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Background: Patients with diabetes face an increased risk of postoperative
pulmonary infection (PPI). However, precise predictive models specific to this
patient group are lacking.

Objective: To develop and validate a machine learning model for predicting PPI
risk in patients with diabetes.

Methods: This retrospective study enrolled 1,269 patients with diabetes who
underwent elective non-cardiac, non-neurological surgeries at our institution
from January 2020 to December 2023. Predictive models were constructed
using nine different machine learning algorithms. Feature selection was
conducted using Least Absolute Shrinkage and Selection Operator (LASSO)
logistic regression. Model performance was assessed via the Area Under the
Curve (AUC), precision, accuracy, specificity and F1-score.

Results: The Ada Boost classifier (ADA) model exhibited the best performance
with an AUC of 0.901, Accuracy of 0.91, Precision of 0.82, specificity of 0.98, PPV
of 0.82, and NPV of 0.82. LASSO feature selection identified six optimal predictive
factors: postoperative transfer to the ICU, Age, American Society of
Anesthesiologists (ASA) physical status score, chronic obstructive pulmonary
disease (COPD) status, surgical department, and duration of surgery.
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Abbreviations: PPI, Postoperative Pulmonary Infection; ICU, Intensive Care Unit; PCA, Patient-
Controlled Analgesia; ASA, American Society of Anesthesiologists; COPD, Chronic Obstructive
Pulmonary Disease; NYHA, New York Heart Association; LASSO, Least Absolute Shrinkage and
Selection Operator; AUC, Area Under the Curve; ROC, Receiver Operating Characteristic; PPV,
Positive Predictive Value; NPV, Negative Predictive Value; KNN, K-Nearest Neighbors; SVM, Support
Vector Machine; RF, Random Forest; DT, Decision Tree; LightGBM, Light Gradient Boosting Machine;
ADA, Ada Boost; NB, Naive Bayes; LR, Logistic Regression; LDA, Linear Discriminant Analysis; SHAP,
SHapley Additive exPlanations; SD, Standard Deviation; IQR, Interquartile Range; BMI, Body Mass Index;
MAP, Mean Arterial Pressure; HbA1c, Hemoglobin A1c; SBP, Systolic blood pressure; DBP, Diastolic blood
pressure; HR, Heart rate.
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Conclusion: Our study developed a robust predictive model using six clinical
features, offering a valuable tool for clinical decision-making and personalized
prevention strategies for PPI in patients with diabetes.

KEYWORDS

diabetes mellitus, postoperative pulmonary infection, machine learning, risk prediction,
Ada Boost classifier

Introduction

The global prevalence of diabetes is on the rise, with an
estimated 783 million individuals expected to be affected by the
condition by 2045 (Magliano and Boyko, 2021). Patients with
diabetes are at a higher risk of developing complications
following surgical procedures compared to patients without
diabetes (Crowley et al., 2023). PPI represent one of the most
common complications after surgery, leading to increased patient
suffering, higher medical costs, and placing a significant burden on
public health systems (Jiang et al., 2024; Abbott et al., 2018;
Verkoulen et al., 2024). Therefore, effectively predicting and
preventing PPI in patients with diabetes has become an urgent
issue that needs addressing.

In this context, employing advanced data analysis techniques to
identify high-risk patients and implement targeted preventive
measures is of critical importance. In recent years, machine
learning has emerged as a powerful tool for data mining, finding
extensive applications in healthcare, particularly in the development
of disease prediction models (Sidey-Gibbons and Sidey-Gibbons,
2019; Deo, 2015). By analyzing large volumes of clinical data,
machine learning algorithms can uncover potential risk factors
and their interrelationships, aiding in the early identification of
high-risk groups and guiding clinical decision-making, thereby
reducing the incidence of PPI (Li et al., 2023; NIHR Global
Health Research Unit on Global Surgery, STARSurg
Collaborative, 2024). While some studies have begun to explore
the use of machine learning methods to predict the risk of PPI, there
is a relative paucity of research dedicated to developing prediction
models specifically for patients with diabetes (Odor et al., 2020;
Kouli et al., 2022). Consequently, the development of a prediction
model tailored to the risk of PPI in patients with diabetes is of
paramount importance.

