs, may be a compensatory
mechanism, although it is insufficient to prevent hypoxia-induced

FIGURE 2
Mechanisms underlying the effect of hypoxia in uterine vasculature. Schematic representation of uterine vascular regulation mechanisms that are
modified by hypoxia (filled red arrows) during pregnancy to reduce the rise in uterine blood flow. The open red arrows show mechanisms thought to be
compensatory or adaptions to the lack of oxygen. Abbreviations: α1-AR, alpha-1 adrenergic receptor; AMPK, AMP-activated protein kinase; BKCa, large-
conductance Ca2+- activated K+ channel; DNMT, DNA methyltransferase; E2, 17β-estradiol; EC, endothelial cell; EDHF, endothelial-derived
hyperpolarizing factor; eNOS, endothelial nitric oxide synthase; ERα, estrogen receptor-α; ERK1/2, extracellular signal-regulated kinase 1/2; KATP, ATP-
sensitive K+ channel; KCNMB1, large-conductance Ca2+-activated K+ channel β1 subunit gene; mAChR, muscarinic acetylcholine receptor; mir-210,
micro RNA 210; mtROS, mitochondrial reactive oxygen species; NO, nitric oxide; P4, progesterone; PKC, protein kinase C; RyR1/2, ryanodine receptors
1 and 2; SKCa, small-conductance Ca2+-activated K+ channel; SMC, smooth muscle cell; SR, sarcoplasmic reticulum; STOCs, spontaneous transient
outward currents; TET1 and 2, ten-eleven translocation methylcytosine dioxygenase 1 and 2.
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FGR (Aljunaidy et al., 2016; Lane et al., 2020b). This compensatory
mechanism could be associated with the higher tolerance to hypoxia
observed in rodents compared to humans. Mice and rats typically
have the ability to develop higher tissue capillary density, can
decrease their body temperature, and increase their whole-body
oxygen consumption as adaptive mechanisms to resist hypoxia
(Rising and D’Alecy, 1989; Dzhalilova and Makarova, 2020;
Arias-Reyes et al., 2021). Hence, rodent models must be exposed
to more severe hypoxic conditions than humans to create
comparable stressors. Another explanation for these differences
between mice and rats with humans and guinea pigs could be
due to the distinct placental structures among these species: mice
and rats develop a haemotrichorial placenta (two
syncytiotrophoblast layers and one cytotrophoblast layer) as
opposed to the haemomonochorial structure observed in humans
and guinea pigs (Georgiades et al., 2002).

Specific cellular and molecular mechanisms known to underlie
the hypoxia-induced reduction of uteroplacental perfusion are
discussed below.

2.1 Estrogen and other steroid hormones

Estrogen, acting on estrogen receptor-α (ERα) and estrogen
receptor-β (ERβ), is a regulator of vascular function in different
vascular beds (Rubanyi et al., 2002). ERα and ERβ modulate the
transcription of several genes due to the direct interaction of the ER
complex with estrogen response elements (Albrecht and Pepe, 1990;
Mahendru et al., 2014). In humanUtAs, increased expression of ERα
correlates inversely with collagen levels and distensibility of these
arteries (Lydrup and Ferno, 2003). During pregnancy, the dramatic
increase in circulating estrogen levels contributes to the increase in
UtA blood flow (Li et al., 2022). Increased ERα expression leads to
greater binding of circulating estrogen, which induces the
transcription of eNOS, with a consequent increase in NO
production in the UtA endothelium (Magness et al., 2001).
Estrogen also binds to membrane receptors, which activate UtA
vasodilator pathways mediated mainly by acute activation of eNOS
(Chen et al., 2004).

Chronic hypoxia prevents the normal pregnancy- and sex
steroid-induced increase in ERα expression in the pregnant
ovine UtA (Xiao et al., 2009; Chang et al., 2010).
Mechanistically, hypoxia induces epigenetic modifications
(i.e., DNA methylation and histone modification) that repress
ERα gene expression in the UtA (Dasgupta et al., 2012; Chen
et al., 2015). In DNAmethylation, a methyl group binds to cytosine
residues in CpG sequences, which can suppress gene transcription
by rendering the DNA unrecognizable in response to the binding
of some transcription factors (Handy et al., 2011; Fuentes and
Silveyra, 2019). Hypoxia has been reported to induce CpG
methylation at a wide range, including repression of ERα (Chen
et al., 2015). In ovine UtA, ERα gene repression is mediated
through increased promoter methylation at critical transcription
factor binding sites, such as specific protein 1 and upstream
stimulatory factor, reducing ERα promoter activity (Dasgupta
et al., 2012). Thus, the hypoxia-induced repression of ERα gene
expression impairs normal vascular adaptations to pregnancy,
largely by epigenetic modulation.

ERβ also contributes to UtA vasodilation during pregnancy. ERβ
is upregulated during pregnancy in endothelial and vascular smooth
muscle cells in the UtA of pregnant ewes (Byers et al., 2005; Liao
et al., 2005). In UtA endothelial cells, specific activation of ERβ alone
induces a decrease in the inhibitory site of eNOS (Thr495), leading
to elevated levels of NO, similarly to the effect of ERα expression
(Pastore et al., 2016). In addition, increased ERβ during pregnancy
mediates upregulation of the angiotensin II type 2 receptor (AT2R)
expression in UtA endothelium via transactivation of the AT2R
promoter (Mishra et al., 2019), and AT2R activation increases UtA
blood flow in rats (Mishra et al., 2018). In addition, pharmacological
activation of ERβ by diarylpropionitrile reduces protein kinase C
(PKC)-dependent maximal vasoconstriction in UtA isolated from
pregnant ewes (Chang et al., 2010). In the same study, the authors
showed that ERβ abundance in the UtA does not change in hypoxic
pregnant ewes compared to low-altitude controls (Chang et al.,
2010), suggesting that ERβ is not modulated by gestational
chronic hypoxia.

Progesterone (P4) treatment of sheep UtA upregulates eNOS
expression in non-pregnant ewes, and this effect is enhanced in the
presence of 17β-estradiol (E2) (Rupnow et al., 2001). Treatment with
both steroid hormones (P4+E2), at levels similar to those observed
during pregnancy, decreases myogenic tone in non-pregnant UtA.
In contrast, selective blockade of their receptors induces an increase
in UtA myogenic tone (Xiao et al., 2009). Notably, this sex steroid
hormone-dependent reduction of UtA myogenic tone is blunted by
chronic exposure to hypoxia during gestation (Chang et al., 2010).

Cortisol may also play a role in the regulation of UtA vascular
tone. Although maternal cortisol has been shown to be elevated
during pregnancy (Nolten and Rueckert, 1981), its effects on the
uterine vasculature remain unclear. Studies performed in UtA from
non-pregnant ewes treated with cortisol showed a potentiation in
the constrictor response to norepinephrine (NE) and a decrease in
eNOS expression, contributing to a pro-constrictor state (Xiao et al.,
2002). However, reducing endogenous cortisol levels via
adrenalectomy in non-pregnant ewes also reduces eNOS
expression in the UtA (Li et al., 2007). Pregnancy decreases the
cortisol-induced increase in UtA vasoconstriction and reduces by
half the cortisol-dependent downregulation in eNOS expression
(Xiao et al., 2002). Notably, pregnant ewes exposed to acute
cortisol treatment show no difference in UtA flow compared to
untreated controls (Vaughan et al., 2016). A prospective cohort
study demonstrated an association between high maternal cortisol
levels and low birth weight (Shriyan et al., 2023), suggesting a
relationship between cortisol-dependent UtA constriction and
birth weight. Further studies are required to determine the
precise role of cortisol in regulating UtA vasoreactivity during
pregnancy. In relation to hypoxia, one study has shown that
chronic hypoxic exposure during pregnancy increases cortisol
sensitivity in the UtA, which contributes to a pro-constrictor
state (Xiao et al., 2004).