Against this backdrop, the present study aims to utilize machine
learning algorithms to develop a predictive model for the risk of PPI
in patients with diabetes. It is hoped that this model will effectively
identify those patients who are at high risk of developing PPI,
providing clinicians with more personalized prevention and
intervention strategies. Additionally, this study will explore the
applicability and accuracy of different machine learning
algorithms in predicting PPI, offering valuable insights for
clinical practice.

Through this research, it is anticipated that new ideas and
technological support will be provided for the postoperative
management of patients with diabetes. Furthermore, this study
will lay the groundwork for future large-scale, multicenter
prospective studies, contributing to the advancement of efforts
aimed at preventing PPI.

Methods

Study design

This study employed a retrospective cross-sectional design.
Clinical data were collected from patients with diabetes who
underwent elective non-cardiac, non-neurological surgeries at our
institution between January 2020 and December 2023.

Patient and public involvement

Patients or the public WERE NOT involved in the design, or
conduct, or reporting, or dissemination plans of our research.

Data collection

Inclusion and exclusion criteria

Inclusion criteria were: 1. Aged 18–75 years, regardless of
gender. 2. Undergoing elective non-cardiac and non-neurological
surgery. 3. Diagnosed with Type II diabetes. Exclusion criteria were:
1. Preoperative pulmonary infection. 2. Body mass index (BMI) ≥
35 kg/m2 3. Significant abnormalities in cardiac, pulmonary, hepatic,
or renal function. 4. Physical status classification ≥ IV. 5. Missing
Hemoglobin A1c (HbA1c) data. 6. Excessive missing data.

Data sources and preprocessing

Relevant patient information was extracted from the hospital’s
electronic medical record system. Specific data sources included:
Inpatient medical records; Surgical reports; Anesthesia records;
Laboratory test reports; Imaging examination reports;
Nursing records.

The collected data primarily encompassed: 1. Demographic
characteristics: Age, gender, height, weight, etc; 2. Diabetes-
related information: Medication adherence, insulin therapy usage;
3. Comorbidities: Hypertension, coronary heart disease, COPD; 4.
Laboratory tests: HbA1c, average blood glucose levels within 3 days
postoperatively; 5. Surgical information: Surgical department,
duration of surgery, type of anesthesia; 6. Preoperative
assessment: ASA classification, New York Heart Association
(NYHA) classification, preoperative oral carbohydrate, baseline
blood pressure, baseline heart rate; 7. Postoperative management:
Use of PCA, transfer to the ICU after surgery; 8. Other: Blood
transfusion during perioperative period.
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Data preprocessing

Data Cleaning: 1. Identification and correction of obvious data
entry errors; 2. Handling of duplicate records.

Missing Value Handling: 1. For variables with a missing
rate <5%, median or mean imputation was applied; 2. For
variables with a missing rate between 5% and 10%, the decision
to impute or exclude was based on the variable’s importance and the
pattern of missingness; 3. Variables with a missing rate >10%
were excluded.

Outlier Handling: All outlier data points were removed to
minimize their impact on the analysis.

Feature Engineering: 1. Standardization of continuous variables:
Z-score standardizationmethod was used; 2. Encoding of categorical
variables: One-hot encoding was applied; 3. Creation of composite
features: BMI based on height and weight, Mean Arterial Pressure
(MAP) derived from systolic and diastolic blood pressures.

Main outcomes

The primary outcome of this study was the incidence of
pulmonary infections diagnosed by the operating surgeon before
patient discharge. PPI were defined as new-onset pulmonary
infections diagnosed postoperatively.