2.2 Nitric oxide (NO) signaling

Healthy pregnancy typically involves an increase in NO-
dependent vasodilation of UtA (White et al., 2000). In one study,
pregnant women exposed to chronic hypoxia due to high-altitude
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residency show decreased vasodilatory responses to acetylcholine in
myometrial arteries compared to low-altitude residents. The
reduction was caused by decreased NO signaling, but eNOS
expression was unchanged (Lorca et al., 2019), suggesting that
the reduced effect of NO could be upstream of eNOS (i.e., at the
cholinergic receptor or its coupling to Ca2+ signaling) or
downstream of eNOS (i.e., cyclic GMP signaling, nitrosylation of
target proteins, etc.). In pregnant animal models, chronic hypoxia
impairs UtA flow-dependent vasodilator responses (Mateev et al.,
2003) and decreases NO-dependent vasodilation (White et al.,
2000). Intermittent hypoxia in pregnant mice also impairs NO-
mediated UtA vasodilation (Badran et al., 2019). In contrast, chronic
hypoxia has been found to lead to enhanced NO-mediated
vasodilation and increased eNOS expression in UtA from
pregnant ewes (Xiao et al., 2001), which contributes to increased
endothelium-dependent vasodilator signaling. Interestingly,
pregnant ewes exposed to high-altitude chronic hypoxia from
these studies do not develop FGR (Kamitomo et al., 1992), unlike
pregnant sheep studied at other high-altitude locations (Herrera
et al., 2007) or other animals such as mice, rats, or guinea pigs
(Aljunaidy et al., 2016; Turan et al., 2017; Lane et al., 2020b). This
difference among species may be due to the hypoxia-evoked increase
in NO response observed in UtAs from the pregnant ewes used in
these studies (Xiao et al., 2001). In sheep studies that observed FGR
development (Herrera et al., 2007), differences in fetal growth
induced by hypoxia could be due to specific responses by
different breeds of sheep or environmental and/or nutritional
differences.

2.3 Adrenergic signaling

Vasoconstrictor responses to adrenergic stimulation in
pregnancy are species-specific. Studies conducted in pregnant
ovine UtA showed increased sensitivity to α1-adrenergic receptor
stimulation with NE compared to non-pregnant sheep (Xiao et al.,
2002). In humans, pregnant UtA also showed increased sensitivity to
NE when compared to UtA from non-pregnant women (Rosenfeld
et al., 2012). UtA from late-pregnant rats showed three-fold
increases in vasoconstrictor responses to the α-1 agonist
phenylephrine (PE) compared to non-pregnant rats (Osol and
Cipolla, 1993). However, in pregnant guinea pig UtA, no
differences in constriction induced by NE were observed
(Jovanovic et al., 1995). However, in another study, pregnancy
decreased PE-mediated vasoconstrictor responses in guinea pig
UtA (White et al., 1998). Chronic hypoxia does not alter blunted
pregnancy-associated contractile response to adrenergic stimulation
in UtA from guinea pigs (White et al., 1998) nor in human
myometrial vessels (Lorca et al., 2019). Conversely, long-term
hypoxia exposure decreases α-1 adrenergic receptor-mediated
vasoconstrictor activity in pregnant sheep UtA by reducing
adrenergic receptor densities (Hu et al., 1996) and diminishing
the sensitivity of α-1 adrenergic receptor to inositol 1,4,5-
trisphosphate (IP3)-mediated signaling (Hu et al., 1999).
Complementary studies in the same animal model demonstrated
that exposure to chronic hypoxia during pregnancy increases Ca2+

mobilization in response to α-1 adrenergic receptor agonist stimulus
(i.e., NE), but reduces Ca2+ sensitivity in UtA myofilaments (Xiao

and Zhang, 2004). This mechanism of diminished Ca2+ sensitivity in
myofilaments may be associated, in part, with increased eNOS
expression and subsequent cyclic GMP formation as shown in
other vascular beds (McDaniel et al., 1992; Soloviev et al., 2004;
Van Hove et al., 2009).

2.4 Protein kinase C (PKC)

Another mechanism that contributes to the regulation of
vascular tone during pregnancy is signaling via PKC. Research in
this pathway has been performed almost exclusively in ovine
models, which are described here unless otherwise noted. In
healthy, non-pregnant sheep, PKC activation induces sustained
vasoconstriction in UtAs (Xiao and Zhang, 2002). During
pregnancy, this vasoconstriction is attenuated by a reduction in
PKC signaling and a consequent decrease in Ca2+ sensitivity in
vascular SMCs (Xiao et al., 2006). Furthermore, PKC activation
inhibits PE-dependent contractions by reducing the adrenergic-
dependent [Ca2+]i mobilization in normoxic pregnancies (Zhang
et al., 2006). Actin polymerization, mediated by the PKC/ERK1/
2 pathway, is responsible for the regulation of myogenic tone in UtA
and is also decreased in UtAs during normal pregnancy, further
decreasing vasoconstriction (Xiao et al., 2010b). In chronic hypoxia,
the normal pregnancy-induced suppression of PKC signaling
pathways is inhibited (Chang et al., 2009), increasing vascular
tone and pro-constrictor response in the UtA via increases in
basal Ca2+ sensitivity and actin polymerization (Xiao et al., 2010a;
Xiao et al., 2012). This process has also been described in Sprague-
Dawley rat resistance vessels exposed to prolonged stimulation with
vasoconstrictors (Staiculescu et al., 2013). This maladaptation may
be linked to the downregulation of ERα expression (Chang et al.,
2010), since steroid hormones decrease PKC activity (Xiao
et al., 2009).

2.5 K+ channels

Gestational hypoxia additionally induces PKC-mediated
inhibition of UtA K+ channel activity, contributing to vascular
dysfunction (Xiao et al., 2014). Large-conductance Ca2+-activated
K+ (BKCa) channels are responsible for the regulation of membrane
potential in many cell types (Sancho and Kyle, 2021). BKCa channels
are composed of pore-forming α subunits and their activity is
regulated by several auxiliary subunits (β1-β4 and γ1-γ4)
(Gonzalez-Perez and Lingle, 2019). In the vasculature, BKCa

channels are mainly expressed in vascular SMCs and associated
with β1 and γ1 subunits, which increase channel activity (Tanaka
et al., 1997; Brenner et al., 2000; Evanson et al., 2014). In SMCs, BKCa

channels hyperpolarize the plasma membrane in response to
increases in [Ca2+]i, promoting vasodilation and opposing
myogenic tone (Nelson et al., 1995). In the uterine circulation,
pregnancy increases the activity of BKCa channels through
regulation of its auxiliary subunits, leading to an increase in the
diameter of the UtA, a decrease in myogenic tone, and increased
UtA blood flow [reviewed by (Bresnitz and Lorca, 2022)].
Gestational hypoxia inhibits the increase in BKCa channel activity
caused by estrogen in UtA during pregnancy (Chen et al., 2015).
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Several studies propose epigenetic modifications as a keymechanism
in the hypoxia-dependent regulation of BKCa channel activity.
Chronic hypoxia enhances the expression and activity of DNA
methyltransferase (DNMT), resulting in excessive methylation of
the promoter region of the BKCa channel β1 subunit (KCNMB1) and
consequent suppression of its expression (Hu et al., 2017a). In one
study, DNMT inhibitors effectively reversed the hypermethylation
of the BKCa β1 promoter region caused by hypoxia, restored
KCNMB1 expression, and normalized channel activity, leading to
enhanced UtA function (Hu et al., 2017a). Thus, hypoxia-induced
epigenetic silencing is associated with reduced function of BKCa

channels and impaired UtA adaptation to pregnancy.
MicroRNA-210 (miR-210) has emerged as a critical regulator in

the hypoxia-induced repression of BKCa channels. miR-210 is a
highly conserved small non-coding RNA that is involved in
processes such as cell cycle and angiogenesis, and is upregulated
in the UtA during gestational hypoxia (Huang et al., 2010; Ivan and
Huang, 2014). miR-210 downregulates ten-eleven translocation
methylcytosine dioxygenase 1 (TET1) expression (Hu et al.,
2017b), a key enzyme involved in DNA demethylation (Guo
et al., 2011b). This suppression of TET1 by miR-210 results in
methylation of the KCNMB1 promoter, impairing BKCa channel
β1 subunit expression and function (Hu et al., 2017a; Hu et al.,
2017b). Moreover, miR-210 also targets and downregulates the
ryanodine type 2 receptor (RyR2) (Hu et al., 2021), a major
regulator of Ca2+ release from the sarcoplasmic reticulum and
modulator of vascular tone (Kassmann et al., 2019). Reduced
RyR2 and BKCa channel β1 subunit expression lead to a decrease
in Ca2+ sparks. In normal function, Ca2+ sparks that result from local
Ca2+ release into the cytosol of the SMC activate the BKCa channel
which, in turn, generate spontaneous transient outward currents
(STOCs) in UtA (Zhuge et al., 2002; Song et al., 2021), contributing
to membrane hyperpolarization and opposing vasoconstriction
(Nelson et al., 1995). Thus, the hypoxia-elicited reduction in Ca2+

sparks increases uterine vascular myogenic tone. Studies in humans
residing at high altitudes also have shown a SMC-specific reduction
in BKCa channel activity, evidenced by a diminished sensitivity of
myometrial arteries to the blocker tetraethylammonium (Fallahi
et al., 2022). However, the mechanism(s) underlying the hypoxia-
dependent regulation of BKCa in human uterine vasculature
remain unknown.