Model selection and training

We selected nine commonly used machine learning
algorithms to build our predictive models: K-Nearest
Neighbors (KNN): An instance-based learning algorithm.
Support Vector Machine (SVM) with Linear Kernel: A
supervised learning algorithm for classification. Random
Forest (RF): An ensemble learning method based on decision
trees. Decision Tree (DT): A tree-based classification algorithm.
Light Gradient Boosting Machine (LightGBM): A gradient
boosting framework. Ada Boost (ADA): An ensemble boosting
algorithm. Naive Bayes (NB): A probabilistic classifier based on
Bayes’ theorem. Logistic Regression (LR): A statistical method for
binary outcome prediction. Linear Discriminant Analysis (LDA):
A method for finding linear combinations of features that
separate classes.

Then, LASSO logistic regression was used to select PPI
features (Mullah et al., 2021). The dataset was randomly
divided into a training set and a testing set at a ratio of 3:1.
The model was trained and optimized using 10-fold cross-
validation on the training set.

Model evaluation

The performance of the models was evaluated using the
following metrics: 1. AUC; 2. Accuracy; 3. Precision; 4.
Specificity; 5. PPV; 6. NPV.

To enhance the interpretability of the models, SHAP (SHapley
Additive exPlanations) values were utilized to analyze the
contribution of each feature to the prediction results.

Preventive strategy formulation

Based on the predictions from the machine learning models and
the analysis of feature importance, we aimed to: 1. Identify high-risk
patient groups. 2. Quantify the impact of each risk factor. 3. Develop
targeted preventive measures and intervention plans.

Statistical analysis

Continuous variables were summarized using means ± standard
deviation (SD) for normally distributed data or medians with
interquartile ranges (IQR) for non-normally distributed data.
Categorical variables were described using frequencies and
percentages. Machine learning models were built and evaluated
using R version 4.2.2 with the caret package and the pROC
package. A p-value <0.05 was considered statistically significant.

Ethics approval and consent to participate

This study was approved by the Ethics Committee of the First
Affiliated Hospital of Chengdu Medical College (2023CYFYIRB-
BA-May03) and registered in the Chinese Clinical Trial Registry
(ChiCTR2400080801, www.chictr.org.cn). The requirement for
informed consent was waived due to the retrospective nature of
the study. All procedures were conducted in accordance with the
Declaration of Helsinki and relevant institutional guidelines (von
et al., 2007).

Study results

Baseline characteristics of study participants

Between January 2020 and December 2023, a total of
19,690 patients with diabetes underwent surgical treatment at our
institution. After screening, 1,269 patients were ultimately included
for analysis. The patient enrollment flowchart is shown in Figure 1,
and the baseline characteristics are presented in Table 1.

Of the 1,269 patients included in the study, 187 (14.7%) developed
PPI. Patients who developed PPI were significantly older (64.24 ±
8.37 vs. 60.43 ± 9.96 years, P < 0.001), had a higher ASA score (P <
0.001), andweremore likely to have COPD (9.62% vs. 2.87%, P< 0.001)
compared to those who did not develop PPI. The duration of surgery
was also significantly longer in the PPI group (359.90 ± 171.12 vs.
237.86 ± 125.61 min, P < 0.001).

Feature selection using LASSO - Logistic
regression method

We used LASSO (Least Absolute Shrinkage and Selection
Operator) logistic regression for feature selection, implemented
using the glmnet package in R. The optimal regularization
parameter λ was selected through cross-validation using cv.
glmnet function. Feature importance was ranked based on the
absolute values of their non-zero coefficients.
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Due to the potential negative impact of correlated or less
important features on the performance of machine learning
models (Figure 2), we conducted feature selection and ranked the
importance of the features.

Optimal features

Using the LASSO-Logistic feature selection method, we
identified 12 optimal features from the initial 28. These features
performed exceptionally well in predicting the risk of PPI in patients
with diabetes: Sex; Postoperative ICU admission; MAP; Systolic
Blood Pressure (SBP); ASA classification; COPD; NYHA
classification; BMI; Preoperative oral carbohydrate loading;
Surgical departments; Age; Duration of surgery.