Another Ca2+-activated K+ channel involved in regulating
vascular tone and UtA adaptation during pregnancy is the small-
conductance Ca2+-activated K+ channel (SKCa). Specifically, SKCa

types 2 and 3 are upregulated in the UtA during pregnancy (Zhu
et al., 2013), facilitating vascular relaxation and adaptation.
However, chronic hypoxia impedes this upregulation, leading to
diminished SKCa channel activity and impaired myogenic reactivity
in pregnant animals (Zhu et al., 2013), thus contributing to
maladaptation of the uteroplacental circulation.

Hypoxia also leads to activation of KATP channels via a reduction
in ATP levels. In human myometrial arteries from women with
AGA pregnancies residing at high altitudes, there is an increased
endothelium-dependent sensitivity of KATP channels to the blocker
glibenclamide (Fallahi et al., 2022). This suggests that KATP channels
are more active (or available) under chronic hypoxic conditions and
could act as a compensatory mechanism in these uncomplicated
human pregnancies at high altitudes. Interestingly, although these

high-altitude pregnancies are AGA, they still show a non-
pathological reduction in birth weight compared to lower
altitudes (Lorca et al., 2019; Fallahi et al., 2022). However, in
ovine models of high-altitude pregnancy, KATP channel activity is
reduced in the UtA (Xiao et al., 2010c). These dissimilar
observations between humans and sheep further highlight
species-specific responses to hypoxia in the uterine vasculature.
Moreover, the apparent redundancy of K+ channel activity
promoting uterine vasodilation and increased blood flow may be
an adaptive mechanism to preserve the uterine vascular adaptation
to pregnancy under adverse conditions, such as chronic hypoxia.

2.6 Oxidative stress

Hypoxia elevates endoplasmic reticulum stress and oxidative
stress in UtA, which also suppresses Ca2+ sparks/STOCs in the ovine
pregnancy, increasing vascular tone (Hu et al., 2020). Additionally,
mitochondrial dysfunction plays a crucial role in this process.
Hypoxia and miR-210 enhance mitochondrial ROS (mtROS)
production, inhibiting STOCs and contributing to increased
myogenic tone (Hu et al., 2022). Notably, another target of miR-
210, ten-eleven translocation methylcytosine dioxygenase 2 (TET2),
which promotes DNA demethylation (Guo et al., 2011a), has been
identified as a key regulator in this pathway. Downregulation of
TET2 results in mitochondrial dysfunction and increased mtROS,
thus decreasing STOCs and increasing myogenic contractions in the
UtA, whereas overexpression of TET2 can mitigate these effects (Hu
et al., 2023).

Furthermore, rats exposed to hypoxia during gestation and
treated with a mitochondria-targeted antioxidant (MitoQ)
showed an increase in maternal placental blood space and
restoration of placental efficiency compared to untreated hypoxic
animals (Nuzzo et al., 2018). Another study found that treatment
with nanoparticle-encapsulated MitoQ reverses hypoxia-induced
FGR and alleviates placental oxidative stress in a sex-dependent
manner (Ganguly et al., 2021). Moreover, a recent study has shown a
protective effect of MitoQ against UtA dysfunction and remodeling
induced by chronic hypoxia during pregnancy in rats (Wang et al.,
2024). Nevertheless, it should be considered that early gestation
treatment with MitoQ could exacerbate the pre-eclamptic
phenotype in mice by interfering with proper placentation (Yang
et al., 2021).

Peroxisome proliferator-activated receptor gamma (PPARγ) is a
hypoxia-sensitive ligand-inducible transcription factor with diverse
functions, including the modulation of redox signaling in the
vasculature (Kim and Yang, 2013). Inhibition of PPARγ during
the second half of pregnancy decreased the vasodilator responses of
the rat UtA, resulting in FGR (Gokina et al., 2013). In a mouse model
of hypoxia-induced FGR, the pharmacological activation of PPARγ
rescued fetal weight and prevented placental insufficiency (Lane
et al., 2019). In the same rodent model, exposure to hypoxia during
pregnancy increased endothelin-1-mediated UtA vasoconstriction,
which was decreased by applying the selective PPAR-γ agonist
troglitazone (TGZ) ex vivo (Lane et al., 2020a). In addition, UtA
from hypoxic mice were more sensitive to TGZ-dependent
vasodilation than UtA from normoxic animals (Lane et al.,
2020a). These studies highlight PPARγ as a potential target to
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reverse the detrimental effects of oxidative stress and hypoxia during
late gestation. Future studies should address the specific mechanism
of PPARγ agonists in pregnant human uteroplacental circulation.

Resveratrol, an antioxidant drug, has also been widely studied in
animal models of pregnancy. Resveratrol treatment improves fetal
weight in a diabetic embryopathy model (Singh et al., 2011), induces
UtA vasodilation in non-pregnant guinea pigs (Naderali et al., 2000),
and reverses fetal death, but not the reduction in fetal weight, in a rat
model exposed to hypoxia during pregnancy (Bourque et al., 2012).
Moreover, resveratrol administered in the diet increases fetal weight
and maternal UtA blood flow without changes in UtA
vasoconstrictor or vasodilatory responses in a catechol-O-
methyltransferase knockout model, which recapitulates
characteristics of FGR and preeclampsia (Poudel et al., 2013).
Sustained subcutaneous treatment with resveratrol in pregnant
ewes increased UtA blood flow velocity and fetal growth (Darby
et al., 2019). Subsequent studies demonstrated that acute
administration of resveratrol in pregnant ewes has no significant
effect on fetal hemodynamic improvements (Darby et al., 2023),
indicating that successful treatment would require long-term
intervention. Despite these benefits during pregnancy, resveratrol
has not yet been sufficiently tested as a treatment for hypoxic human
pregnancies and warrants further clinical study.

Melatonin, a neurohormone that upregulates antioxidant
enzymes (Antolin et al., 1996), has been studied in several sheep
models of FGR. Antenatal melatonin treatment has been shown to
decrease brain injury in ovine ischemic-induced FGR offspring
(Miller et al., 2014) and improve cerebrovascular function in
ovine high-altitude-evoked FGR offspring (Candia et al., 2022).
However, potential adverse effects have been reported in sheep
exposed to chronic high-altitude hypoxia where antenatal
treatment worsened FGR (Gonzalez-Candia et al., 2016).
Moreover, antenatal melatonin treatment increased offspring
mortality in rats (Singh et al., 2012) and failed to improve fetal
weight or restore UtA vasodilatory function in an eNOS knockout
mouse model of FGR (Renshall et al., 2018). A clinical trial in which
melatonin was supplemented in women with early onset
preeclampsia found no differences in the UtA pulsatility index
but reduced the need for increasing antihypertensive drugs
compared to the untreated women (Hobson et al., 2018).

N-acetylcysteine (NAC), an antioxidant likely acting as a
precursor for glutathione synthesis (Samuni et al., 2013), partially
reversed FGR in a guinea pig model and prevented fetal endothelial
dysfunction (Herrera et al., 2017). Furthermore, NAC also restored
vasodilatory responses in fetal arteries from chicken embryos
exposed to hypoxia during development and in human chorionic
arteries from FGR pregnancies (Krause et al., 2024). In addition,
antenatal NAC treatment in FGR rats increased fetal brain weight at
term without augmenting fetal weight (Chang et al., 2005).

Clinical studies have found limited or no effects of other
antioxidants, such as vitamins C and E (Conde-Agudelo et al.,
2011) and selenium (McDougall et al., 2023), in improving
pregnancy outcomes (i.e., fetal weight). One clinical trial
determined that using vitamins C and E in high concentrations
exacerbates low birth weight (Poston et al., 2006).

Future efforts may focus on finding one or a combination of
antioxidant treatment(s) for the improvement of maternal and
fetal outcomes.

2.7 High-altitude ancestry

In human populations, high-altitude hypoxia has divergent
effects on fetal growth and pregnancy outcomes depending on
the ancestry of the individuals. Studies conducted in La Paz,
Bolivia (elevation 3,600–4,100 m) revealed that women of
Andean origin exhibit greater UtA diameter, cross-sectional area,
and blood flow during pregnancy than those of European origin,
resulting in improved uteroplacental oxygen delivery (Wilson et al.,
2007). These physiological adaptations contribute to higher birth
weights in newborns from Andean ancestry compared to their
European counterparts at high altitudes (Julian et al., 2007).
Interestingly, this is independent of maternal arterial oxygen
content between the groups (Wilson et al., 2007; Julian et al.,
2009). Women from lowland ancestry raised at high altitudes are
not protected against the effects of high altitude on uteroplacental
O2 delivery or reductions in birth weight, indicating this adaptation
involves genetic, rather than developmental, factors (Julian et al.,
2011). This may be due to a single nucleotide polymorphism (SNP)
located near PRKAA1, the gene that encodes for the AMP-activated
protein kinase (AMPK) α1 catalytic subunit, which is associated
with higher UtA diameter and birthweight in altitude-adapted
Andean populations (Bigham et al., 2014). Similar to Andeans,
Tibetan populations living at high altitudes are protected from
reduced birth weight compared to newcomers of Han ancestry
(Moore et al., 2001). In addition, a high-altitude population in
Ladakh, India (elevation 3,540 m), with mostly Tibetan ancestry,
shows higher birth weights and larger UtA diameters than a low-
altitude Indian population (Dolma et al., 2022). Furthermore,
although no genome-wide significance of SNP was observed in
Ladakhi populations, seven variants showed nominal associations
in genes associated with birth weight (Bhandari et al., 2022). Overall,
these associations underscore the critical role of UtA blood flow in
fetal growth and highlight genetic factors that may enable high-
altitude populations to better adapt to high-altitude hypoxia,
reducing the incidence of adverse pregnancy outcomes.