Recommended features

To further simplify the model and enhance its interpretability,
we selected six of the most important features. These features exhibit
the highest importance in predicting PPI: Postoperative ICU
admission; Age; ASA classification; COPD; Surgical department;
Duration of surgery.

Using these recommended features for model training not only
ensures model performance but also simplifies the model structure,
enhancing its interpretability. These results provide strong support
for subsequent clinical decision-making and the development of
personalized preventive strategies.

Feature importance display

Random Forest analysis of the six selected features revealed their
relative importance through Mean Decrease in Gini index (Figure 3).
Surgical department emerged as themost influential predictor, followed
by surgery duration and age, while ICU admission, COPD status, and
ASA classification showed relatively lower contributions. This ranking
suggests that surgical type and procedural factors have stronger
predictive power than patient baseline characteristics.

Performance metrics of each model on the
train and test set

The performancemetrics of eachmodel on the train and test set are
summarized in Figure 4. The Ada Boost (ADA) model performed the
best across all metrics, with its ROC curve illustrated in Figure 4.

FIGURE 1
Flow diagram of the study selection process. K-Nearest Neighbors Classifier (KNN), Support Vector Machinewith Linear Kernel (SVM - Linear Kernel),
Random Forest Classifier (RF), Decision Tree Classifier (DT), Light Gradient Boosting Machine (Light GBM), Ada Boost Classifier (ADA), Naive Bayes (NB),
Logistic Regression (LR), and Linear Discriminant Analysis (LDA).
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TABLE 1 Patients group baseline characteristics by primary outcomes.

Variable Patients with PPI (n = 187) Patients without PPI (n = 1,082) P

Sex (Female, n, %) 80 (42.78%) 621 (57.39%) <0.001

Age (years) 64.24 (8.37) 60.43 (9.96) <0.001

Hight (cm) 159.88 (7.43) 159.19 (7.78) 0.260

Weight (kg) 61.65 (11.69) 63.07 (11.24) 0.112

BMI (kg/m2) 24.07 (4.02) 24.84 (3.77) 0.011

CHO (n, %) 45 (24.06%) 179 (16.54%) 0.013

Departments <0.001

Department of Orthopedic Surgery (n, %) 34 (18.18%) 229 (21.16%)

Department of Gastrointestinal Surgery (n, %) 27 (14.44%) 58 (5.36%)

Department of Thoracic and Cardiovascular Surgery (n, %) 83 (44.39%) 31 (2.87%)

Other Departments 43 (22.99%) 764 (70.61%)

PCA (n, %) 144 (77.01%) 587 (54.25%) <0.001

ASA (n, %) <0.001

II 83 (44.39%) 745 (68.85%)

III 104 (55.61%) 337 (31.15%)

Perioperative blood transfusion (n, %) 27 (14.43%) 52 (4.81%)

Basic SBP (mmHg) 135.56 (17.86) 137.13 (18.39) 0.281

Basic DBP (mmHg) 76.10 (11.02) 77.24 (11.51) 0.208

Basic MAP (mmHg) 95.92 (11.17) 97.21 (12.02) 0.171

Basic HR (bpm) 83.19 (12.76) 83.10 (12.15) 0.931

HbA1c (%) 7.60 (2.6) 7.45 (2.8) 0.604

Hypertension (n, %) 103 (55.08%) 507 (46.86%) 0.038

CHD (n, %) 20 (10.70%) 75 (6.93%) 0.071

COPD (n, %) 18 (9.62%) 31 (2.87%) <0.001

NYNA (n, %) <0.001

1 110 (58.82%) 800 (73.94%)

2 68 (36.36%) 262 (24.21%)

3 9 (4.81%) 20 (1.85%)

Transfer to ICU (n, %) 21 (11.23%) 16 (1.48%) <0.001

Diabetes drug (n, %) 138 (73.80%) 740 (68.39%) 0.139

Insulin (n, %) 22 (11.76%) 94 (8.69%) 0.178

Mean blood glucose on Pos - 1 d (mmol/L) 11.20 (3.5) 11.40 (3.4) 0.314

Mean blood glucose on Pos - 2 d (mmol/L) 8.3 (2.8) 8.4 (2.8) 0.525

Mean blood glucose on Pos - 2 d (mmol/L) 7.9 (2.8) 7.9 (2.8) 0.594

Blood glucose variability (%) 20.20 (13.10) 22.20 (13.35) 0.110

Surgery time (min) 359.90 (171.12) 237.86 (125.61) <0.001

Postoperative hospital stay (days) 9.70 (7.6) 6.15 (5.0) <0.001

(Continued on following page)
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Key predictors and their clinical implications

Our LASSO-Logistic model identified six critical predictors of
PPI risk in diabetic patients: 1. Surgical Department: Thoracic
surgery carried the highest risk (72.81% vs 5.33% in other

departments, P<0.001), followed by gastrointestinal surgery
(31.76%) and orthopedics (12.93%), likely due to direct
respiratory system involvement and procedure complexity. 2.
Postoperative ICU Admission: Strongly indicative of case
complexity and patient vulnerability (11.23% in PPI group vs

TABLE 1 (Continued) Patients group baseline characteristics by primary outcomes.

Variable Patients with PPI (n = 187) Patients without PPI (n = 1,082) P

General anesthesia (n, %) 176 (94.12%) 877 (81.05%) <0.001

Note: Data are expressed as M (IQR) or number of patients (%) as appropriated. PPI, postoperative pulmonary infection; ICU, intensive care unit; PCA, Patient-Controlled Analgesia; IQR,

interquartile range; BMI, body mass index; MAP, mean arterial pressure; HbA1c, Hemoglobin A1c; NYHA, new york heart association; ASA, american society of anesthesiologists; COPD,

chronic obstructive pulmonary disease; SBP, systolic blood pressure; DBP, diastolic blood pressure; HR, heart rate.

FIGURE 2
Feature selection using the LASSO-logistic regressionmethod. Left panel shows LASSO coefficient profiles of the 28 features versus log(λ). Numbers
at the top represent the count of nonzero coefficients. Right panel shows cross-validated error (binomial deviance) versus log(λ). Two vertical dotted lines
represent λ.min (left) and λ.1se (right). At λ.1se, six features were selected: postoperative ICU admission, age, ASA classification, COPD status, surgical
department, and duration of surgery.

FIGURE 3
Top features by importance in random forest model.
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1.48% in non-PPI group, P<0.001). These patients typically require
more intensive monitoring and have higher severity of underlying
conditions. 3. Age: Significantly higher in PPI group (64.24 ± 8.37 vs
60.43 ± 9.96 years, P<0.001), associated with immunosenescence,
pulmonary function decline, reduced recovery capacity, and
increased comorbidities. Advanced age particularly impacts
respiratory defense mechanisms and wound healing. 4. ASA
Classification: Higher proportion of Grade III in PPI group
(55.61% vs 31.15%, P<0.001), reflecting poorer overall health
status, multiple systemic comorbidities, and increased
complication susceptibility. 5. COPD Status: Markedly higher
prevalence in PPI group (9.62% vs 2.87%, P<0.001), significantly
elevating PPI risk due to impaired lung function, compromised
respiratory defense mechanisms, and chronic airway inflammation.
6. Surgery Duration: Substantially longer in PPI group (359.90 ±
171.12 vs 237.86 ± 125.61 min, P<0.001). Longer procedures
increase pathogen exposure, tissue trauma, anesthesia-related
risks, and physiological stress response.