2.8 AMP-activated protein kinase (AMPK)

Recent studies have highlighted the significant role of AMPK in
modulating UtA blood flow and protecting against FGR under
hypoxic conditions, including high altitude. AMPK acts as a
metabolic sensor and is activated by ATP depletion, nutrient
starvation, and hypoxia, among other stressors (Kim et al., 2016).
AMPK induces vasodilatory responses by increasing NO
bioavailability in ECs (Chen et al., 1999) and by decreasing
[Ca2+]i through sarcoplasmic/endoplasmic Ca2+-ATPase and BKCa

channel activation in vascular SMC (Schneider et al., 2015).
Following the identification of the PRKAA1 SNP in a high-
altitude human population (Bigham et al., 2014), a study in mice
exposed to chronic hypoxia showed increased expression and
activation of AMPK in UtAs (Skeffington et al., 2016).
Accordingly, mice exposed to hypoxia during late pregnancy and
treated in vivo with the AMPK agonist AICAR showed further
increased UtA blood flow and partially attenuated reduction in fetal
weight (Lane et al., 2020c). Furthermore, humanmyometrial arteries
from women with AGA pregnancies residing at high altitudes
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showed increased AMPK-dependent vasodilation compared to low-
altitude counterparts (Lorca et al., 2020). However, AMPK-
dependent vasodilation was blunted in FGR pregnancies at high
altitudes (Lorca et al., 2020). Thus, this vasodilatory response seems
crucial for maintaining uteroplacental perfusion and supporting
fetal growth in hypoxic environments. The limited research on
AMPK activation in the human placenta at high altitude is
mixed. In one study, high-altitude environments increased the
activation of AMPK, measured as the ratio of total AMPK and
its phosphorylated (Thr172) form (Lorca et al., 2021), whereas
another study showed no change in AMPK activation (Yung
et al., 2012). This discrepancy could be due to different sample
sizes and/or altitude gradients between these studies. In mouse
placenta, hypoxia during late pregnancy induces a reduction in
phosphorylated AMPK (Lane et al., 2020b). Although the
significance of the hypoxia-dependent regulation of placental
AMPK for the regulation of uteroplacental blood flow remains
unclear, taken together, these observations suggest an adaptive
mechanism by which uterine vascular AMPK helps sustain the
pregnancy-dependent rise in UtA blood flow under hypoxic
conditions. There are potential therapeutic opportunities that
may arise from these findings, and drugs that activate AMPK,
such as metformin, are approved for certain pregnancy
complications, such as gestational diabetes mellitus and
polycystic ovary syndrome (Lautatzis et al., 2013). However,
clinical randomized controlled trials have indicated that in utero
exposure to metformin may lead to metabolic issues, increasing the
risk of obesity in children (Hanem et al., 2018; Rowan et al., 2018). In
addition, metformin can cross the placenta and affect fetal tissue
(Charles et al., 2006), raising the likelihood of off-target effects.
Thus, the wide-ranging effects of metformin discourage its use for
specifically increasing uterine vasodilation in cases of reduced
uteroplacental perfusion. Specific regulators of vascular AMPK
targets could also be further studied to treat hypoxia-related
vascular complications of pregnancy.