To ensure data consistency and representativeness, we analyzed
the distribution of patient characteristics across different surgical

departments and risk groups. The 1,269 patients were distributed
across thoracic surgery (8.98%, n = 114), orthopedics (20.72%, n =
263), gastrointestinal surgery (6.70%, n = 85), and other
departments (63.60%, n = 807). The incidence of PPI varied
significantly among departments: thoracic surgery (72.81%),
orthopedics (12.93%), gastrointestinal surgery (31.76%), and
other departments (5.33%). This variation reflects the inherent
risks associated with different surgical procedures and was
successfully captured by our model, with the surgical department
being identified as the most important predictor (Figure 3). Key
clinical characteristics also showed consistent patterns between PPI
and non-PPI groups. Age (64.24 ± 8.37 vs 60.43 ± 9.96 years,
P<0.001), ASA classification (Grade III: 55.61% vs 31.15%,
P<0.001), and surgery duration (359.90 ± 171.12 vs 237.86 ±
125.61 min, P<0.001) were significantly different between groups,
indicating robust discriminative features for our prediction model.

These findings offer valuable insights for clinical practice: 1. Risk
Stratification: Enables targeted preventive measures for high-risk
patients. 2. Age-Adapted Care: Tailored strategies including
enhanced respiratory care, early mobilization, and optimized

FIGURE 4
ROC curve for prediction of postoperative pulmonary infection and PerformanceMetrics of EachModel on the Test Set. AUC, Area Under the Curve;
ROC, Receiver Operating Characteristic; PPV, Positive Predictive Value; NPV, Negative Predictive Value.
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medication and nutrition for older patients. 3. Preoperative
Optimization: Thorough evaluation and management, especially
for patients with high ASA scores or COPD. 4. Surgical
Planning: Where clinically appropriate, consider minimizing
surgery duration and optimizing technique. 5. Specialized
Protocols: Implement enhanced postoperative care and
monitoring, particularly for thoracic surgery patients.

Discussion

This study aimed to develop a machine learning-based
predictive model for assessing the risk of PPI in patients with
diabetes. Our model showed stable performance between training
(AUC 0.901) and testing (AUC 0.854). The six predictors identified
are widely available clinical parameters, suggesting potential broad
applicability. This finding is consistent with recent studies, which
have shown that ensemble learning methods, such as Ada Boost,
excel in predicting postoperative complications (Koenen et al., 2024;
Wu et al., 2023).

Most prior studies (Kouli et al., 2022) have focused on general
surgical populations, overlooking the unique risk factors in diabetic
patients, leading to suboptimal risk assessment. By targeting diabetic
patients, our study provides a more nuanced understanding of risk
factors in this high-risk group.

Our ADA Boost model (AUC 0.854, specificity 0.98, accuracy
0.87) showed improved performance compared to recent studies: Li
et al.’s (Li et al., 2023) Random Forest model (AUC 0.721,
accuracy 0.664, specificity 0.656)) for spinal cord injury patients,
Jiang et al. (2024) study of esophageal cancer patients, where they
reported model performance ranges of AUC 0.627–0.850, sensitivity
60.7%–84.0%, and specificity 59.1%–83.9%, andWang et al.’s (Wang
et al., 2024) nomogram (AUC 0.759) for post-abdominal surgery
ICU patients. This improvement likely results from our model’s
ability to capture complex relationships between risk factors and the
inclusion of diabetes-specific features, though external validation
studies are still needed. Using the LASSO-logistic feature selection
method, we identified six optimal predictors: transfer to ICU after
surgery, Age, ASA grade, COPD, surgical departments, and surgery
time. The identification of these factors not only enhances the
predictive accuracy of the model but also provides clear targets
for clinical intervention. Particularly, the duration of surgery, being
a modifiable factor, is closely associated with surgical trauma and
anesthesia time, all of which significantly impact postoperative
outcomes. This importance has been substantiated in multiple
studies (Gupta et al., 2011; Short et al., 2017; Mehaffey et al.,
2017; Seykora et al., 2019; Alrefaei et al., 2024).

Our study results indicate that COPD is one of the key factors in
predicting PPI in patients with diabetes. This finding is consistent
with several recent studies, underscoring the importance of COPD
in the assessment of postoperative complication risks (Shin et al.,
2017; Roy et al., 2020; Agostini et al., 2010; Quan et al., 2022; Deng
et al., 2024). The significant increase in risk highlights the necessity
for special attention to patients with COPD. The association
between COPD and PPIs may stem from multiple mechanisms
(Vestbo et al., 2013). Firstly, patients with COPD often experience
chronic airway inflammation and impaired mucociliary clearance,
which increases the risk of bacterial colonization and infection.

Secondly, COPD is frequently accompanied by decreased lung
function, leading to reduced tolerance to surgical stress and
anesthesia (Maddah and Barzegari, 2023; Duggappa et al., 2015).
Moreover, the coexistence of COPD and diabetes may further
exacerbate the risk of PPIs. This could be due to the interaction
between the immune dysfunction caused by diabetes and the
structural and functional changes in the lungs induced by COPD
(Zhou et al., 2024).

There are significant differences in the incidence of PPI
across different surgical departments, with patients
undergoing thoracic, orthopedic, and gastrointestinal surgeries
being at higher risk. Unsurprisingly, due to the specific nature of
the surgical site, patients who undergo thoracic surgery have a
notably high rate of PPI (Ailawadi et al., 2017; Poelaert et al.,
2014; Alrefaei et al., 2024). Previous studies have also shown
relatively high rates of PPI in patients undergoing orthopedic
(Song et al., 2016) and gastrointestinal surgeries (Miki et al.,
2016), with advanced age and COPD being significantly
associated with an increased risk of PPI (Alrefaei et al., 2024).
This finding suggests the need for specific preventive strategies
tailored to different departments.

Postoperative transfer to the ICU typically indicates that the
patient has undergone more complex surgery or has more severe
underlying conditions, naturally increasing the risk of PPI (Wang
et al., 2024).

For clinical implementation, we propose integrating this model
into electronic medical record systems to automatically calculate PPI
risk using the six predictors. This enables risk stratification (high/
moderate/low) to guide preventive interventions: enhanced
measures for high-risk patients, increased monitoring for
moderate-risk patients, and standard care for low-risk patients.
Such stratification allows for more targeted preventive strategies
and efficient resource allocation.

Strength and limitations and future
directions

This study demonstrates significant methodological and clinical
strengths by rigorously comparing nine advanced machine learning
algorithms and using a large, diverse sample across multiple surgical
specialties. LASSO feature selection and SHAP value analysis
improve model efficiency and interpretability. Translating
findings into actionable preventive strategies bridges the gap
between advanced analytics and clinical practice, highlighting the
study’s innovative approach and practical relevance to postoperative
care for diabetic patients.

However, our study has several limitations. First, this is a
retrospective single-center study without external validation. Our
patient population and institutional-specific practice patterns (such
as surgical protocols and diagnostic criteria) may affect model
generalizability. Second, the model’s performance in real-world
clinical settings remains untested. Its applicability may vary
across different healthcare settings, geographic regions, and
institutions. These limitations underscore the need for future
external validation studies. Future research should focus on: (1)
external validation through multi-center studies, (2) prospective
evaluation of clinical effectiveness, and (3) assessment of model
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performance in different healthcare settings. These steps are crucial
for validating the model’s clinical utility (Ramspek et al., 2021).

Conclusion

This study presents an accurate and interpretable machine
learning model for predicting PPI risk in persons with diabetes.
By identifying key risk factors, the model aids in clinical decision-
making and personalized preventive strategies, potentially
improving outcomes and resource allocation. While our study
provides a robust foundation for predicting PPI risk in diabetic
surgical patients, future research should focus on external validation,
model refinement, dynamic risk prediction, intervention studies,
comparative effectiveness research, and economic analysis.
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