3 Hypoxia-induced regulation in
fetoplacental circulation

The fetoplacental vascular bed is represented by umbilical cord
arteries, umbilical vein, and the chorionic plate and villous blood
vessels which include arteries, capillaries, and veins. Early studies
aimed at addressing the acute effects of oxygen tension were
performed in human placental cotyledons, in which acute
hypoxia induces vasoconstriction, mainly in small caliber arteries
(Howard et al., 1987; Hampl et al., 2002). This hypoxia-elicited
vasoconstriction is partially mediated by a decrease in basal NO
release by the endothelium (Byrne et al., 1997) and by an inhibition
of voltage-gated K+ channels in the arteries of the chorionic plate
(Hampl et al., 2002) with consequent activation of L-type Ca2+

channels (Jakoubek et al., 2006). Vasoconstrictor responses of the
fetoplacental blood vessels to acute hypoxia appear to be very similar
to that of the human pulmonary circulation (reviewed by (Ward and
McMurtry, 2009)). Lowering O2 in pressurized chorionic plate veins
induces vasoconstriction, whereas it evokes a moderate vasodilation
in chorionic plate arteries (Wareing, 2012). Furthermore, nitrite-
dependent vasodilation of chorionic plate arteries and veins is

increased by acute hypoxia (Tropea et al., 2018). Chronic
hypoxia due to residence at high altitudes also induces changes
in the placental vasculature by increasing placental capillary density
with decreased remodeling (Tissot van Patot et al., 2003). Future
studies should investigate the effect of long-term hypoxia on the
functional regulation of human fetoplacental circulation.

Studies using various animal models have been conducted to
understand the impact of chronic hypoxia on the fetoplacental
vascular bed. In rats, chronic hypoxia during pregnancy induces
an increased vasoconstrictor response to angiotensin II and acute
hypoxic challenges in fetoplacental vessels (Jakoubek et al., 2008).
Furthermore, rat fetoplacental arteries exposed to chronic hypoxia
during pregnancy showed increased collagen fiber accumulation,
indicative of remodeling towards a pro-constrictor phenotype
(Hvizdosova-Klescova et al., 2013). Similar to the observations in
human placentas (Tissot van Patot et al., 2003), mouse and ewe
models of gestational hypoxia showed an increase in the capillary
network in the placenta (Parraguez et al., 2006; Cahill et al., 2018).
This angiogenic response to hypoxia is also evident in the
chorioallantoic membrane (Strick et al., 1991), the avian
equivalent of the fetoplacental arterial circulation (Lindgren et al.,
2010). Notably, the hypoxic chick embryo has been used as an
animal model to study FGR independent of maternal hypoxic
influences (Itani et al., 2018).

These studies in fetoplacental vessels showed that acute hypoxia-
induced vasoconstriction of fetoplacental arteries reduces placental
perfusion. However, capillary network expansion in the chronically
hypoxic placenta acts as a local compensatory drive that potentially
ensures the correct blood flow distribution and, therefore, oxygen
supply to the fetus. Understanding this physiological adaptation
may facilitate the identification of mechanisms that are
compromised in pathological pregnancy conditions associated
with impaired fetoplacental vasculature.

4 Conclusion

According to the developmental origins of adult diseases
hypothesis (Barker’s hypothesis), pregnancy complications
leading to decreased uteroplacental perfusion, placental
dysfunction, and subsequent low birth weight affect early life and
increase cardiometabolic risk in adulthood (Barker, 1990; de Boo
and Harding, 2006). Since chronic hypoxia is a contributor to many
vascular-associated pregnancy complications, such as FGR and
preeclampsia, the mechanisms involved in the maternal and fetal
vascular responses to hypoxic environments could highlight possible
therapies to prevent or alleviate these complications. Particular
attention should be given to the protective mechanisms observed
in human populations residing at high altitudes (Julian et al., 2009;
Bigham et al., 2014; Bhandari et al., 2022), as they could reveal novel
targets for improving uteroplacental and fetoplacental perfusion.
The development of preclinical models of chronic hypoxia have also
been important for the testing of new drugs and therapies. For
example, antioxidants and other metabolism-modifying drugs have
been described in animal models to attenuate the effects of hypoxia
on maternal vasculature, alleviating the development of pregnancy
complications (Lane et al., 2019; Lane et al., 2020c; Wang et al.,
2024). Future studies aiming to develop treatments targeted at
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uteroplacental and/or fetoplacental vasculature may prevent the
non-specific adverse vascular effects observed in previous clinical
trials using broad vasodilators (Pels et al., 2020). Additionally, the
impact of hypoxia on placental physiology and its link to pregnancy
complications has been extensively studied, reviewed by (Colson
et al., 2021), and this information should also be taken into account
when developing therapies. Thus, using animal models of impaired
placental function can enhance our understanding of pregnancy
complications associated with vascular issues.
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